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We propose a variation of spacetime noncommutative field theory to realize the stringy spacetime uncer-
tainty relation without breaking any of the global symmetries of the homogeneous isotropic universe. We study
the spectrum of metric perturbations in this model for a wide class of accelerating background cosmologies.
Spacetime noncommutativity leads to a coupling between the fluctuation modes and the background cosmol-
ogy which is nonlocal in time. For each mode, there is a critical time at which the spacetime uncertainty
relation is saturated. This is the time when the mode is generated. These effects lead to a spectrum of
fluctuations whose spectral index is different from what is obtained for commutative spacetime in the infrared
region, but is unchanged in the ultraviolet region. In the special case of an exponentially expanding back-
ground, we find a scale-invariant spectrum. but with a different magnitude than in the context of commutative
spacetime if the Hubble constant is above the string scale.
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|. INTRODUCTION AXpAp>1+|§Ap2, (2)

As a candidate for the theory of everything, string theorywhich implies a minimal length scale
should tell us everything about the universe. One of the most
important questions is how a successful theory of cosmology Ax,=lg (3
can be derived from it. Cosmology is becoming the major

testing ground for string theory, since it tests the physics apyt does not hold for D-branes. In an earlier pasarit was
energies much higher than can be reached in any collider ogrgued that the SSUR can be used to solve the flatness and
earth. On the other hand, cosmology also appears to requitge horizon problems in cosmology without the need to in-
input from string theory, since cosmological theories basegoke cosmic inflation.
on classical gravity and the standard model of particle phys- |n this paper, we study the effect of the SSUR on metric
ics are expected to break down at very high ener@gies e.9.  perturbations in the early universe, which are the origin of
[1] for a discussion of some of the conceptual problems othe observed large-scale structure and of cosmic microwave
inflationary cosmology There is a growing symbiotic rela- packground anisotropies. The reason one expects signatures
tionship between string theory and cosmoldgge €.9[2]).  of Planck(string scale physics in the spectrum of density

In this paper we are concerned with what string theoryfjyctuations on cosmological scales today is the following
can say about cosmology. Obviously, we are very far fronTy g]: since the fluctuations on large scales are small today,
being able to derive cosmology directly from string theory.and since gravity is a purely attractive force, the fluctuations
Instead of proposing a new scenario starting from a veryad to be extremely small in the early Universe, thus justi-
special string theory configuration, we would like to focus onfying a linearized analysis. According to such an analysis,
a universal property of string theory, and study its implica-the individual Fourier modes of the fluctuation field evolve
tion for cosmology. The universal property which we wish tojndependently. In the context of an expanding background
focus on is the stringy spacetime uncertainty relationcosmology, there was thus a time when the physical wave-
(SSUR, which states that the uncertainties in the physicalengths of modes which are probed in current cosmological

time and space coordinatés,= At andAx, satisfy experiments was smaller than the Plar{ok string scale,
5 and hence one cannot neglect the effects of Pldatring
AtpAx=lg, (1) scale physics.

As a first step, we consider a simple model in which mat-
wherely is the string length scale. Yoneya suggegt@jthat  ter is dominated by a single scalar field. As is done in infla-
the SSUR is a universal property for strings as well astiionary cosmology, we quantize the joint linear metric and
D-branes. This is in contrast with the other stringy uncer-matter fluctuations about a classical homogeneous and iso-
tainty relation[4]

1In this context of inflationary cosmology, this non-robustness of
*Email address: rhb@het.brown.edu the predictions of inflation to possible effects of Plansiring

TEmail address: pmho@phys.ntu.edu.tw scale physics is known as thans-Planckian problem
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tropic background cosmology. With these assumptions thepacetime has been extensively studies-17. The notions

cosmological perturbations are automatically Gaussian.  of metric, distance, etc. can all be defined. It is therefore
In order to carry out the calculation explicitly, we need anatural for us to assume that the notion of metric still makes

specific model to realize the SSUR. Motivated by the recensense as long as it is consistent with SSUR. Assuming a

developments on nhoncommutative geometry in string theoryhomogeneous isotropic background, we take the Friedmann-

we generalize the field theory ofi+1)-dimensional non- Robertson-WalkefFRW) metric

commutative space, where the uncertainty relation is a direct

result of the spacetime noncommutativity, te-B dimen- —

sions. ds?=dt*—a?(t)
We identify two crucial effects which lead to a difference

between the evolution of fluctuations in commutative andror simplicity, we will focus on the case of a spatially flat

noncommutative spacetimes. The first is a coupling betweepniverse K=0). For later use, we introduce another time

the fluctuation mode and the background which is nonlocalqgrdinate (not the usual conformal timesuch that the
in time, and the second is the appearance of a critical time,eatric is

for each mode at which the SSUR is saturated, and which is

taken to be the time when the mode is generated. d?=dt?—a%(t)dx*=a 2(r)dr?—a%(r)dx>. (5
These two effects lead to a change in the spectral index of

the fluctuations in the infrared region for all acceleratingSince the scale factor has no spatial dependence, the SSUR

background cosmologies except for the exponentially eximposes no restriction on the Hubble constahtala, or

panding case. Instead of a red spectrias is obtained in  5ny gther scale associated with the scale factor, suéhs
commutative spacetimeve obtain a blue spectrum. In the o the other hand, the constraif® implies thatH<My.,

case of an exponentially expanding background, a scale- | - 2 -1 .
invariant spectrum results. andH<M¢, etc., whereM =1 " is the string energy scale.

As we will see below, this difference is crucial for us.
In view of the connection between noncommutative field
Il. PRELIMINARIES theory and SSUR described above, the fact that SSUR does
not impose a restriction on quantities with only time depen-
In string theory, the best known example of noncommu-dence can be understood via noncommutative field theory.
tative field theory is the low energy effective theory of Obviously, if we only look for solutions with a single vari-
D-branes in the background ofgafield [8]. It has also been able, noncommutative field theories are equivalent to com-
proposed that Ramond-RamoRIR) background fields may mutative field theories.
lead to a low energy effective theory of gravity best de- In the case of a classical spacetime, for a given equation
scribed as Einstein gravity living on a certain noncommuta-of state of mattep=wp with constantw, the solution of the
tive spacetime[9]. Motivated by recent developments of (classical Einstein equations for the scale factor is
noncommutative geometry in string theory, models for cos-
mological fluctuations on noncommutative spacetime have a(t)=apt"= "), (6)
been proposed by several groyf8,11].2 However, in these
proposals, some isometries of the Friedmann-Robertsorfvhere
Walker (FRW) metric are broken by the noncommutativity. 5
In this paper, we will not give a specific commutation rela- n= ———
tion for spacetime. Rather, we will imagine that the SSUR 3(1+w)
[3] is realized by a deformation of the commutative field . .
theory in a way vzhich preserves all of the global symmetriesand ao=((n+ 1)na°)1/(r.]+l)' For an expanding universe,
of the classical background. One can imagine that, although 0+ For @ matter dominated universes=0 andn=2/3; for
their background expectation values vanish and thus there f&'adiation dominated universe=1/3 andn=1/2. The uni-
no well-defined spacetime noncommutativity, quantum fluc-YeTSe acceleratesiif>1. If the cosmological constant domi-
tuations of thes field (for D-braneg or certain RR fieldgfor ~ Nates, thew=—1, a(t)=a, expHt) (n=) and we have
spacetimg would still result in spacetime uncertainfg4]. ~ &xPonential inflatiorf 18,19. o _
Keeping this in mind, we will first consider field theories on _ Sincé we do not have the exact gravitational theory with

noncommutative space, which may give us a hint about th@!l the stringy corrections to Einstein gravity, we will con-
result of “averaging over’(in a path integralthe effective  Sider a generic expanding scale facioAs we review in the
action for different background fields. Appendix, for a given scale factar the metric perturbations

The formulation of general relativity on noncommutative fOr gravity coupled to a single scalar field obey an equation
of motion of the form

2

240)2
1—Kr2_r dQ ) (4)

)

"
°Note that this implies that the Hilbert space of the perturbative wh+

quantum theory of gravity becomes time-dependent. This appears to

be a natural consequence of any attempt to quantize gravity in the . L . .

context of cosmology, as discussed 7 and in references therein. where the primes mean derivatives with respect to a certain

3Models based on Ed2) are also studief12,13. time coordinate?; to be defined below(In the commutative

k2 Iukzo! (8)

%
Zy
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case,= 7 is the conformal time defined byt=adz.) This AtAxpzArszli. (14
equation applies both to gravitational wav@s which case
w=ah, h being the amplitude of the gravitational wave, can be realized by the algebra of noncommutative spacetime
and—for commutative spacetimez=a) and to scalar met- -
ric fluctuations, the fluctuations which couple to maftier [7.x], =ils. (15
which casea™ *u is the scalar field fluctuation in the uniform
spatial curvature gauge and—in commutative spacetime
z=z is a function describing the background model and is 12 i —.0) ,
given explicitly by Eq.(A9)]. For backgrounds in which the  (f*@)(X,7) =@~ W&t = (X, 1) g(y, 7" ) |y =y 7/ = -
equation of state does not change in tiftfee ones consid- (16)
ered herg the functionz for scalar metric fluctuations is
ﬁ{;ﬁ?ﬁ:ﬁg?zl ;?]3’ g;irr;(\j/ithaetir:)%ealﬂ\;\?a\?g:?:I(I)(i):(fio{g_r scalar memcbetter coor_dingte than the conformal timpedefinepl bydt _
A quantity used frequently to compare theory with obser-__ adnt,) V\./h'Ch II\T f re(lquerr:tlysgzeg Wheg calg:ulatlng metric
vations is the power spectrum, which measures the strengfﬁertur ations. Naively, the can be written as

_This * product can be explicitly defined as

The fact that the algebrd5) is time independent makesa

of the fluctuations on the scale The power spectrum of 2
metric perturbations is given by AnAx=— (17)
s , a“(n)
_ K . o .
kKTo 27 2 - 9 in terms of . However, this relation is not well defined
z .
k when A% is large, because the argumentfor the scale

(To allow comparison with what is done for a non- factor on the right hand side changes over the time interval

commutative spacetime, we have alloweth depend ork) A7, and itis thus not clear what to use @fz) in Eq. (17).

If the background is expanding, then as explained in the A COmment on unitarity is in need at this point. Since
Appendix (with the normalization factor chosen to apply to spacetime noncommutativity mtroduces hlgher.denvatlves of
gravitational waves time in the Lagrangian of a field theory, a naive treatment

will often result in loss of unitarity(But there are also ex-
k2527 -2 amples[20] for which the unitarity is not broken by space-
PO =Kz (mIMp (10 time noncommutativity. However, in our case, the funda-
mental theory is string theory, and we are looking at its
effective field theory(with focus on the stringy effect de-
scribed by the SSURIt is very common for effective theo-
" ries to have higher derivatives terms, and a proper treatment
—>k2, (11 [21] should preserve unitarity order by order perturbatively.
2k Furthermore, the field theory we will consider below is es-

In the usual expanding cosmological models described b‘yzggﬂ?lgnﬁ;:ﬁ; if:]elt?]itshgggye,rand so we will not have to worry

the ansatZ6), then for a commutative spacetime, we have As discussed in the Appendix, both scalar metric fluctua-

zy=a. Hence, forn>1, the timez, is the time when the {jons and gravitational waves are described by free scalar
scalek exits the Hubble radius, and we haygck ™!, and  field actions on the classical expanding backgrotindwo
thus z,(7)<k"*~". Therefore, the spectrum of gravita- spacetime dimensions there are obviously no gravitational
tional waves and of scalar metric fluctuations obeys waves. We will now propose a noncommutative field theory
__p2/(1-n) which generalizes the action for cosmological perturbations
Pr=ck ' (12) to the case of noncommutative space-time. We will start
from the actions expressed in terms of the observable fields
and R in the case of gravitational waves and scalar metric
fluctuations, respectivelysee the Appendjx In the case of
scalar metric fluctuations the variatiieis the fluctuation of
the spatial curvature in the comoving gauge in whigh
Pe=—. (13) =0.As can be deduced from Eq#2) and (A10), respec-
Mp tively, these are free field actions except that the expansion
of the background cosmology has not been factoredicut
the equations of motion for these variables contain the
Hubble damping terms These actions thus contain a non-
First we consider the case oftl dimensions where the trivial measure factoa?"* or 2471, in the cases of gravita-
SSUR can be easily realized by the * product, so that we cational waves and scalar metric fluctuations, respectively,
get some hint about how the SSUR affects the action of avhered is the number of spatial dimensions. We will extract
scalar field. a factor ofa”2 from the measure and insert it into the op-
The SSUR erator appearing in the Lagrangian to account for the fact that

whereMp denotes the Planck mass, ang is the earliest
time when

wherec=((2n?—n)"a3)*/"~Y), For the spectrum to be ex-
actly scale invariant, we neat=, that is, exponential in-
flation, for which the spectrum is

IIl. TOY MODEL ON NONCOMMUTATIVE SPACETIME
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the spatial gradient appearing in the operator should reduce Because of the SSUR, the modsg interacts with the
to the usual operator in Minkowski space-time when ex-background with an uncertainty tgk in 7. In general, if the
pressed in terms of physical distances. We propose to makgncertainty relation is not realized exactly by the commuta-
the transition to noncommutative spacetime obeying theion relation (15), we expect tha8, will be replaced by
SSUR by taking the operator appearing in the action angyunctions of the form
replacing all multiplications by * products.

Based on the above considerations, we take the free field . 72
action for a real scalar field in11 dimensions /3|Z(T):f déf(fa “(7—¢k), (26)

1 - f functiorf (¢) peaked at the origin with a
f T X2( B¢ (0xp)r AT (0xd) characteristic W|dth§. By Taylor expansion, we have
(18)

Hp (H+H2)p .
1+Cy R +C3 v -+ |a®3(7),

) 27)

whereC™* are constants of order 1, apd=k/a is the physi-
cal momentum. This is a special case of the most general
correction due to new physics at an energy sééle which
_ can be expanded in powers dfi{M¢)? and (p/Mg)? inde-
S:Vf drdk (ﬂk 3,0 ,b— KB d_ D), pendently[22].
k<ko The action(20) reduces to the action for metric fluctua-
(20 tions (A2) on classical spacetime whég—0.

To calculate the power spectrum, it is convenient to re-

write the action in the form

In terms of the Fourier transform af, Bi (1)=

se0=ve] | agmer a9

(whereV is the total spatial coordinate volumehe action is

where

+ 1 +2 2 +2 2
=—(@%(r—12k) +a*2(7+12k)). 21 = ~ 1,
B (1) 2(a (r—1Zk)+a=(7+1zk)) (21 SZka<kOd77dk§y§(77)(¢’k¢|'<_k2¢k¢k)v 28)

The * product in the action takes care of the SSUR for the
interaction between the background metric and the scalawhere the new time coordinate s defined by
field. In order to realize the SSUR for the scalar field by

. . . ~ —\ 12
itself, we have imposed an upper bound on the comoving dn ,8k _
momentumk at ky in Eq. (19). The reason is as follows. In dr ,3+ =8t (29)
order for a fluctuation mode with wave numbeto exist, the K
SSUR must be satisfied. According to E&0), the energy and
defined with respect te for a modek is
— — nt\1/4
- = : 30
Ek:kaefzf! (22) Yk (Bk Bk) ( )
where The primes mean derivatives with respectito
B\ IV. THE MODEL
a=—| . (23)
5k The previous section motivates a model to incorporate the

SSUR for any spacetime dimension:
Using Ax~1/k, A7~ 1/E, together with the SSUR, we find ysp

2
a,
‘”lf T)> ~ Ax,At=12 (24)

- 1 -
S=v f d7dIG 2 () (61— Kb b,
k<kg

(31
and thus we have an upper bound on the wave number . .
wherez, is some smeared version pr a over a range of
time of characteristic scalér=12k. As 7 increases, the ef-
(25)  fect of the shiftA = for a given mode becomes less important.
The time coordiantey is related tor by dz=27, °dr, where
One should also check whether the background metric satig, is another smeared version afAs an example, suppose
fies the SSUR by itself. Yet as we mentioned above, thehat the only difference between tde- 1 dimensional action

SSUR imposes no contraint on the background since it isnd the (- 1)-dimensional oné28) is the measure®~* for
homogeneous. the additional §—1) dimensions, then we have

Aert(7)

Is

ksKo(7)=
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2 =2, zdm=aedy) (3 1Svaldwhen

2

with y, given by Eq.(30), andac¢s by Eq.(23). In the case Hp=<Ms. (36)
of gravitational waves, the functiary is denoteda,, with a,
constructed from the scale factarin the same way ag, is
obtained fromz, say, in Eq.(32).

This deformation has the advantage of preserving botlyy need to make sure that it is satisfied when the mode first
spatial translational and rotational symmetry of ttikat) ~0 .
FRW metric, in constrast with constructions based on th@ppeare(iatqk. SinceAxp=Aty=1/p, the saturation of the
commutation relations SSUR atry implies that

As a increases with time, this approximation gets better and
better.
For this bound to be true at all times for a moklewe

[x#,X"]=i6"". (33 p=Msg (37

We can now turn to the calculation of the spectrum of cos@t 7¢ - Hence, Eq(36) is equivalent to

mological fluctuations in various expanding background cos- ~0

mologies, including inflationary backgrounds. We emphasize H(7)<Ms. (39)
here that except the flat FRW metric, so far we have not ) ) )
assumed anything about the stringy correction to the Einsteifi©" the ansatz6), as an example, the approximati86) is
gravity. A key role in which the SSUR enters in the analysis900d if

of fluctuations is the existence of a characteristic tigjefor k> A=t -1 (39)
each modek which is the time when the SSUR is saturated 0 s

~0 From Eq.(10), the perturbation spectrum is determined by
k=Ko( 7y)- (34)  the earliest time when Eql1) is satisfied. In the absence of
the cutoff(25), this is the time when

According to Eq.(25), the mode k cannot exist beforg .
A major issue is in which state the fluctuations are gener- ﬂzkz (40)

ated. On scales which are smaller than the Hubble radius at Z '

the time of formation, the distinguished choice is the local

vacuum statdéthe state which appears empty of particles inAssuming Eq.(35), this condition can be rewritten as

the comoving frame at the time of formatjorBut it is un- _

clear when should be the time to impose this initial condi- H+2H2=p? (41)

tion. For modes which are generated when the wavelength is

greater than the Hubble length, the choice is usually evefror n>1 (the accelerating cagethis occurs roughly when

less clear. However, in our case, the choice is obvious for allhe size of the fluctuation crosses the Hubble radius, i.e.,

modes. Aty<7?, the fluctuation modé& does not exist. By N

continuity of Ny, the operator representing the number of H(7)=p. (42)
guanta of thekth mode measured with respect to the adia- L

batic vacuursee e.g[23] for a textbook discussion of these From Eq.(38), we see thaty.<7,. This means that the

concepty then when the mode first becomes physicaTyat qu_ctuations are _generz_it(_eq inside of the Hgbble radiug,, _and
this was the initial definition of the UV region. Thus, it is

=m, it must be in the vacuum state. Our choice is thus to resicely in the UV region that the approximatié®) is
consider the amplitude of the growing mode at the time o alid y 9 PP )

formatlonttot b_e t’?he sagne as thfe functul)n yvoluld have_ in the Since the UR modes are generated on scales inside the
vacuum state in the absence of cosmological expansion.  ,,,pa radius in their local vacuum state, and since the evo-

Ast WI'”. bde de_nvted belowi thetﬂuctugtlons E.a\r’]e a d'ﬁﬁrﬁr\‘;lution of the modes after that is no different than in the case
spectral index in two wavelengtn regions which we call UV ¢ 5 commutative spacetime, it follows immediately that the
and IR, respectlvely.'The UV modes are generated within th%pectrum for the UV mode&9) is the same as the classical
Hubble radius, and it turns out that for these modes the aPase(12). The uncertainty relation has no significant effect

proximation(35) holds, The IR modes are generated outsidq th d . t with th | iderati
the Hubble radius, where the effect of the SSUR is impor—oir[zze]se modes, In agreement wi € general consideration

tant, and the approximatio35) breaks down.

. ! . Now we would lik héR m k<A which ar
We first consider th&JV region namely values ok for ow we would like to study théR modes ch are

) : ) ) generated outside the Hubble radius, and for which the ef-
whichA 7 is small in the Sense that all smeared versiona of fects of the SSUR are important. Although our discussion

can be app~rOX|mated ey AS " Eq.(27)é the smgared sgale about the IR modes will be more speculative because the

factorsz,, z, are expansions ofHp/MZ)? (and Hp?/Mg)  Hubble expansion rate is above the string scale at the time of
etc. The approximation IR mode formation, the following provides an interesting

example showing how new physics at the string scale can

z=7z~a (35 have significant effect on the spectrum of perturbations,
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evading the pessimistic conclusion [@2].* As we will see, The case of exponential inflation is very special in that we
our description of the SSUR results in a spectrum whichgo not need to specifg, or z, to determine the index of the

except in the case of exponential |nflgt|on has a d|ffer¢n ower spectrum. Despite the fact thg(%) andz,(%) are
spectral index than what would be obtained in commutativ ifferent from a, their dependence ok happens to be the

space-time. ~ o~ o~ ~
P same asa(7Y): z( 7)) xz (7Y <a(7nl)=k. Therefore the

As an example, we take, anq Zc given by Eq.(32) for ._spectrum is scale invariant, like in the commutative case. For
z=a. The first step in the analysis is to obtain the expression

: - . . o H<Mg, the approximatiori35) is valid, and the spectrum is
0 s

fpr TR Startmg point is Eq(25) WhIC|‘21 defines the initial roughly the same as E(L3). But for H> M, the magnitude
time. Inserting the expressid@3) for agyz and the formulas 54 pe different. For instance, if we take E82), it is

(21) for B, , and then using Eq6) for the scale factor, we

obtain M3

P s @7
2 1)/ 1/2 3nn2
TE:((&) (n+ )n+k2|4) \/EH M2
S .

(43)
%o If we assume that Eq.13) is correct for the tensor metric

For the IR mode& which we are focusing on, i.&<A, the  Pperturbations, the observational bound for gravitational

second term dominates over the first term. Thus, we hav@/avesPi< 10" *° leads to the usual hierarchy problg@6]

By =ta?(r+12k) and B, =%a 2(7—12K) (in the case of an H<10 °Mp of inflationary cosmology. But if Eq(47) is

expanding univerge correct, the problem is alleviated. Fdr=Mp, we only need
To find the power spectrum for these modes, we start frofMs<10"°Mp.

Eq. (10) with the times, replaced by the time;) when the

modes are generated. We then use [B8) to replacezﬁ by

the product ofz* andyy, and then insert the expression for e have studied the consequences of the SSUR on the
yk from Eq. (30). After inserting the above approximate ex- evolution of cosmological fluctuations in expanding cosmo-
pressions foig,. we obtain logical backgrounds. Given a noncommutative spacetime
obeying the SSUR, the cosmological background will still be
2.-2( O\ a—1/2 O |21\ all2 0|2
Pi~kfa “(mga "(nctlsk)a™(rc—=Ik). (44 gescribed by the Einstein equations since the background

It is apparent that the nonlocal coupling between backgroun{ﬂelds only depend on one spacetime variable. The equations

and Toctuaon mode has a arge fee. aking se of 1S 12 T0CUeiers, foneuer, we adied, e tove
(43) [and keeping in mind that the second term in E4p) 9

dominates over the first ohethe final result becomes 2;:?',? tfilr%c(:atuatlng field with the background which is nonlo-

P ,=c'k¥0+1), (45) An important consequence of the SSUR is that for each

comoving wave numbek, there is an earliest timé;ﬁ at
where which the fluctuating mode exists. We assume that the fluc-
tuation starts out with its vacuum amplitude at this time.
Since the dependence qu onk is nontrivial, we expect that
the index of the power spectrum of cosmological fluctuations
will be different than for commutative spacetime. We find
This is obviously very different from the old result2). thatthis is indeed the case for a range of wavelengths, except
Instead of a red spectrum we now obtain a blue spectrum. in the special case of exponential inflation in which we also

To summarize, for an accelerating universe>(1), the  obtain a scale-invariant spectrum. Note that for power law

spectrum has a negative spectral index in the UV region, bunflation (n>1) the spectrum of fluctuations is “blue” when
a positive one in the IR region. A smooth interpolation be-the SSUR is effectivdfor the infra red regionk<<A) in
tween the two regions would yield a nearly flat spectrum incontrast to the case of a commutative spacetime in which the
the transition region. Note that asincreases, the slope of spectrum is “red.” The reason for this difference is that in
the power spectrum decreases. Thus, the more rapidly theur case, modes with smaller valueskodre generated later
Universe is accelerating, the closer the spectrum is to beinthan those with a larger value, and thus experience growth
scale-invariant. This is similar to what occurs in ordinarydue to squeezing for less time, whereas for commutative
power law inflation, except that the sign of the spectral indexspacetime the larger the valuelofthe later the mode leaves
is opposite. In the limit towards exponential inflation, the the Hubble radius and the less squeezing it will experience.
results for commutative and non-commutative space-times Let us now conclude with a few remarks.
converge. (1) Although we find the same requirement=—1 as in

the undeformed scalar field theory for a scale-invariant spec-

trum, it represents a special case because the spectrum is

“After completion of this manuscript two papers appeared whichdifferent for other values ofn in the IR.

reach similar conlusions concerning the potential observability of (2) In the case of exponential inflation, although the spec-
trans-Planckian physics in the spectrum of fluctuatid¥25. trum is always roughly scale-invariant, the amplitudes are

V. DISCUSSION

M gSn—l)/(n+ 1)

[
¢ 2(n—1)/2(n+1)ag,v|§> .

(46)
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different for largeH and smallH, perturbed metric only has nonvanishing space-space compo-
(3) It may appear a little counterintuitive that it is the IR nentsh;; which can be expanded in terms of the two basic
fluctuation modes that are severly modified by the stringytraceless and symmetric polarization tenseﬁsande?‘j as
spacetime uncertainty relation. This may be interpreted as a
manifestation of the UV-IR connection. hij= h+e§ + hxeixj (A1)
(4) A realization of inflation in the context of noncommu-
tative spacetime obeying the SSUR would not be subject tqyhere the space and time dependence is in the coefficient
the trans-Planckian problem of general inflationary modelgunctionsh, andh,.
[1]. The case of exponential inflation in our model can also  The Einstein action can be expanded to second order in
be viewed as a test of the robustness of inflation, but with ahe metric fluctuations about a Friedmann-Robertson-Walker
different kind of deformation of the dispersion relation than(FRw) background4), and the action foh., andh, reduces
those considered if6]. to that of a free, massless, minimally coupled scalar field in
(5 In the case of scalar metric fluctuations, we had tothe FRW background. To obtain the correct normalization,

make a choice of which variable to consider as the onghe metric must be multiplied by the normalization factor
whose action is subject to the transformation from commuyy /.2, In Fourier space, the action is

tative spacetime to noncommutative spacetime outlined in

Sec. lIl. It would be interesting to study the results for other 1

choices. 3=J’ dnzad71(¢Lk¢IL_k2¢fk¢k)y (A2)
(6) An intriguing possibility is that there is only one ef-

fective scale factor, i.ez =z, . With this assumption, we do whereg stands for the coefficient functios, andh,, and
not need the approximatiof85) to calculate the spectrum. § genotes the number of spatial dimensigset to 3 in the
The spectrunt{10) can be interpreted as the physical €nerg¥following in most of this Appendix This leads to the equa-
E. squared at7) for all modes withz?>7%i. The SSUR tion of motion

implies thatE,(7{) =M, and so we obtain

!

a
2 Ot 2—ppt k?@,=0. (A3)
ME a
Py= M2 (48
P The Hubble friction term can be eliminated via a change of
variables
for all UV modes(39).
pn=ae, (Ad)
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APPENDIX: ESSENTIALS OF THE THEORY OF Scalar metric fluctuations couple to matter, and give rise

COSMOLOGICAL PERTURBATIONS to the large-scale structure of the Universe. The description

of scalar metric perturbations is more complicated than the

For a detailed review of the calculation of metric pertur- analysis of gravitational waves both because of the coupling
bations, the reader is directed to other referef2@g (see  to matter and also because some perturbation modes corre-
also[29] for a recent short reviewHere we outline the basic spond to space-time reparametrizations of a homogeneous
steps with modifications due to noncommutative spacetimand isotropic cosmology. This is the issue of gauge fixing. A
or SSUR effects. simple way to address this issue is to work in a system of

There are two kinds of metric perturbations of interest incoordinates which completely fixes the gauge. A simple
early Universe cosmology: the scalar and tensor fluctuationghoice is thelongitudinal gauge, in which the metric takes
Tensor fluctuations correspond to gravitational waves. Théhe form[27]
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ds?=a%(n)[(1+2®)dn?—(1-2¥)ydxdx], the k-independent functioz(#) by a k-dependent function
(A7) z( 7). In addition, we allow the initial time;° to depend on
k

where the space and time dependent functibnand¥ are  |n order to show how the growth of the classical mode
the two physical metric degrees of freedom which describgynction v, translates into the growth of the expectation
scalar metric fluctuations’ is the metric of the unper- yajue which determines the power spectrum we will make
turbed spatial hypersurfagesThe fluctuations of matter se of the Hamiltonian formalism. From the actighl0) it

fields give additional degrees of freedom for scalar metrigo|iows that the momentum canonically conjugate to the field
fluctuations. In the simple case of a single scalar matter field, jg

the matter field fluctuation can be denoted &y. In the
absence of anisotropic stress, it follows from the Einstein zy
equations that the two metric fluctuation variabfesand ¥ Me=vly— 2 Uk (AL13)
coincide. Due to the Einstein constraint equation, the remain- K
ing metric fluctuationV” is determined by the matter fluctua- and this leads to the Hamiltonigsee e.g.[6])
tion So.

It is clear from this analysis of the physical degrees of p
freedom that the action for scalar metric fluctuations must be H= f dk
expressible in terms of the action of a single free scalar field

v with a time dependent magsletermined by the back- where af(7) and a,(7) are the creation and annihilation
ground cosmology As shown in[30] (see alsd31], this  operators at time; related tov, and its conjugate momen-

!

i z

k
kaja,+ 5 Z—k(alafk—aka,k) . (A14)

field is tum by
®0 1
v=al dp+ H\I’) V= —\/ﬂ(ak‘i‘aik), (A15)
=7ZR, (A8) )
—i
_ t
where ¢, denotes the background value of the scalar matter = \/ﬂ(a,k—ak). (A16)
field, H=a'la,
p In the Heisenberg picture, the creation and annihilation op-
z=aﬁ, (A9)  erators evolve with time, while the state does not. Assume
H that the Universe is in the stat@) defined by
andR denotes the curvature perturbation in comoving gauge a( 77(12)|0>:01 (A17)
[32]. The action for scalar metric fluctuations[&3]

S which is the vacuum for modeat some intial timez{ . It is
v’ 7”v,iv,j+ _02>, (A10)  in general not the vacuum at Iqter times. _

z The Bogoliubov transformation relates the creation and
annihilation operators aj° with the corresponding operators

1
S= E,f d4X\/ -y

(wherey is the determinant of the metrig!) which leads to

the equation of motion at the timez:
" a(n) = ar(ma 7o)+ Bu(ma’ (1), (A18)
vp+| k2= 7)vk=0, (A11) B B
ak(m) =B ma_(n0)+ ax(mak(no), (A19)

which under the change—z is identical to Eq.(A5) for )
gravitational waves. Note that () is a power ofy, then ~ Where«, and B, satisfy
¢ andH scale with the same power of so thatz is pro-
portional toa, in which case the evolution of gravitational
waves and scalar metric fluctuations is identical.

In analogy to Eq(AB), the power spectrum of the curva- 1"€ Hamilton equqtionslﬁ,ak]=iék and its Hermitian con-
ture fluctuationR is jugate take on a simpler form when written in terms of the

new variables

avax—BrBr=1, VK. (A20)

k3 (Olvgv,|0) _ _
PrK)=52—Fp - (A12) == Brs &= it B (A21)
So far, the theory was developed for commuting space—timén terms of them they read

variables. To make the transition to non-commutative space-

time, and to take into account the space-time uncertainty o+
relation, we replace, as discussed in the main part of the text,

Z//
K- Z—t) =0, (A22)

023517-8
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(lel " for realuy, vy . Note that the conditioA20) is satisfied for
&t | K= ——-]&=0. (A23)  this solution, but not for other solutions of the second order
() differential equations. Suppose that for sufficiently late

times, z,>1(z<1) then v,=%/\V2k (vy=3&/2K).
Since the initial condition iS¢ (7g)=é(mo)=1, it is
equivalent to say that fog,>1, for sufficiently largen,
vi(7) is given by the solution to the differential equation

The larger the value ofB,|?(7), the larger the number of
particles at timey created out of the initial vacuum std@).
Let us denote the factors in Eq#22), (A23) by

2! (z by (A22) with the initial conditionu (7o) =1/\2k. For z,<1,
M=k?— — N= kP— ———. (A24)  we replacez, by z, . In general we want to find the larger
K (2 of the two functiong, and&,.. This then determines via the

relationgA21) the Bogoliubov coefficieniB,, in terms of

For small» (7= —1k) (scales smaller than the Hubble ra- which the power spectrum of metric fluctuations becomes

dius), bothM andN are positive and approximately equal to
k2. Thus,¢, and ¢, oscillate. If the initial state is taken to be
the local vacuum state, K 1|82

a(m0)=1, Bi(70)=0, (A25) PR32 2k 22

then the magnitudes of and ¢ are of order 1 untily=

—1/k. This represents the oscillation of quantum vacuumNote that the factofl/(2k) represents the vacuum normal-
fluctuations. We will refer to this regime as phase |. Onijzation of the states, seen in E@\15).

scales larger than the Hubble radias later timeg M andN In summary, for expanding,, the spectrum is

are dominated by the secofwegative term. In this period,

¢ and ¢ correspond to frozen fluctuations which are under-

(A27)

going quantum squeezing and which scale l#e-a and k2
7. '~a !, respectively. Sinca is increasing with time, by PrK=72 =T} (A28)

Eq. (A21) we can approximate, by £,/+/2k for sufficiently
late times. This is phase Il. Whekf is much smaller than

both z;/z, and (@, *)"/(z,*), and assuming thatis an in-  wherey, is the time when the fluctuation moéi&rosses the

creasing function, the dominant solutions are simply Hubble radius ¥1=0). In this paper we also consider the
case of fluctuations outside the Hubble radius starting in the
&e=Cuzi, gkzi (A26)  Vvacuum. For themy, should be taken to be the time when
Crzx they start in the vacuum.
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