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In this paper, we introduce a noncommutative version of the Brans-Dicke (BD) theory and obtain
the Hamiltonian equations of motion for a spatially flat Friedmann–Lemâıtre–Robertson–Walker
universe filled with a perfect fluid. We focus on the case where the scalar potential as well as the
ordinary matter sector are absent. Then, we investigate gravity-driven acceleration and kinetic
inflation in this noncommutative BD cosmology. In contrast to the commutative case, in which
the scale factor and BD scalar field are in a power-law form, in the noncommutative case the
power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor
depends on the noncommutative parameter as well as the momentum conjugate associated to the
BD scalar field. We show that the BD scalar field and the scale factor effectively depend on the
noncommutative parameter. For very small values of this parameter, we obtain an appropriate
inflationary solution, which can overcome problems within BD standard cosmology in a more efficient
manner. Furthermore, a graceful exit from an early acceleration epoch towards a decelerating
radiation epoch is provided. For late times, due to the presence of the noncommutative parameter,
we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.
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I. INTRODUCTION

Among the theories alternative to Einstein’s general
relativity, the Brans-Dicke (BD) theory [1] is the simplest
and the best known. In the BD theory, the gravitational
constant has been assumed to be a dynamical variable,
which is proportional to the inverse of a dynamical scalar
field, namely, the BD scalar field, φ.
In the Jordan frame of the BD theory, the scalar field

couples nonminimally only with the geometry and does
not couple directly with the matter. Hence, the energy-
momentum tensor of the ordinary matter (all types of
matter except the BD scalar field) obeys the usual con-
servation law. Moreover, there is a free dimensionless
adjustable parameter, which is called the BD coupling
parameter and denoted by ω. In spite of the theoret-
ical proposals in which it has been anticipated that the
values of the BD parameter should be of order unity, ob-
servational measurements have indicated that the lower
bound on | ω | is large [2].
At a classical level, to obtain results in agreement with

observational data, for an early as well as a late time uni-
verse, other extended versions of the BD theory (scalar-
tensor theories) have been applied. In these theories,
in contrary to the standard version of the BD theory, it
has been assumed that either the BD coupling parameter
should be a general function of the BD scalar field [3],
and/or a scalar potential [4] (which is also a function of
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φ) must be added by hand.1 It is also established that
the BD theory not only can provide observational con-
sequences to convince the original aims of the theory, but
also it is possible to construct interesting quantum cos-
mological models, which may present appropriate scen-
arios to study the inflationary universe [7, 8].

In the BD setting of [9, 10], which is of interest in
this study, an accelerated expanding universe was not
obtained by adding a scalar potential or a cosmological
constant. However, contrary to the standard BD theory,
a variable BD coupling parameter rather than a constant
one has been assumed. Being more concrete, an acceler-
ated expanding universe emerges from the kinetic energy
density of a dynamical Planck mass2 without introducing
any scalar potential or cosmological constant. More pre-
cisely, in this formalism, the pressure associated to the
kinetic energy density is negative.

Although having an accelerating scale factor is re-
quired to explain the early as well as late time phases
of the Universe, additional features need to be satis-
fied. In fact, the early Universe must inflate such that
it can overcome the problems with the standard cosmo-
logy. Moreover, a successful inflationary model must exit
from an accelerating phase and proceed to a decelerated

1 It has been recently shown [5] that, instead of an ad hoc assump-
tion, such a scalar potential could be induced from the geometry
of an extra dimension. Such formalism for an anisotropic Bianchi
type I solution has been examined in [6].

2 Throughout this paper, we will use Planck units. Thus, Planck
mass, which is a variable in BD theory, is given by mPl = φ1/2.
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expansion.

In Ref. [10], it has been shown that, to meet sufficient
inflation, it is required to have an accelerating scale factor
in the Einstein frame. However, there is no source to get
an accelerating scale factor in that frame in the model
investigated in [10]. Thus, kinetic inflation, even by as-
suming a variable BD coupling parameter, cannot lead
to today’s Universe. Namely, in the commutative case of
the BD theory (in the Jordan frame), there is an import-
ant problem with kinetic inflation, even with a variable ω:
regardless of the form of ω(φ), all the D branch3 solutions
are encountered with the graceful exit problem [10]. The
graceful exit problem is also an obstacle in (accelerated)
inflation within more general solutions in the context of
string theory [11].

In this work, we will present a model which can give an
accelerating scale factor for the early Universe, without
encountering the above-mentioned problems. Moreover,
we will show that the nominal as well as sufficient con-
ditions, which are required for an inflationary epoch, are
satisfied in a more convenient manner when the noncom-
mutativity parameter is present. Our model will not
be constructed by adding a scalar potential or by tak-
ing a variable BD coupling parameter. Instead, we will
study the effects of a noncommutativity in a cosmology
constructed with a flat Friedmann–Lemâıtre–Robertson–
Walker (FLRW) model in the context of the BD theory,
in the absence of the ordinary matter.

Noncommutative field theory [12] has been applied to
gravitational models which led to present a few noncom-
mutative proposals for gravity [13]. Such approaches
have indicated that their corresponding noncommutative
field equations are very complicated to solve. However,
by applying some arguments, gravitational models based
on noncommutativity with simplified field equations in-
volving noncommutative effects have been obtained. Ba-
sically, by means of applying an effective noncommutativ-
ity on a minisuperspace, the noncommutative deforma-
tions of the minisuperspace can be investigated at the
quantum level. At the classical level, noncommutative
deformations have also been studied; see, e.g. [14–17].

The major objective of this paper will be to construct
the spatially flat FLRW field equations for a generalized
BD theory by means of the Hamiltonian formalism in a
noncommutativite minisuperspace. Then, we proceed to
obtain the solutions for very special cases and investig-
ate the effects of noncommutativity. By introducing a
noncommutative Poisson bracket between the BD scalar
field and the logarithm of scale factor, we will construct
a noncommutative BD cosmology. The effects of such a
noncommutativity on the BD vacuum solutions are dis-
cussed.

Our paper is, therefore, organized as follows. In Sec. II,
the general Hamiltonian equations of motion for an ex-

3 We will introduce the D and X branches in footnote 6.

tended version of a BD theory (in Jordan frame) in the
presence of a special kind of a noncommutativity for a
spatially flat FLRW universe are derived. In Sec. III, we
restrict ourselves to solve the field equations for a case
in which there is not a scalar potential or an ordinary
matter. In Sec. IV, we will argue that the obtained solu-
tions in section III can be a successful alternative for a
kinetic inflationary model. In Sec. V, we will summarize
and analyze the results of the paper.

II. NONCOMMUTATIVE COSMOLOGICAL

EQUATIONS IN BRANS-DICKE THEORY

Let us start with the spatially flat FLRW metric as
the background geometry, namely

ds2 = −N2(t)dt2 + e2α(t)
(

dx2 + dy2 + dz2
)

, (2.1)

where N(t) is a lapse function and a(t) = eα(t) is the
scale factor. We will work with a Lagrangian density of
the BD theory4 in the Jordan frame [1, 19] as

L[γ, φ] =
√−γ

[

φR− ω

φ
γµν∇µφ∇νφ− V (φ)

]

(2.2)

+
√−γLmatt,

where the greek indices run from zero to 3, and Lmatt =
16πρ(α) (where ρ is the energy density) is the Lagrangian
density associated to the ordinary matter. In order to
have an attractive gravity, we should notice that the BD
scalar field φmust take positive values. V (φ) is the scalar
potential, and R is the Ricci scalar associated to the met-
ric γµν , whose determinant was denoted by γ. In this
work, we will assume the BD coupling parameter ω to be
a constant and, in vacuum, requiring stability in Lorent-
zian space, it must be restricted as ω > −3/2 [20, 21]. It
is straightforward to show that the Hamiltonian of the
model is given by

H=− Ne−3α

2(2ω + 3)φ

(ω

6
P 2
α − φ2P 2

φ + φPαPφ

)

(2.3)

+Ne3α (V − 16πρ) ,

where Pα and Pφ are the conjugate momenta associated
to the α and φ, respectively. We will be working with
the comoving gauge; namely, we have set N(t) = 1.
Thus, by applying the above Hamiltonian, the equations
of motion corresponding to the phase space coordinates
{α, φ;Pα, Pφ}, in which the Poisson algebra is {α, φ} = 0,

4 In the Lagrangian density associated to the original BD theory,
there is no scalar potential [1, 18]. However, for simplicity, we
entitle the Lagrangian density (2.2) as the BD Lagrangian dens-
ity. We should note that, in the next sections, we will work in
the context of the standard BD theory.
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{Pα, Pφ} = 0, {α, Pα} = 1 and {φ, Pφ} = 1, are given by

α̇ = − e−3α

2(2ω + 3)φ

(ω

3
Pα + φPφ

)

, (2.4)

Ṗα = e3α
[

−6V + 16π

(

6ρ+
dρ

dα

)]

, (2.5)

φ̇ = − e−3α

2(2ω + 3)
(Pα − 2φPφ) , (2.6)

Ṗφ =
e−3α

2(2ω + 3)φ
(Pα − 2φPφ)Pφ (2.7)

− e3α

φ

(

V + φ
dV

dφ
− 16πρ

)

,

where a dot denotes the differentiation with respect to
the cosmic time. Because of the homogeneous and iso-
tropic FLRW universe choice, we have assumed that the
spatial gradients in the BD scalar field are negligible,
namely, φ = φ(t). By using the equation of state associ-
ated to a perfect fluid and the Hamiltonian constraint, it
is straightforward to derive the usual FLRW field equa-
tions in the context of the BD cosmology. However, in
this paper, we prefer to work with the first order Hamilto-
nian differential equations.

We will investigate the effects of noncommutativity in
this cosmological model. In fact, in order to achieve the
corresponding FLRW equations for a noncommutative
setting, we should begin from a noncommutative theory
of gravity. However, as performing such a procedure is
a complicated process, it is usually replaced by an ef-
fective noncommutativity in the minisuperspace [14, 22].
By modifying the Poisson algebra, some particular non-
commutative frameworks have been applied to a min-
imally coupled scalar field cosmology [17], namely, in
quantum cosmology. In particular, a dynamical deform-
ation between the momenta associated to the scale factor
and scalar field has been used in both of nonminimally
and minimally coupled scalar field cosmology to discuss
the corresponding effects in the evolution of the Universe
and singularity formation [15, 16].

In order to investigate the effects of a classical evolu-
tion of the noncommutativity on the cosmological equa-
tions of motion in the BD theory, we propose the follow-
ing Poisson commutation relations between the variables:

{α, φ} = θ, {Pα, Pφ} = 0, (2.8)

{α, Pα} = 1, {φ, Pφ} = 1,

where the noncommutative parameter θ is a constant.
Applying the commutation relations (2.8) leads us to the

following deformed equations of motion

α̇=− e−3α

2(2ω + 3)φ

[ω

3
Pα + φPφ+θ(Pα − 2φPφ)Pφ

]

+ θ

(

e3α

φ

)[

V (φ) + φ
dV (φ)

dφ
− 16πρ

]

, (2.9)

φ̇ = − e−3α

2(2ω + 3)
(Pα − 2φPφ)

− 6θe3α
[

V (φ)− 16π

(

ρ+
1

6

dρ

dα

)]

, (2.10)

where, as the equations of motion associated to the mo-
menta Pa and Pφ under the proposed noncommutative
deformation do not change, we have abstained from re-
writing them. Equations (2.9) and (2.10) together with
those for the momenta, namely, Eqs. (2.5) and (2.7), are
the Hamiltonian equations for the noncommutative BD
setting, and obviously, the standard commutative equa-
tions are recovered in the limit θ → 0.
In the next sections, we investigate the cosmological

implications of this model for a very simple case in which
the scalar potential and the ordinary matter are absent.

III. GRAVITY-DRIVEN ACCELERATION FOR

COSMOLOGICAL MODELS IN THE

COMMUTATIVE AND NONCOMMUTATIVE BD

THEORY

Let us assume a very simple case in which we set
ρ = 0 and V (φ) = 0. In the commutative setting of
BD theory, such a model has been considered as an ap-
propriate approach in which the key ideas of the duality
and branch changing have been studied [23]. In addi-
tion, as mentioned, a gravity-driven acceleration epoch
is obtained without introducing any scalar potential, cos-
mological constant, and/or ordinary matter. In the com-
mutative case, such solutions, by assuming a variable BD
coupling parameter, have been investigated in detail in
Refs. [9, 10]. In what follows, we will study the effects of a
constant noncommutative parameter introduced by rela-
tion (2.8) on the behavior of the cosmological quantities.
We should remind that, in contrast to the approaches
of [9, 10], we have assumed the original BD theory in
which ω should be a constant. As we will see, the pres-
ence of the noncommutative parameter leads us to some
interesting consequences.
In the absence of the scalar potential and ordinary

matter, from (2.5) we get Ṗα = 0, which gives a constant
of motion and may assist us to solve the rest of the equa-
tions of motion. Thus, we get Pα = c1; also, Eqs. (2.7)
and (2.9) give Pφ = c±2 φ

−1 where c1 and c±2 6= 0 are
the integration constants. These constants are not in-
dependent; by substituting them into the Hamiltonian
constraint, we get the following relation between them:

c±1 =
3|c2|
ω

[−sgn(c2)± ξ] , (3.1)
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where ω 6= 0, ξ ≡
√

1 + 2ω/3, and sgn(x) = x/|x| is the
signum function. Thus, from (2.10), φ̇ is written as

φ̇ = − f±

ξa3
where f± ≡ |c2|

2ω
[−sgn(c2)ξ ± 1] . (3.2)

By employing the obtained expressions associated to the
momenta and the integration constants, Eqs. (2.9) and
(2.10) lead us to

H = h±

(

φ̇

φ

)

where h± ≡ g± +
c2θ

φ
, (3.3)

H = ȧ/a is the Hubble constant and g± is given by

g± ≡ −1

2
[1± sgn(c2)ξ] . (3.4)

Notice that the above equations corresponding with each
sign of5 c2 give two branches for the Hubble parameter.
As we have assumed φ > 0, i.e., an attractive gravity [2],
in order to discuss an expansion or contraction, the values
of φ̇ as well as h corresponding to each branch6 must be
considered. For instance, by considering a special case by

supposing c2 > 0 and θ = 0, we getH = −1/2
(

φ̇/φ
)

(1±
ξ). In this case, for ξ < 1, H > 0 only when φ̇ < 0, and

H < 0 only when φ̇ > 0 (for both of the branches).
While, for ξ > 1, to have a positive Hubble expansion we
must choose the upper sign for φ̇ < 0 and the lower sign
for φ̇ > 0.
Let us take a general case. We obtain the acceleration

of the scale factor as

ä

a
= H2 + Ḣ = − 1

6φ

[

ρ(φ) + 3p(φ)
]

(3.5)

= −
(

φ̇

φ

)2
(

2h2 + h+
c2θ

φ

)

,

where the energy density and pressure associated to the
BD scalar field are given by [5]

ρ(φ) ≡ −T 0(φ)
0 = 3h2

(

φ̇2

φ

)

, (3.6)

p(φ) ≡ T
i(φ)
i =

(

3h2 + 2h+
2c2θ

φ

)

(

φ̇2

φ

)

, (3.7)

5 For simplicity of expressing the quantities, we will sometimes
drop the index ±.

6 Following [9–11], for the commutative case, we will call the
branches as follows. Although in the Jordan frame, there are
some solutions in which the scale factor decreases, we can still
obtain an expanding universe for both of the branches. However,
in the Einstein frame, one of the branches always leads to an ex-
panding universe, while the other gives a contracting universe.
Therefore, the solutions correspond to the former, and the latter
are called the X branch and D branch, respectively. Through-
out our paper, when c2 > 0, the X branch solutions correspond
to the upper sign, while the D branch solutions correspond to
the lower sign. For the case where c2 < 0, we should note the
transformations obtained after Eq. (3.15).

where i = 1, 2, 3 with no sum and we have used relations
(3.2) and (3.3). Hence, in order to have an accelerating
universe, the following constraint must be satisfied

2h2 + h+
c2θ

φ
< 0. (3.8)

More precisely, while the Universe evolves, if the func-
tional form of h [which is given by (3.3)] changes such
that it obeys the constraint (3.8), then the Universe will
be in an accelerating phase. As ρ(φ) > 0, relation (3.7)
and constraint (3.8) indicate that the pressure will be
negative.
In the particular case where θ = 0, by using rela-

tions (3.3) and (3.4), the constraint (3.8) reduces to

ξ[ξ ± sgn(c2)] < 0. (3.9)

As ξ > 0, the only acceptable solution will give a con-
straint on the BD coupling parameter, namely, ω < 0
(ξ < 1), which corresponds to the negative values for c2
when the upper sign is chosen, while by taking positive
values of c2, the lower sign must be chosen. Namely, for
the commutative case, under changing the sign of c2, the
upper and lower solutions can be exchanged.
From (3.3), we can easily obtain a relation between the

scale factor and the BD scalar field as

a(t) = ai[φ(t)]
ge−c2θφ

−1

, (3.10)

where ai = eαi is another integration constant, which is
associated to α in a specific time. As is seen from (3.10),
the noncommutative parameter shows itself in the power
of an exponential warp factor, which, in turn, is a lin-
ear function of the dynamical momentum associated to
the BD scalar field. This time-dependent warp factor
appears in the differential equation associated to φ [see
Eq. (3.11)] and makes it very complicated, such that we
have to solve it numerically instead. Inserting (3.10) into
Eq. (3.2) gives a differential equation for the BD scalar
field as

φ̇φ3ge−3c2θφ
−1

= − f

a3i ξ
, (3.11)

where, according to (3.2), f depends on the c2 and the
BD coupling parameter, ω.
For a general noncommutative case, solving (3.11) ana-

lytically is very difficult.7 Thus, in the following subsec-
tions, by means of a few numerical endeavors, we will
analyze the solutions for different cases.
In the case where θ = 0, dependent on the value of the

BD coupling parameter, we get two types of solutions. As

7 If we integrate both sides of Eq. (3.11) (by assuming a certain
integral over the BD scalar field and the cosmic time), the in-
tegral on the lhs (over φ) gives an upper (or lower) incomplete
Gamma function, namely, Γ(−1− 3g, 3c2θ/φ).
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these solutions might be essential for our discussion, let
us obtain them by the Hamiltonian formalism introduced
in the previous section: (i) when g = −1/3 (or ω =
−4/3), which corresponds to the lower sign when c2 > 0
and the upper sign when c2 < 0, the solutions describe
the de Sitter–like space as

a(t) = aiφ
− 1

3

i emt and φ(t) = φie
−3mt, (3.12)

where φi is an integration constant, and m ≡
−|c2|
8a3

i

[−sgn(c2) ± 3], ii) whereas, for ω 6= −4/3, the solu-

tions are in the power-law form as

a(t) = ãi(t− tini)
r± , (3.13)

φ(t) = φ̃i(t− tini)
s± ,

with

φ̃i=

{

| c2 |
2a3i ω

[

sgn(c2)∓
(ω + 1)

ξ

]

}s±

,

ãi=aiφ̃
g
i = ai

{

| c2 |
2a3i ω

[

sgn(c2)∓
(ω + 1)

ξ

]

}r±

,

where tini is an integration constant and the exponents
r± and s± are given by

r± =
1

3ω + 4
[ω + 1± sgn(c2)ξ] , (3.14)

s± =
1∓ 3sgn(c2)ξ

3ω + 4
.

Indeed, due to the general form of the above relations, the
solutions (3.13) can be considered as a generalized version
of the well-known O’Hanlon-Tupper solution [2, 24] for
a spatially flat FLRW universe. Let us explain the role
of the parameters present in the model. In the special
case where c2 > 0 (or c2 < 0), we obtain the solutions
corresponding to (r+, s+) and (r−, s−) known as the fast
and slow solutions, respectively [2]. Such a designation
can be related to the behavior of the BD scalar field at
t→ 0 (for ω > −4/3), such that the fast (slow) solution is
associated to the decreasing (increasing) BD scalar field
at early times. In Fig. 1, we have plotted these behaviors
of the BD scalar field for the fast and slow solutions.8

It has been shown [25] that when ω 6= −4/3, by redefin-
ing Φ ≡ −ln(Gφ) (where G is the gravitational constant),
there are duality transformations as

α →
(

3ω + 2

3ω + 4

)

α− 2

(

ω + 1

3ω + 4

)

Φ, (3.15)

Φ → −
(

6

3ω + 4

)

α−
(

3ω + 2

3ω + 4

)

Φ,

8 We should note that, in some situations, when showing plots in
the same figure, from rescaling the plots or manipulating the
initial conditions just for visual clarity, it may lead to incorrect
physical interpretations. Hence, the behaviors of these quantities
are plotted in separate figures; see, e.g., Fig. 1.
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Φ

Figure 1: The time behavior of the BD scalar field corresponding

to slow (upper panel) and fast (lower panel) solutions. We have

taken a0 = 1 = φ0, c2 = −1, θ = 0 and ω = −1.2. Note that these

curves, unlike their corresponding a(t) curves [associated to both

of the commutative and noncommutative (with small values of the

θ) cases] coincide.

under which the slow and fast solutions are inter-
changed [26], namely, (r±, s±)←→ (r∓, s∓). However, in
our model for θ = 0 herein, from general relations (3.14),
without considering the duality transformations (3.15),
we can see that the sign of the integration constant c2
is responsible for the mentioned role, interchanging the
lower-upper solutions. More precisely, under interchan-
ging c2 > 0 ↔ c2 < 0, the parameters c1, g, and f
transform as (c±1 , f

±, g±)←→ (−c∓1 ,−f∓, g∓), and, con-
sequently, we get (r±, s±) ←→ (r∓, s∓). By consider-
ing such a symmetry, a relevant counterpart between the
solutions can be made, such that the number of differ-
ent cases to study are reduced by half. We also notice
that, for the noncommutative case where θ 6= 0, as seen
from (3.3), the general duality transformations (if one
can find them), not only depend on the f , g, and the
integration constants c1 and c2 but also may depend on
the noncommutativity parameter.

In the rest of this section, we will investigate the results
of a few numerical solutions for the noncommutative case
which will be compared with the corresponding solutions
of the commutative case.
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Figure 2: The behavior of the exponents r− (solid curves) and s−
(dashed curves) versus ω associated to the commutative case for the

lower sign when c2 > 0. We have chosen the ranges −4/3 < ω < 0

and −3/2 < ω < −4/3 for the upper and lower panels, respectively.

A. Case I: The lower sign with c2 > 0, ω < 0

In the commutative case, for c2 > 0, ω < 0, and the
lower sign, the time behavior of the scalar field and scale
factor depend on the values of the ω, in which, when ω is
restricted to −3/2 < ω < −4/3, the scalar field decreases
while the scale factor always accelerates. However, for
−4/3 < ω < 0, we observe a different behavior for the
scalar field and scale factor, such that, for this case, the
former increases but the latter decreases. For this, in
Fig. 2, according to the relations (3.14), we have plot-
ted the behaviors of the exponents r− and s− versus ω
in the range −3/2 < ω < 0. Hence, in order to have
a simple comparison of the commutative and noncom-
mutative cases, perhaps it will be a good idea if we also
investigate these ranges of ω in separate parts for the
commutative and noncommutative cases. As the beha-
vior of the quantities is sensitive to the sign of the non-
commutative parameter, we will investigate various cases
for positive and negative θ.

1. Case Ia: −3/2 < ω < −4/3 and θ < 0

In order to compare the behavior of the quantities,
in Figs. 3 and 4, we have plotted the time behavior of
the scalar field, scale factor, and its first and second
time derivatives for the commutative and noncommutat-
ive cases, respectively. In these plots, except for the non-
commutative parameter, we have chosen the same initial
values for the variables: very small negative values for
the noncommutative parameter and negative values for
the BD parameter in the range −3/2 < ω < −4/3 and
a0 = φ0 = c2 = 1. We should remind that, in order to
probe the effects of the noncommutative parameter with
more clarity, Figs. 3 and 4 have been plotted separately
for each case.
As Figs. 3 and 4 show, the scalar field decreases, and its

behavior is almost the same for both of the commutative
and noncommutative cases (they almost coincide). How-
ever, the behavior of the scale factor is different. That
is, the scale factor starts from a singular point at t = 0
and increases for both of the commutative and noncom-
mutative cases, such that, for the commutative case, we
always have ä > 0, while for the noncommutative case in
the early times we have ä > 0, but at the special point
(hereafter, we call it “point A”), it turns to be negative;
namely, after a very small time, the phase changes and
we have a decelerating universe. In the next sections, we
will discuss further such an interesting behavior of the
scale factor. It is worthwhile to describe the evolution
of the scale factor, scalar field and their time derivatives
for different values of the three present parameters in this
case. Namely, for different values which have been chosen
from the ranges c2 > 0, θ < 0, and ω < 0. The results
indicate the following:

• The larger the integration constant c2, the shorter
the time of the accelerating phase (see Fig. 5).
Namely, when we take a larger c2, the scale factor
increases faster (with a larger speed and acceler-
ation), and, consequently, we get to the point A
faster. In other words, by increasing this integ-
ration constant, the ä curve is shifted to the left
simultaneously with a contraction of the amount
of the time associated to the accelerating (as well
as decelerating) and an increase of |ä| for both the
accelerating and decelerating phases. Furthermore,
as Fig. 5 demonstrates, by taking a larger value for
c2, the scalar field decreases faster. Consequently,
as the value of c2 determines the time of the ac-
celerating phase and its corresponding scale factor
value, it can, thus, be related to the number of e-
folds for an inflationary universe.

• In Fig. 6, we have plotted the behavior of the scale
factor and its derivatives (with respect to the cos-
mic time) for different values of the noncommut-
ative parameter. For different values of | θ |, we
cannot see perceptible changes in the behavior of
the scalar field. However, the smaller the | θ |, the
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Figure 3: The time behavior of the BD scalar field, scale factor,

its first and second derivatives associated to the commutative case

(θ = 0) for the lower sign with a0 = φ0 = c2 = 1 and ω = −1.4.
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Figure 4: The time behavior of the scale factor, its first and second

derivatives associated to the noncommutative case for the lower

sign. We have taken θ = −0.000001. All the other initial values

are the same as they were in Fig. 3. Note that the φ(t) curves

associated to the commutative and noncommutative cases almost

coincide.

larger the slope of a(t), namely ȧ. More precisely,
the speed of the expansion directly depends on the
|θ |. More concretely, the time behavior of a (and,
consequently, ȧ and ä), by taking different values
of the noncommutative parameter, changes, such
that as Figs. 5 and 6 show, it seems that |θ | plays
the role of c−1

2 (as the previous item shows) in the
ä plots. This claim is true for the amount of the
interval time of the accelerating and decelerating
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Figure 5: The time behavior of the a, ä and the φ for the non-

commutative case with different c2. In this figure, we take three

different values as c2 = 1 (solid curve), c2 = 2 (dashed curve) and

c2 = 3 (dotted curve). The other parameters have the same initial

values as in Fig. 3

phases, but it does not hold for the value of | ä |,
because in this case, the larger the value of | θ |,
the smaller the value of | ä |. Hence, we should note
that, as the numerical results show, it is not valid to
argue that when the value |c2θ | remains constant,
the behavior of the scalar field, scale factor, and
their time derivatives do not change. This can be
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Figure 6: The time behavior of the a, ȧ and ä for the noncommut-

ative case for different values of the noncommutative parameter.

Here, we take c2 = 1 = a0, ω = −1.4 for three different values

of the noncommutative parameter as θ = −0.000001 (solid curve),

θ = −0.00001 (dashed curve) and θ = −0.001 (dotted curve).

read from (3.10) and (3.11); namely, the extra role
of c2 in other parts of the differential equations, for
instance, the f itself, depends on c2 rather than θ.

• For large values of the cosmic time, by assuming the
same initial values for the parameters of the model
(except θ), the BD scalar field goes to zero for
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both the commutative and noncommutative cases.
However, the time behavior of the scale factor is
not the same for these cases. In the commutat-
ive case, the scale factor always accelerates with
a variable acceleration, such that ä never takes a
constant value. However, for the noncommutative
case, ä vanishes, ȧ takes very small constant value,
and, consequently, the Universe expands with a
small constant speed. Namely, in the noncommut-
ative case, for late times, we get a zero acceleration
epoch. Such behavior for the scale factor can be
interpreted as a direct consequence of the existence
of the noncommutative parameter. This is almost
similar to the result obtained in [15], in which a
constant deformation parameter is also included.
However, the difference is that, in our model, the
speed of the scale factor in late times is not exactly
zero, but it approaches zero instead. We should
note that in [15], as the behavior of the quantities
were investigated, when ω −→ ∞, such a differ-
ence can be interpreted as a natural consequence
of the models. This effect of the noncommutative
parameter shows itself very far from the initial sin-
gularity, and it has been suggested as a footprint of
quantum gravity in a coarse-grained explanation.

2. Case Ib: −4/3 < ω < 0 and θ < 0:

As mentioned, in this range of the BD coupling para-
meter, for the commutative case, our solutions are more
general than the solutions obtained by O’Hanlon and
Tupper. More precisely, in the O’Hanlon-Tupper solu-
tions, for the lower sign with −4/3 < ω < 0, the BD
scalar field always increases while the scale factor de-
creases. However, the behavior of these quantities in
our model not only depends on the values of ω but is
also sensitive to the values of the integration constant
c2, such that by taking different values for ω and c2, we
can obtain, in addition to the O’Hanlon-Tupper solutions
other different behaviors as obtained in case Ia. For in-
stance, in Fig. 7, we have plotted the behavior of the BD
scalar field for two different values of c2. Note that the
other initial values are the same for both of these figures.
Moreover, for the noncommutative case, we also observe
that the behavior of these quantities depends on, besides
c2 and ω, the noncommutative parameter. In short, for
the noncommutative case, the obtained solutions in the
previous case (case Ia) can also be produced when we
take the range −4/3 < ω < 0, although the initial values
may be changed.

B. Other cases

We can also add a new case, i.e., the lower sign in
which c2 > 0, ω < 0, and θ > 0, instead of negative
values for the noncommutative parameter. Also, we can
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Figure 7: The time behavior of the BD scalar field for the com-

mutative case for different values for c2 as c2 = 1 (upper panel) and

c2 = 0.1 (lower panel). The other initial values have been taken

the same for both of the plots. Here, a0 = 1, ω = −1.2 and θ = 0.

analyze other cases similar to those categorized in case
I but instead with an upper sign (rather than a lower
sign). However, as all of the mentioned cases give differ-
ent results, which are not in the scope of this work, we
will leave them.

IV. KINETIC INFLATION

In the previous section, we have shown that by intro-
ducing a noncommutative relation between the BD scalar
field and the logarithm of the scale factor, not only does
the scale factor accelerate in the early times, but also it
can exit from the acceleration epoch and initiate a de-
celerating phase. In other words, a suggestion on how to
solve the graceful exit problem. However, these features
alone do not guarantee an appropriate setting for the
resolution of the problems with the standard cosmology.

One of the well-known shortcomings with the stand-
ard cosmology is the horizon problem. Namely, there are
plenty of regions in the large volume of today’s Universe,
which were not causally connected at early times. More
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precisely, the size of the presently9 observed Universe at
some earlier time t (at least as early as t ∼ 1sec), d

U
(t) ∼

a(t)/(H0a0), is much larger than a distance which a

photon traveling by10 t, d
Hor

(t) = a(t)
´ t

ti
dt′/a′ [28]. Let

us first check the nominal condition for the acceleration
associated to the inflation [9], namely,

d
Hor

> H−1. (4.1)

Then, in the rest of this section, we will investigate the
condition for sufficient inflation.
From Eqs. (3.2) and (3.3), we get

(

H +
φ̇

2φ

)2

=

[

(

h+
1

2

)

(

φ̇

φ

)]2

, (4.2)

which gives

dln(a2φ)

dt
= ±(2h+ 1)

(

φ̇

φ

)

. (4.3)

This equation shows that the horizon distance can be re-
lated to φ, ω, the scale factor, and the noncommutatvity
parameter. Applying (3.2) and integrating over dt, we
obtain

d
Hor

=
a3φ

|f | −
2c2

2g + 1
d

NC

(4.4)

up to a constant of integration. In Eq. (4.4), we have

introduced the new distance d
NC

as

d
NC ≡ θa

c2

ˆ

P ′
φ′dt′

a′
, (4.5)

in which the integrand not only depends on the inverse of
the scale factor (similar to the one defined for optical ho-
rizon) but also depends on the nonocommutativity para-
meter and the conjugate momentum of the BD scalar
field. The factor c2 is multiplied in the denominator of

relation (4.5) to make the dimension of d
NC

the same as

d
Hor

. (Note that we have found a relation between the BD
scalar field and its momentum conjugate as Pφ = c2/φ.)
We expect that this new term can add a positive value to

the d
Hor

to properly assist in satisfying the requirement

9 A subscript 0 stands for the present epoch.
10 The primed variables are evaluated at time t′. We should note

that the quantity introduced here as d
Hor

is, indeed, the radius
of the optical horizon defined for the FLRW space in which ti =
trecombination [27]. While, the radius of the particle horizon at
time t usually is defined as a radius of a sphere whose center is
located at the same point where the comoving observer localized,
and it encompasses all particle signals have been reached from
the time of the big bang, (i.e., t = 0, instead of trecombination)
until t.

associated to the horizon problem. In order to compare,
we rewrite Eq. (3.3) by the aid of (3.2) as

H =
|f |
ξ

h

a3φ
. (4.6)

Using (4.4) and (4.6) in the nominal condition (4.1) gives

D
NC ≡ d

Hor−H−1 =
φa3

|f |

(

1 +
ξ

h

)

− 2d
NC

2g + 1
> 0. (4.7)

Obviously, in the limit θ −→ 0, d
NC

goes to zero as well,
and, thus, the relation associated to the horizon distance
of the commutative case is recovered. Further, in the
mentioned limit, the resulted relation is the same as one
obtained in Ref. [9] (by assuming a constant BD coupling
parameter in the mentioned paper). Therefore, in the
commutative case where θ = 0, the only acceptable result
is 0 < ξ < 1 (−3/2 < ω < 0), which is obtained by
choosing either the upper sign for c2 > 0 or the lower
sign for c2 < 0.
For the general noncommutative case, we should note

that, in addition to the sign of c2, the allowed values of
ω as well as the behavior of the BD scalar, the noncom-
mutative parameter has a substantial role in determining
whether this constraint is satisfied or not. Obviously, as
the numerical results of the previous section show (see,
especially, Figs. 5 and 6 and their analysis), due to the
presence of the noncommutative parameter and the ex-
tra terms associated to it, satisfying the constraints for
the noncommutative case is easier than its correspond-
ing commutative case. For instance, in Fig. 8, for case

Ia, D
NC

has been plotted against cosmic time. Therefore,
we observe that the constraint (4.7) for the noncommut-
ative case can be easily satisfied at all times. To be more

clear, we also have plotted the time behavior of D
NC

for
the commutative case (θ = 0) separately in Fig. 9.
In what follows, we intend to probe the condition for

sufficient inflation,11 which is given by [10]

d
Hor

⋆

a⋆
>

1

H0a0
, (4.8)

where the lhs of the above inequality stands for a comov-
ing size of a causally connected region at a specific earlier
time t⋆. By including a nonzero integration constant, re-
lation (4.3) for the specific time t⋆ gives

d
Hor

⋆ =
a3φ(1− δ)

fsgn(c2)
− 2

2g + 1
d

NC

∣

∣

∣

∣

∣

⋆

, (4.9)

11 It has been claimed [29] that the constraint (4.8) is only valid
for the power-law scale factor of the Universe. As in our model,
we assume that the warp factor can be expanded such that, be-
cause of the smallness of the noncommutative parameter, we can
take only up to the linear term. Then, the mentioned causality
condition needed to overcome the horizon problem holds for our
model.
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for the commutative case

with the same initial values as in Fig. 8.

where the integration constant, which was removed in

relation (4.4), has now been included in δ ≡ a2

i
φi

a2φ where

the subscript i stands for initial values. Note that, as
the BD scalar field takes positive values, we always have
δ ≥ 0.
The Hubble constant at present time, H0, can be ex-

pressed in terms of the value of the Planck mass today,
M0, and T0 as [10]

H0 =
√

α̂0
T 2
0

M0
, (4.10)

where α̂0 = γ(t0)η0 = (8π/3)(π2/30)ḡ(t0)η0, in which η0
stands for the ratio today of the energy density in matter
to that in radiation. In order to see whether or not the
above condition is satisfied by the solutions herein, we
would like to employ the assumptions of the Ref. [10]:
(i) the time tend is allocated to the end of inflation in
which the entropy is produced; (ii) since the time tend,
the Universe has evolved adiabatically such that we can

assume aendTend = a0T0. Employing relation (4.10) and
assumption (ii) in (4.8) gives

a⋆
aend

&

(

M0√
ᾱ0T0

)

1

|dHor

⋆ | Tend
. (4.11)

In order to proceed, we consider a simple conjecture for
the heating mechanism. Let us use the following relation
between Tend and the net available kinetic energy Eend

as

Tend = ǫEend, (4.12)

where ǫ denotes the efficiency of the system where the
kinetic energy density is converted to entropy [10]. The
kinetic energy density for our model is only given by
the energy density of the BD scalar field in unit volume.

Namely, we have Eend = ρ
(φ)
end(4π/3)a

3
end, where by sub-

stituting the energy density associated to the BD scalar
field from relation (3.6), we obtain

Tend =
4πǫf2

ξ2
h2
end

a3endφend
. (4.13)

Substituting d
Hor

⋆ from (4.9) and Tend from (4.13) into
(4.11), we get

a2⋆φ⋆

a2endφend
&

(

M0√
ᾱ0T0

)

(1− δ⋆)
−1ξ2 (4.14)

× 1

4πǫ | f | (g + c2θ
φ )2[1− 2dNC

⋆

(2g+1)|f |(1−δ⋆)a3
⋆
φ⋆

]
.

The constraint (4.14) is the modified (noncommutative)
version of the one obtained in the BD theory in [10].
Let us first review the obstacles of the commutat-

ive model regarding (4.8) and then turn to solve the
problems by applying the noncommutative model. In
[10], (1 − δ⋆) ∼ 1, f ∼ 1, M0 = 1.2 × 1019GeV,
T0 = 2.3 × 10−13GeV, and assigning two different val-
ues for ω, the model was examined. In one case where
ω ∼ 0, satisfying (4.8) leads us to take the D branch. Let
us be more precise. By substituting the above values in
the inequality for the commutative case, the constraint
(a2⋆φ⋆)/(a

2
endφend) & 1030/ǫ follows. This condition, even

with ǫ ∼ 1, implies that the quantity a2φ decreases with
the cosmic time. Such a result demands that we must
take the D branch of the solutions. However, to have
an expanding universe, we must have aend > a⋆. By us-
ing this requirement in (4.14) for the commutative case,
the minimum change in the dynamical Planck mass will
be mPl(tend)/mPl(t⋆) & 10−15ǫ1/2, which implies that
the Planck mass must decrease during inflation. How-
ever, as was argued by Levin [10], it is not enough that
such a requirement is satisfied, and a branch change must
be induced.
Let us further discuss the assistance of a few plots from

our model for the lower sign with c2 > 0 (D branch) and
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Figure 10: The time behavior of the aφ1/2 for the commutative

case (dashed curve) and noncommutative case (solid curve). We

have taken c2 = 1 = a0, ω = −1.36 and θ = −0.000001 for the

noncommutative case.

then compare it with the noncommutative case. Equa-
tion (4.3), by using (3.3) and (3.4) for the lower sign, can
be rewritten as

dln(aφ
1

2 )

dt
= −1

2

[

sgn(c2)ξ +
2c2θ

φ

]

( |f |
ξa3φ

)

. (4.15)

In the commutative case with c2 > 0, we get

dln(aφ
1

2 )

dt
= − |f |

2a3φ
, (4.16)

which indicates that the quantity aφ1/2 always decreases
with the cosmic time. In Fig. 10, such behavior has been
shown for the lower sign (see the dashed curve). Because
a variation in the strength of gravity for today’s Universe
has not been observed, this behavior is consequently not
acceptable: namely, the BD scalar field must take al-
most constant values today. On the other hand, as we
have an expanding universe, the quantity aφ1/2 has to
increase. While for a general noncommutative case, due
to the complicated dependence of the rhs of (4.15) to c2,
ω, θ, as well as the BD scalar field, we cannot analytically
draw the time behavior of aφ1/2. However, fortunately,
for c2 > 0, θ < 0, and lower case, i.e., the D branch, we
have shown numerically that at the early times, aφ1/2

behaves the same as its corresponding in the commutat-
ive case; namely, it decreases with time. However, after
reaching a nonzero minimum, it starts to increase. For
instance, in Fig. 10, the time behavior of aφ1/2 for the
lower sign associated to the noncommutative case has
been plotted.

We also should remind that in the commutative case,
even with taking a variable BD coupling parameter, the D
branch cannot give today’s expanding Universe. Hence,
such a result is not consistent with the present acceler-
ating Universe.

V. CONCLUSIONS

In this paper, we have introduced a noncommutative
version of the BD theory. More precisely, a modified Pois-
son algebra among minisuperspace variables (the logar-
ithm of the scale factor and the BD scalar field) has been
used. Such an ansatz bears much resemblance to the
assumptions taken in noncommutative quantum cosmo-
logy [14, 30] as well as a few classical noncommutative
cosmological models in theories alternative to general re-
lativity with a minimally [16, 17] (or a nonminimally [15])
coupled scalar field to the geometry.
We have investigated the BD cosmological equations of

motion in the comoving gauge. The general Hamiltonian
equations indicate that when the noncommutative para-
meter tends to zero, all the equations reduced to their
corresponding counterparts in the standard commutat-
ive case.
We have focused on the case in which there is neither

a scalar potential nor a cosmological constant. Further-
more, we have assumed that the Lagrangian density asso-
ciated to the ordinary matter is absent. We constructed
a generalized noncommutative analogue to include key
ideas of duality and branch changing as well as gravity-
driven acceleration and kinetic inflation. In this man-
ner, we have seen that the power-law scale factor of the
Universe (associated to the commutative case) is general-
ized to be multiplied with a time-dependent exponential
warp factor, which is a function of the noncommutat-
ive parameter and the momentum associated to the BD
scalar field [see relation (3.10)]. Moreover, in this case,
in contrast to the commutative case, we have observed
that the BD scalar field is not in the form of a simple
power function of time, but instead, it is obtained from a
more complicated differential equation, which is found to
be an incomplete gamma function [see differential equa-
tion (3.11)].
In the commutative case, because of the appearance

of the integration constant associated to the momentum
conjugate of the BD scalar field in the solutions, our
model can be considered as an extended model of the
de Sitter–like space and O’Hanlon-Tupper solutions. In
the latter, the mentioned integration constant has an in-
teresting property. Namely, under changing its sign, a
symmetry relates a category of the solutions to its cor-
responding counterpart, such that the number of models
to be discussed can be reduced by half. More precisely,
this integration constant together with others presented
in the model can play the role of the duality transform-
ations introduced in the context of the BD theory [26].
After a short discussion of the consequences of our

model within the standard commutative case, we have
focused on noncommutative solutions (and their inter-
esting interpretations in cosmology), which give very dif-
ferent results with respect to their corresponding in the
commutative case.
In case Ia, we have assumed very small negative values

of the noncommutative parameter θ, positive values of
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c2, and the lower sign. We have shown that, unlike the
time behavior of the BD scalar field, the time behaviors
of the scale factor, its speed, and acceleration are very
different in the noncommutative case with respect to the
commutative case. Let us be more concrete. When the
BD coupling parameter is restricted12 to −3/2 < ω < 0,
the scale factor of the commutative case always acceler-
ates, while, for the noncommutative case, it accelerates
only for the very early times, and after a very short time,
it turns to give a decelerated universe. This interesting
effect of the noncommutative parameter on the behavior
of the scale factor constitutes a feature of an appropri-
ate alternative model proposed for an inflationary model,
which can overcome the graceful exit problem.
Furthermore, the mentioned behavior of the scale

factor can also be altered with different allowed values
of the parameters present in the model. More precisely,
when different values are taken for θ, ω, and c2, the time
interval, speed, and acceleration of the scale factor as-
sociated to the acceleration phase of the very early era
of the universe also change. We have numerically shown
that the e-folding number relates to the amount of c2
and/or θ. Our numerical analysis show that, for case Ia,
the noncommutative minisuperspace model, in which the
noncommutative parameter is a constant, can constitute
as a viable phenomenological model herein, at least for
an inflationary epoch, when | θ | takes very small values.
Moreover, in case Ia for late times, contrary to the

commutative model in which the scale factor always ac-
celerates, we get a zero acceleration epoch for the Uni-
verse. This behavior of the scale factor that is occurring
very far from the singularity is guaranteed by the exist-
ence of a constant noncommutative parameter, and it is
usually interpreted as coarse-grained explanation of the
quantum gravity footprint.
The horizon problem is the main shortcoming with the

standard cosmology, so, we turned to investigate it in our
model. We have shown that by extending the FLRW va-
cuum universe, in the standard BD theory, by introdu-
cing a deformation among the minisuperspace variables,
we can overcome this problem.
By means of numerical diagrams, we have shown that

the nominal as well as sufficient requirements associated
to the inflation can be fully satisfied in our model. In a
kinetic inflation model in the context of the BD theory
with a variable ω for the commutative case [10], it was
claimed that all the accelerations in the D branch suf-
fer from the well-known graceful exit problem. Namely,
such a problem has a direct relation with the time be-
havior of the quantity aφ1/2. More precisely, if aφ1/2

decreases forever, then a branch change is required. In-
deed, in the commutative case, the mentioned quantity

12 We should remind that the behaviors of the quantities, which
have been reported for the noncommutative case in the range
−3/3 < ω < −4/3, under some different initial conditions can
also be retrieved for −4/3 < ω < 0.

always decreases which is in direct contradiction with the
observational indications concerning the strength of the
gravity as well as the expansion of today’s Universe. This
problem is properly solved by the effects of the noncom-
mutative parameter, such that at the very early times, ex-
actly the same as the commutative case, aφ1/2 decreases
with the cosmic time, while after the phase changing, it
starts to increase with time, which is in agreement with
observation.
Let us look at the above problem from another per-

spective. If we would like to know whether or not the
model also provides inflation in the conformal Einstein
frame, we must consider not only the behavior of the
scale factor but also check the behavior of the quant-
ity a

RI
≡ [a(t)l0]/lPl(t), in which a(t)l0 (where l0 is a

comoving constant length) is any physical length, and

lPl(t) ≡
√

~Geff

c3 =
√

~

c3φ(t) is the Planck length, which is

not a constant in BD theory. If the mentioned conditions
were satisfied, then inflation is called real inflation [2]. As
mentioned, in some models, the Planck length decreases
faster than the scale factor, and, thus, the ratio a

RI
al-

ways decreases, which is not consistent with the obser-
vational data. However, in our model, as we have used
the Planck units, the ratio a

RI
reduces to the quantity

aφ1/2, and, thus, our model provides real inflation. How-
ever, in the case of the commutative model, for any ω,
particularly for the case ω = −1, which has been known
as pre-big-bang cosmology [31], the requirements of the
real inflation are not fully satisfied [20, 32].
We should be aware of some shortcomings regarding

our noncommutative setting herein.

• In our model, as in other investigations in the con-
text of the BD theory, to retrieve the accelera-
tion for the early as well as late time epochs, the
BD coupling parameter takes very small values,
which is in contradiction with Solar System experi-
ments. Different approaches have been presented to
solve the shortcomings with the cosmological mod-
els based on the BD theory, especially the men-
tioned problem with ω, see, e.g., Refs. [8, 33].

• In this paper, we have confined our discussion to
the noncommutative version of the standard BD
theory in the absence of the ordinary matter, but
we can extend this procedure by adding a matter
sector, scalar potential, and/or assuming a variable
BD coupling parameter instead of the constant
one. In addition, we can consider other deformed
Poisson brackets instead of the one presented here.

• Another important point is that we have not tested
the predictions of our model (for the very early
Universe) by means of density and gravitational
fluctuations around the FLRW background. In
many investigations, by employing different ap-
proaches, the perturbation of the FLRW back-
ground in the BD and generalized scalar-tensor the-
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ories have been studied, see, e.g., [2, 34]. Employ-
ing perturbation theory, similar to transformations
required for finding the predictions of the model in
the conformal Einstein frame, is crucial, but per-
forming them in the presence of the noncommut-
ative parameter is very complicated and in some
situations may be impossible.
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