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Abstract We discuss a possible link between the defor-
mation parameter �μν arising in the framework of non-
commutative geometry and the parameter β of the gener-
alized uncertainty principle (GUP). We compute the shift
of the Hawking temperature induced by the �μν-deformed
Schwarzschild geometry, and then we relate it to one obtained
by GUP. Results suggest a granular structure of specetime at
the Planck scales. The current bounds on β allow to constraint
the noncommutative parameter �μν .

1 Introduction

The possibility to describe spacetime in noncommutive
frameworks was noted long time ago [1], and its inter-
est renewed recently owing to the discovery of Seiberg-
Witten map [2], which relates noncommutative to commu-
tative gauge theories. Since then there has been a more and
more interest to understand the impact of noncommutativity
on fundamental issues. From a side by studying the the space-
time symmetry1 and unitary properties of these theories [3–
11], from the other side, investigate on possible experimen-
tal evidences [12–14] (see the review [19,20] and references
therein). Moreover, the interest increased also thanks to the
fact that the low-energy limit of string theory with an anti-
symmetric B-field background provides a quantized structure
of the spacetimes [2,19–21].

1 Space-time properties of noncommutative field theories are essentially
either space-time symmetries are manifestly violated [3–16], or the
full Lorentz invariance is imposed on some parameters characterizing
the noncommutative model, yielding to a quantum space-time with the
same classical global symmetries [6,7,17,18]).
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The idea of noncommutativity of spacetime might provide
deep indications about the quantum nature of spacetime at
very high energy scales, where (gravitational) singularities
are inevitable. In fact, the noncommutativity of space-time
could be intrinsically connected with gravity [2,6,7], and
several studies have been proposed in literature to conciliate
General Relativity with noncommutative space-time models.
The general idea is to define the fields over phase space by
replacing the ordinary product of fields with the Gronewald-
Moyal product and then map (via the Seiberg-Witten) this
theory in the equivalent commutative theory with expansion
of the fields in terms of the noncommutative parameter. This
approach has been extensively used to study many gauge
theories [22–28] (see also [29–32]), and since gravity can
be considered as a gauge theory, the commutative equivalent
approach appears to be a promising formulation2 [33,48,62–
72].

Here we shall confine ourselves to the case in which the
noncommutative coordinate product is given by

[xμ, xν] = i�μν . (1.1)

2 More precisely, some formulations of General Relativity on non-
commutative spacetimes have been studied in different frameworks: 1)
By gauging the noncommutative SO(4, 1) de Sitter group and using
the SeibergWitten map followed by a contraction to the Poincaré group
I SO(3, 1) [62]; 2) By twisting the Poincaré algebra in such a way that
the latter insures the invariance of the algebra (1.1) (canonical structure)
defining the noncommutativity of the spacetime [67]; 3) By consider-
ing a restrictive class of coordinate transformations which preserve the
canonical structure [69,70](by gauging the Lorentz algebra so(3, 1)

within the enveloping algebra approach one infers a noncommutative
general relativity restricted to the volume-preserving transformations
(unimodular theory of gravity)); 4) By twisting the gauge Poincaré alge-
bra [48]; 5) By considering geometrical approach to noncommutative
gravity [33].
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The (antisymmetric) tensor �μν is a c-number, with μ, ν =
0, . . . , n, where n+1 is the dimension of the space-time,3 and
accounts for the degree of quantum fuzziness of space-time.
Although the canonical form (1.1) is the simplest case, it has
the advantage to account for the basic features of noncommu-
tativity. Hereafter we shall take 4-dimensional spacetimes.
Limits on the noncommutative scale have been inferred in
different frameworks, such as low-energy precision mea-
surements [34,35,37], Lorentz symmetry violation [38,39],
early Universe [40–42], black holes and gravitational physics
[43,44]. In addition, several approaches of noncommutative
theories of gravitation have been suggested [43–51,62], and
all these models show that the �-corrections occur only at the
second order. More specifically, in [39], for example, it has
been found that the scale of noncommutativity is limited to
be smaller than the inverse TeV scale. Yet, the upper bounds
derived from Lamb shift corrections and from cosmology
(CMB physics) give � < 10−8 GeV−2 [35] and � < 10−7

GeV−2 [37], respectively.
The aim of this paper is to relate the parameter �μν to the

deforming parameter β of the generalized uncertainty prin-
ciple (GUP) [58–61]. More precisely, we consider the (back-
reaction) effects of tiny modifications of the Schwarzschild
geometry induced noncommutative geometry, which in turn
affect the Hawking temperature, to the deformation of the
Heisenberg uncertainty principle, that is the GUP, referring
in particular to one widely studied in literature

�x �p ≥ h̄

2

[
1 + β

(
�p

MPl

)2
]

, (1.2)

where MPl = 1.2 × 1019 GeV is the Planck mass (M2
Pl =

G−1 in natural units h̄ = c = 1, where G is the univer-
sal gravitational constant). The dimensionless parameter β

is not fixed by the theory (even if it must be pointed out that
in some models of string theories it is generally assumed
that β ∼ O(1) [52–56]). Typically, studies in this context
are mainly focalized to understand how gravity may affect
the Heisenberg Uncertainty Principle, and it is therefore not
surprising that the most relevant modifications have been
derived in fundamental (unification) theories, such as string
theory, loop quantum gravity, deformed special relativity, and
black hole physics [52–56,73–78,80–82,94–99,107–112].
Our target is to use the GUP to compute the Hawking tem-
perature of a given black hole, which however can be also
computed by using the effective potential inferred by �-
deforming the Schwarzschild metric. This provides a rela-
tionship between the two parameters, β ∝ �μν , that in turn
allows to infer, by making use of the most stringent bound on

3 There are other different approaches in which the noncommutativity
of the coordinates could take place, such as the Lie-algebraic and the
coordinate-dependent (q-deformed) formulations [57].

the parameter β, an upper bound on the deformation param-
eter �μν .

2 GUP and Hawking temperature

The relationship between Hawking temperature and GUP has
been derived in [78,83–90,94]. Let’s shortly summarize here
the main points. From Heisenberg uncertainty principle [79]
it follows that the size δx of the smallest detail of an object
detectable with a beam of photons is of the order δx � h̄

2 E ,
where E is the energy of photon (larger energies allow to
explore smaller regions). Inserting into Eq. (1.2) one gets
(for �p � E)

δx � h̄

2 E
+ 2 β l2Pl

E

h̄
(2.1)

This equation allows to relate the mass M and the temperature
T of a Schwarzschild black hole. In fact, the position uncer-
tainty of an ensemble of unpolarized photons of Hawking
radiation (just outside the event horizon of a Schwarzschild
black hole RS ≡ 2GM) is of the order of RS , and there-
fore the uncertainty on the photon position is δx � 2μRS

(the constant μ is fixed in such a way to obtain the correct
Hawking temperature, μ = π ). According to the equipar-
tition principle, the temperature of unpolarized photons of
the Hawking radiation is related to the average energy E as
E = T , so that Eq. (2.1) can be cast in the form

M = h̄

8πGT
+ β

T

2π
. (2.2)

The semiclassical limit β → 0 reproduces the standard semi-
classical Hawking temperature TH = h̄

8πGM . The relation
(2.2) is the black hole mass-temperature relation derived by
making use of the GUP for a Schwarzschild black hole. By
inverting (2.2) (typically β T � 1, in particular for solar
mass black holes) one gets

T = TH

(
1 + β

4π2

M2
Pl

M2 + · · ·
)

, (2.3)

with M2
Pl = h̄/G (we set c = 1). Results here derived rely

on the assumption that the correction induced by the GUP
has a thermal character, and, as a consequence, it can be cast
in the form of a shift of TH (notice, however, that there exist
in literature different approaches in which the corrections
do not respect the exact thermality of the spectrum, as, for
example, in the corpuscular model of a black hole [91]).

3 Temperature from a �μν-Schwarzschild metric

In this section, we shall derive the relation between the
parameters �μν and β. To this aim, we first recall the modifi-
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cations to the Schwarzschild metric induced by the noncom-
mutative geometry. Then we compute the correction/shift to
the Hawking temperature.

3.1 �μν-Schwarzschild metric

The question concerning the possible to find new solutions
of the deformed Einstein field equations has been faced in
many papers (see for example [29,30,43,44,71,72] and ref-
erences therein). For our aim, we shall refer in particular
to Chaichian-Tureanua-Zet paper [72], where the authors
have been able to derive the noncommutative corrections (�-
expansion) to the exact Schwarzschild solution. Essentially,
the basic idea in this work is that to obtain the deformed
Schwarzschild solution, one has to compute the deformed
tetrad fields êaμ(x,�) by contracting the noncommutative
gauge group SO(4, 1) to the Poincaré group I SO(3, 1). In
short, consider the gauge theory of de Sitter group SO(4, 1)

on a commutative spacetime with spherical symmetry ds2 =
gμνdxμdxν = dr2 + r2dθ2 + r2 sin2 θdφ2 − dt2. Here
we are using the notation μ = 1, 2, 3, 0, so that xμ =
(r, θ, φ, t). The non-deformed gauge potentials are denoted
with ωAB

μ (x), where hereafter A, B = 1, 2, 3, 0, 5, and are
identified with the spin connection ωab

μ (x) = −ωba
μ , and the

tetrad fields ωa5
μ (x) = keaμ(x), with a, b = 1, 2, 3, 0 and k is

the contraction parameter. The strength of the gauge potential
ωAB

μ (x) is defined as

F AB
μν = ∂μω̂AB

ν (x,�) − ∂νω̂
AB
ν (x,�)

+
[
ω̂AC

μ (x,�)ω̂DB
ν (x,�)

−ω̂AC
ν (x,�)ω̂DB

μ (x,�)
]
ηCD , (3.1)

where ηAB = (1, 1, 1,−1, 1). By defining Fa5
μν = kT a

μν

and Fab
μν ≡ Rab

μν , the Poincaré gauge theory assumes the
geometric structure of Riemann–Cartan spaceU (4), in which
T a

μν and Rab
μν are interpreted as the torsion and curvature

tensors of the Riemann–Cartan spacetime. The commutative
Poincaré group theory, the I SO(3, 1) groups, follows for
k = 0.

In the non-commutative case, in which the structure (1.1)
determines the noncommutative structure of the spacetime,
the noncommutative gauge theory is developed by defining
the ∗-product of fields, i.e.

φ(x) ∗ χ(x) ≡ e
i
2 �μν∂xμ∂yν φ(x)χ(y)

∣∣∣
y→x

. (3.2)

The deformed gauge potentials are denoted with ω̂AB
μ (x,�),

that fulfill the reality conditions. Expanding in terms of �μν

and using the Seiberg-Witten map, one gets

ω̂AB
μ (x,�) = ωAB

μ (x) − i�νρωAB
μννρ(x)

+�νρ�ασ ωAB
μνρασ (x) + O(�3) ,

where the coefficient ωAB
μννρ(x) is given by

ωAB
μννρ(x) = 1

4

[
ωAC

ν (∂ρωCB
μ

+RCB
ρμ ) + (∂ρωAC

μ + RAC
ρμ )ωCB

ν

]
,

and similar expressions for ωAB
μνρασ (x) and other terms of

the expansion, but much more involved. The limit k → 0
corresponds to the I SO(3, 1) gauge groups (hence a tor-
sionless spacetime), and the spin connection are determined
by tetrads. The deformed metric reads

ĝμν(x,�) = 1

2

(
êaμ ∗ êb †

ν + êbμ ∗ êa †
ν

)
ηab , (3.3)

where the ”†” is the complex conjugation. As for the gauge
fields, the tetrads can be expanded

êaμ(x,�) = eaμ(x) − i�νρeaμνρ(x)

+�νρ�ασ eaνρασ (x) + O(�3) ,

with eaμνρ(x) = 1
4 [ωac

ν ∂ρedμ + (∂ρωac
μ + Rac

ρμ)edν ]ηcd , and
similarly for the other terms of the expansion.

The noncommutative structure allows to derive �μν-
corrections to a given geometry, in particular to the
Schwarzschild geometry, to which we are interested in [71].

Following the deformation quantisation discussed in
[117–120] for the Schwarzschild metric, one has to spec-
ify a Moyal algebra. Since xμ = (r, θ, φ, t), the algebra of
the functions in these variables is deformed by imposing the
Moyal product (3.2) with

�μν = ϒ

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (3.4)

Here ϒ is the deformation parameter (the ansatz (3.4) gives
rise to the simplest model of noncommutativity spacetime).
In the coordinate system in which �μν assumes the form
(3.4), the non vanishing component ϒ has dimensions4 L or
E−1. Considering the non-deformed Schwarzschild geom-
etry ds2 = g(S)

μν dxμdxν , with g(S)
μν = diag(A−1(r), r2, r2

sin2 θ,−A(r)), A(r) = 1 − α
r (α ≡ 2GM and M is

the mass of the gravitational source), with associated vier-
bein fields e1

μ = (A−1, 0, 0, 0), e1
μ = (0, r, 0, 0), e3

μ =

4 Notice that ϒ ≡ �12 = �rθ . Consistently with results of Ref. [71],
indeed, in spherical coordinates one has x1 = r and x2 = θ , therefore
[�] = L .

123



95 Page 4 of 7 Eur. Phys. J. C (2019) 79 :95

(0, 0, r sin θ, 0), and e0
μ = (0, 0, 0, A), one infers the com-

ponents of the �-Schwarzschild metric (see (3.3))

ĝμν = g(S)
μν + h(NC)

μν , (3.5)

where h(NC)
μν represents the noncommutative corrections to

the Schwarzschild geometry

h(NC)
00 = −α(8r − 11α)

16r4 ϒ2 + O(ϒ4) , (3.6)

h(NC)
rr = − α(4r − 3α)

16r2(r − α)2 ϒ2 + O(ϒ4) , (3.7)

h(NC)
θθ = 2r2 − 17α(r − α)

32r(r − α)
ϒ2 + O(ϒ4) , (3.8)

h(NC)
φφ = (r2 + αr − α2) cos2 θ − α(2r − α)

16r(r − α)
ϒ2

+O(ϒ4) . (3.9)

The limit ϒ → 0 reproduces the standard Schwarzschild
solution. Moreover, as pointed out in the Introduction, all
corrections are of the second order in the deformation param-
eter ϒ . This is a general feature of noncommutative theories
of gravitation (see for example [43–51,62]). Results here
obtained are at the order L2 due to the fact that calculations
are performed in spherical coordinates5 [72,118,120–123]
(in Cartesian coordinates,6 hence in the standard canonical
quantization, the non-commutative parameter �2 has dimen-
sions L4).

3.2 Temperature shift from the deformed Schwarzschild
metric

We can now compute the shift of the Hawking temperature
induced by �-deformation algebra (3.4) (we follow the pro-
cedure delineated in [90,94,95]). Consider

ĝ00 = −1 + 2GM

r
− h(NC)

00 (r) , (3.10)

with |h(NC)
00 (r)| � 2GM/r for any r ≥ 2GM . The

horizon’s equation, i.e., ĝ00(rH ) = 0, is given by rH −
2 G M + rH h(NC)

00 (rH ) = 0, and the solution is rH =

5 Typically, in spherical coordinates one uses the notation
√

�, with
dimensions L [72,118,120–123].
6 It is worth to mention that in the case of modifications of the BTZ black
hole in three-dimensional anti-de Sitter (AdS3) [124], the commutation
relations are [r, φ] = i θ̂ , with θ̂ ≡ θrφ . These differ from the Cartesian
ones [xi , x j ] = iθ i j with a constant θ i j since it corresponds to a non-
constant θ i j = r θ̂εi j (εi j = −ε j i ). However, as argued in [124], the
Moyal product can be still consistently defined in the polar coordinate
with a constant θrφ (spherically symmetry case).

α− α h(NC)
00 (α)

1 + [h(NC)
00 (α) + a h(NC) ′

00 (α)] . The ”deformed” Hawking tem-

perature is given by

T = −h̄
ĝ′

00(rH )

4π
= TH

{
1 +

[
2h(NC)

00 (r) + αh(NC) ′
00 (r)

]
r=α

}
+O(h(NC) 2

00 ). (3.11)

where the expansion is understood in terms of �2-parameter
and the symbol ′ stands for the derivative with respect to

r (′ ≡ ∂

∂r
). By comparing the temperature (3.11) with the

GUP-deformed Hawking temperature given by Eq. (2.3), one
finally obtains

β = 4π2M2

M2
Pl

[
2h(NC)

00 (α) + αh(NC)′
00 (α)

]
, (3.12)

that, by using (3.6), assumes the form

β = 4π2M2

M2
Pl

[
−7ϒ2

8α2

]
= −7π2

2
(ϒMPl)

2 . (3.13)

This is the wanted result, i.e. the interplay between the non-
commutative deformation parameter ϒ and the deformation
parameter β of GUP. The relation presents several interesting
features:

• Remarkably, the relation between β and ϒ does not
depend on gravitational mass M . This is particularly
important because, as Eq. (3.13) shows, it is related to
the universal character of the deformation parameter �,
suggesting its deep connection to Planck scale, then to
quantum gravity.

• The above point is corroborated by the fact that β �
−(MPlϒ)2 < 0. A negative value of the GUP parameter
typically arises in non-trivial space-time structures such
as a (fundamental) discreteness of space, see for exam-
ple [74,75,93]. Interestingly, a similar result has been
also obtained in the framework of the crystal lattice [93],
providing therefore a further hint that the physical space-
time could have a lattice or granular structure at the level
of Planck scale.

• To infer bounds on the parameter ϒ , we require that the
ϒ-correction is smaller or equal to the β-term, hence

ϒ � 2

7π2

√|β|
MPl

<
2

7π2

√
βexp

MPl
, (3.14)

where βexp is the experimental upper bound on |β|.
For the sake of completeness, in Tables 1 and 2 are
reported experimental bounds on β obtained in different
frameworks. Using the the more stringent upper bound
βexp = 1021, obtained in the gravitational sector, it fol-
lows ϒ < 10−10GeV−1. Such a bound improves one
order of magnitude, ϒ < 10−11GeV−1, for β bounded
from non-gravitational experiments.
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Table 1 Upper bounds on β derived from gravitational experiments

β < Physical framework Refs.

1021 Violation of equivalence principle (on
Earth)

[102] (2014)

Law of reciprocal action

1060 GW 150914 [101]

1069 Perihelion precession [94] (2015)

(Solar system data)

1071 Perihelion precession [94] (2015)

(Pulsar PRS B 1913+16 data)

1078 Modified mass-temperature relation [94] (2015)

Light deflection

Table 2 Upper bounds on β derived from non-gravitational experi-
ments

β < Physical framework Refs.

1018 Evolution of micro and nano
mechanical oscillators (masses
∼ mp)

[103] (2015)

1020 Lamb shift [104–106] (2011)

1021 Scanning tunneling microscope [104–106] (2008)

1033 Gravitational bar detectorsa [100] (2013)

1034 Electroweak measurement [104–106] (2011)

1034 Charmonium levels [104–106] (2011)

Energy difference in Hydrogen [113] (2010)

levels 1S − 2S

1039 87Rb cold-atom-recoil experiment [114] (2016)

1046 Landau levels [104–106] (2011)

This bound is derived without explicitly involving the gravitational
interaction

• As pointed out in the Introduction, the deformation
parameter β is not fixed by the theory, and it is gener-
ally assumed that β ∼ O(1 − 10), as suggested by some
models of string theory [52–56]. It is hence interesting
to observe that if the parameter ϒ is of the order of the
Planck scale, ϒ ∼ M−1

Pl (the quantum gravity scale),
then the GUP deformation parameter β can be fixed to
the value |β| ∼ 7π2

2 ∼ O(1 − 10).

4 Conclusions

In this paper we have derived an upper bound on the defor-
mation parameter ϒ of the noncommutative geometry (refer-
ring in particular to the gravitational sector of noncommuta-
tive geometry), by relating ϒ to the coefficients β of GUP.
The shift of the Hawking temperature, for which the GUP
is relevant, is derived by means of pure quantum mechan-

ics principles, and no specific representations of canonical
commutator relation is postulated. On the other hand, the
same temperature is derived geometrically for a deformed
Schwarzschild metric, allowing to link the deformed uncer-
tainty relation with the �-deformed metric. We have found
that the �2-correction to the canonical commutation rela-
tions of Heisenberg algebra is negative, suggesting a discrete
nature of spacetime at the Planck scales, and that the more
stringent bound that the current experiments allow to obtain
is ϒ < 10−11 − 10−10 (here ϒ ≡ �12 = �rθ ).

Here we focused on noncommutative geometry putting
attention to the gravitational sector, but understanding when-
ever other algebras may affect GUP, or specific representa-
tions of canonical operators, is certainly a non trivial task,
especially for the possible links with quantum gravity. There
is indeed a wide discussion on the implications of various
models yielding GUPs, and a common aspect of all these
models is related to test the size of these modifications.
These aspects appear particularly interesting in perspective
of laboratory-scale imitation of the black hole horizon, with
the subsequent possible emission of an analogue Hawking
radiation [115,116].
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