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Noncommutative spacetime, stringy spacetime uncertainty principle, and density fluctuations

Robert Brandenberger*
TH Division, CERN, CH-1211 Geneva 23, Switzerland

and Department of Physics, Brown University, Providence, Rhode Island 02912

Pei-Ming Ho†

Department of Physics, National Taiwan University, Taipei 106, Taiwan, Republic of China
~Received 21 April 2002; published 22 July 2002!

We propose a variation of spacetime noncommutative field theory to realize the stringy spacetime uncer-
tainty relation without breaking any of the global symmetries of the homogeneous isotropic universe. We study
the spectrum of metric perturbations in this model for a wide class of accelerating background cosmologies.
Spacetime noncommutativity leads to a coupling between the fluctuation modes and the background cosmol-
ogy which is nonlocal in time. For each mode, there is a critical time at which the spacetime uncertainty
relation is saturated. This is the time when the mode is generated. These effects lead to a spectrum of
fluctuations whose spectral index is different from what is obtained for commutative spacetime in the infrared
region, but is unchanged in the ultraviolet region. In the special case of an exponentially expanding back-
ground, we find a scale-invariant spectrum. but with a different magnitude than in the context of commutative
spacetime if the Hubble constant is above the string scale.
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I. INTRODUCTION

As a candidate for the theory of everything, string theo
should tell us everything about the universe. One of the m
important questions is how a successful theory of cosmol
can be derived from it. Cosmology is becoming the ma
testing ground for string theory, since it tests the physics
energies much higher than can be reached in any collide
earth. On the other hand, cosmology also appears to req
input from string theory, since cosmological theories ba
on classical gravity and the standard model of particle ph
ics are expected to break down at very high energies~see e.g.
@1# for a discussion of some of the conceptual problems
inflationary cosmology!. There is a growing symbiotic rela
tionship between string theory and cosmology~see e.g.@2#!.

In this paper we are concerned with what string the
can say about cosmology. Obviously, we are very far fr
being able to derive cosmology directly from string theo
Instead of proposing a new scenario starting from a v
special string theory configuration, we would like to focus
a universal property of string theory, and study its implic
tion for cosmology. The universal property which we wish
focus on is the stringy spacetime uncertainty relat
~SSUR!, which states that the uncertainties in the physi
time and space coordinatesDtp5Dt andDxp satisfy

DtpDxp> l s
2 , ~1!

wherel s is the string length scale. Yoneya suggested@3# that
the SSUR is a universal property for strings as well
D-branes. This is in contrast with the other stringy unc
tainty relation@4#
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DxpDp>11 l s
2Dp2, ~2!

which implies a minimal length scale

Dxp> l s ~3!

but does not hold for D-branes. In an earlier paper@5#, it was
argued that the SSUR can be used to solve the flatness
the horizon problems in cosmology without the need to
voke cosmic inflation.

In this paper, we study the effect of the SSUR on met
perturbations in the early universe, which are the origin
the observed large-scale structure and of cosmic microw
background anisotropies. The reason one expects signa
of Planck ~string! scale physics in the spectrum of dens
fluctuations on cosmological scales today is the followi
@1,6#: since the fluctuations on large scales are small tod
and since gravity is a purely attractive force, the fluctuatio
had to be extremely small in the early Universe, thus ju
fying a linearized analysis. According to such an analys
the individual Fourier modes of the fluctuation field evol
independently. In the context of an expanding backgrou
cosmology, there was thus a time when the physical wa
lengths of modes which are probed in current cosmolog
experiments was smaller than the Planck~or string! scale,
and hence one cannot neglect the effects of Planck~string!
scale physics.1

As a first step, we consider a simple model in which m
ter is dominated by a single scalar field. As is done in infl
tionary cosmology, we quantize the joint linear metric a
matter fluctuations about a classical homogeneous and

1In this context of inflationary cosmology, this non-robustness
the predictions of inflation to possible effects of Planck~string!
scale physics is known as thetrans-Planckian problem.
©2002 The American Physical Society17-1
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tropic background cosmology. With these assumptions
cosmological perturbations are automatically Gaussian.

In order to carry out the calculation explicitly, we need
specific model to realize the SSUR. Motivated by the rec
developments on noncommutative geometry in string the
we generalize the field theory on~111!-dimensional non-
commutative space, where the uncertainty relation is a di
result of the spacetime noncommutativity, to 311 dimen-
sions.

We identify two crucial effects which lead to a differenc
between the evolution of fluctuations in commutative a
noncommutative spacetimes. The first is a coupling betw
the fluctuation mode and the background which is nonlo
in time, and the second is the appearance of a critical t
for each mode at which the SSUR is saturated, and whic
taken to be the time when the mode is generated.2

These two effects lead to a change in the spectral inde
the fluctuations in the infrared region for all accelerati
background cosmologies except for the exponentially
panding case. Instead of a red spectrum~as is obtained in
commutative spacetime! we obtain a blue spectrum. In th
case of an exponentially expanding background, a sc
invariant spectrum results.

II. PRELIMINARIES

In string theory, the best known example of noncomm
tative field theory is the low energy effective theory
D-branes in the background of aB field @8#. It has also been
proposed that Ramond-Ramond~RR! background fields may
lead to a low energy effective theory of gravity best d
scribed as Einstein gravity living on a certain noncommu
tive spacetime@9#. Motivated by recent developments o
noncommutative geometry in string theory, models for c
mological fluctuations on noncommutative spacetime h
been proposed by several groups@10,11#.3 However, in these
proposals, some isometries of the Friedmann-Roberts
Walker ~FRW! metric are broken by the noncommutativit
In this paper, we will not give a specific commutation re
tion for spacetime. Rather, we will imagine that the SSU
@3# is realized by a deformation of the commutative fie
theory in a way which preserves all of the global symmetr
of the classical background. One can imagine that, altho
their background expectation values vanish and thus the
no well-defined spacetime noncommutativity, quantum fl
tuations of theB field ~for D-branes! or certain RR fields~for
spacetime! would still result in spacetime uncertainty@14#.
Keeping this in mind, we will first consider field theories o
noncommutative space, which may give us a hint about
result of ‘‘averaging over’’~in a path integral! the effective
action for different background fields.

The formulation of general relativity on noncommutati

2Note that this implies that the Hilbert space of the perturbat
quantum theory of gravity becomes time-dependent. This appea
be a natural consequence of any attempt to quantize gravity in
context of cosmology, as discussed in@7# and in references therein

3Models based on Eq.~2! are also studied@12,13#.
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spacetime has been extensively studied@15–17#. The notions
of metric, distance, etc. can all be defined. It is theref
natural for us to assume that the notion of metric still mak
sense as long as it is consistent with SSUR. Assumin
homogeneous isotropic background, we take the Friedma
Robertson-Walker~FRW! metric

ds25dt22a2~ t !S dr2

12Kr 2
2r 2dV2D . ~4!

For simplicity, we will focus on the case of a spatially fl
universe (K50). For later use, we introduce another tim
coordinatet ~not the usual conformal time! such that the
metric is

ds25dt22a2~ t !dx25a22~t!dt22a2~t!dx2. ~5!

Since the scale factor has no spatial dependence, the S
imposes no restriction on the Hubble constantH[ȧ/a, or
any other scale associated with the scale factor, such asḢ1/2.
On the other hand, the constraint~3! implies thatH,Ms ,
andḢ,Ms

2 , etc., whereMs5 l s
21 is the string energy scale

As we will see below, this difference is crucial for us.
In view of the connection between noncommutative fie

theory and SSUR described above, the fact that SSUR d
not impose a restriction on quantities with only time depe
dence can be understood via noncommutative field the
Obviously, if we only look for solutions with a single vari
able, noncommutative field theories are equivalent to co
mutative field theories.

In the case of a classical spacetime, for a given equa
of state of matterp5wr with constantw, the solution of the
~classical! Einstein equations for the scale factor is

a~ t !5a0tn5a0tn/(n11), ~6!

where

n5
2

3~11w!
~7!

and a05„(n11)na0…
1/(n11). For an expanding universe,n

.0. For a matter dominated universe,w50 andn52/3; for
a radiation dominated universe,w51/3 andn51/2. The uni-
verse accelerates ifn.1. If the cosmological constant dom
nates, thenw521, a(t)5a0 exp(Ht) (n5`) and we have
exponential inflation@18,19#.

Since we do not have the exact gravitational theory w
all the stringy corrections to Einstein gravity, we will con
sider a generic expanding scale factora. As we review in the
Appendix, for a given scale factora, the metric perturbations
for gravity coupled to a single scalar field obey an equat
of motion of the form

mk91S k22
zk9

zk
Dmk50, ~8!

where the primes mean derivatives with respect to a cer
time coordinateh̃ to be defined below.~In the commutative

e
to
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NONCOMMUTATIVE SPACETIME, STRINGY SPACETIME . . . PHYSICAL REVIEW D 66, 023517 ~2002!
case,h̃5h is the conformal time defined bydt5adh.! This
equation applies both to gravitational waves~in which case
m5ah, h being the amplitude of the gravitational wav
and—for commutative spacetime—zk5a) and to scalar met-
ric fluctuations, the fluctuations which couple to matter@in
which casea21m is the scalar field fluctuation in the uniform
spatial curvature gauge and—in commutative spacetim
zk5z is a function describing the background model and
given explicitly by Eq.~A9!#. For backgrounds in which the
equation of state does not change in time~the ones consid-
ered here!, the functionz for scalar metric fluctuations is
proportional toa, and hence the equations for scalar met
fluctuations and gravitational waves coincide.

A quantity used frequently to compare theory with obs
vations is the power spectrum, which measures the stre
of the fluctuations on the scalek. The power spectrum o
metric perturbations is given by

Pk5
k3

2p2

umku2

zk
2

. ~9!

~To allow comparison with what is done for a no
commutative spacetime, we have allowedz to depend onk)
If the background is expanding, then as explained in
Appendix ~with the normalization factor chosen to apply
gravitational waves!,

P~k!.k2zk
22~ h̃k!M P

22 ~10!

where M P denotes the Planck mass, andh̃k is the earliest
time when

zk9

zk
.k2. ~11!

In the usual expanding cosmological models described
the ansatz~6!, then for a commutative spacetime, we ha
zk5a. Hence, forn.1, the timeh̃k is the time when the
scalek exits the Hubble radius, and we havehk}k21, and
thus zk(hk)}kn/(12n). Therefore, the spectrum of gravita
tional waves and of scalar metric fluctuations obeys

Pk.ck2/(12n), ~12!

wherec5„(2n22n)na0
2
…

1/(n21). For the spectrum to be ex
actly scale invariant, we needn5`, that is, exponential in-
flation, for which the spectrum is

Pk.
H2

M P
2

. ~13!

III. TOY MODEL ON NONCOMMUTATIVE SPACETIME

First we consider the case of 111 dimensions where the
SSUR can be easily realized by the * product, so that we
get some hint about how the SSUR affects the action o
scalar field.

The SSUR
02351
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DtDxp5DtDx> l s
2 . ~14!

can be realized by the algebra of noncommutative space

@t,x#* 5 i l s
2 . ~15!

This * product can be explicitly defined as

~ f * g!~x,h!5e2( i /2)l s
2(]x]t82]t]y) f ~x,t!g~y,t8!uy5x,t85t .

~16!

The fact that the algebra~15! is time independent makest a
better coordinate than the conformal timeh defined bydt
5adh, which is frequently used when calculating metr
perturbations. Naively, the SSUR can be written as

DhDx>
l s
2

a2~h!
~17!

in terms of h. However, this relation is not well define
when Dh is large, because the argumenth for the scale
factor on the right hand side changes over the time inte
Dh, and it is thus not clear what to use fora(h) in Eq. ~17!.

A comment on unitarity is in need at this point. Sinc
spacetime noncommutativity introduces higher derivatives
time in the Lagrangian of a field theory, a naive treatme
will often result in loss of unitarity.~But there are also ex
amples@20# for which the unitarity is not broken by space
time noncommutativity.! However, in our case, the funda
mental theory is string theory, and we are looking at
effective field theory~with focus on the stringy effect de
scribed by the SSUR!. It is very common for effective theo
ries to have higher derivatives terms, and a proper treatm
@21# should preserve unitarity order by order perturbative
Furthermore, the field theory we will consider below is e
sentially a free field theory, and so we will not have to wor
about unitarity in this paper.

As discussed in the Appendix, both scalar metric fluctu
tions and gravitational waves are described by free sc
field actions on the classical expanding background~in two
spacetime dimensions there are obviously no gravitatio
waves!. We will now propose a noncommutative field theo
which generalizes the action for cosmological perturbatio
to the case of noncommutative space-time. We will st
from the actions expressed in terms of the observable fielh
and R in the case of gravitational waves and scalar me
fluctuations, respectively~see the Appendix!. In the case of
scalar metric fluctuations the variableR is the fluctuation of
the spatial curvature in the comoving gauge in whichdw
50. As can be deduced from Eqs.~A2! and ~A10!, respec-
tively, these are free field actions except that the expans
of the background cosmology has not been factored out~i.e.
the equations of motion for these variables contain
Hubble damping terms!. These actions thus contain a no
trivial measure factorad21 or zd21, in the cases of gravita
tional waves and scalar metric fluctuations, respectiv
whered is the number of spatial dimensions. We will extra
a factor ofa22 from the measure and insert it into the o
erator appearing in the Lagrangian to account for the fact
7-3
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ROBERT BRANDENBERGER AND PEI-MING HO PHYSICAL REVIEW D66, 023517 ~2002!
the spatial gradient appearing in the operator should red
to the usual operator in Minkowski space-time when e
pressed in terms of physical distances. We propose to m
the transition to noncommutative spacetime obeying
SSUR by taking the operator appearing in the action
replacing all multiplications by * products.

Based on the above considerations, we take the free
action for a real scalar field in 111 dimensions

S̃5E dtdx
1

2
„]tf

†* a2* ]tf2~]xf!†* a22* ~]xf!….

~18!

In terms of the Fourier transform off,

f~t,x!5V1/2E
k,k0(t)

dk

2p
fk~t!eikx ~19!

~whereV is the total spatial coordinate volume!, the action is

S̃.VE
k,k0

dtdk
1

2
~bk

1]tf2k]tfk2k2bk
2f2kfk!,

~20!

where

bk
6~t!5

1

2
„a62~t2 l s

2k!1a62~t1 l s
2k!…. ~21!

The * product in the action takes care of the SSUR for
interaction between the background metric and the sc
field. In order to realize the SSUR for the scalar field
itself, we have imposed an upper bound on the comov
momentumk at k0 in Eq. ~19!. The reason is as follows. In
order for a fluctuation mode with wave numberk to exist, the
SSUR must be satisfied. According to Eq.~20!, the energy
defined with respect tot for a modek is

Ek5kae f f
22 , ~22!

where

ae f f
2 5S bk

1

bk
2D 1/2

. ~23!

Using Dx;1/k, Dt;1/Ek together with the SSUR, we find

S ae f f~t!

k D 2

;DxpDt> l s
2 ~24!

and thus we have an upper bound on the wave number

k<k0~t![
ae f f~t!

l s
. ~25!

One should also check whether the background metric s
fies the SSUR by itself. Yet as we mentioned above,
SSUR imposes no contraint on the background since
homogeneous.
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Because of the SSUR, the modefk interacts with the
background with an uncertainty ofl s

2k in t. In general, if the
uncertainty relation is not realized exactly by the commu
tion relation ~15!, we expect thatbk

6 will be replaced by
functions of the form

bk
6~t!5E dj f ~j!a22~t2jk!, ~26!

for some even functionf (j) peaked at the origin with a
characteristic widthl s

2 . By Taylor expansion, we have

bk
6~t!5S 11C1

6
Hp

Ms
21C2

6
~Ḣ1H2!p2

Ms
4

1••• D a62~t!,

~27!

whereC6 are constants of order 1, andp5k/a is the physi-
cal momentum. This is a special case of the most gen
correction due to new physics at an energy scaleMs , which
can be expanded in powers of (H/Ms)

2 and (p/Ms)
2 inde-

pendently@22#.
The action~20! reduces to the action for metric fluctua

tions ~A2! on classical spacetime whenl s→0.
To calculate the power spectrum, it is convenient to

write the action in the form

S̃.VE
k,k0

dh̃dk
1

2
yk

2~ h̃ !~f2k8 fk82k2f2kfk!, ~28!

where the new time coordinateh̃ is defined by

dh̃

dt
5S bk

2

bk
1D 1/2

5ae f f
22 , ~29!

and

yk5~bk
2bk

1!1/4. ~30!

The primes mean derivatives with respect toh̃.

IV. THE MODEL

The previous section motivates a model to incorporate
SSUR for any spacetime dimension:

S5VE
k,k0

dh̃ddk
1

2
zk

d21~ h̃ !~f2k8 fk82k2f2kfk!,

~31!

wherezk is some smeared version ofz or a over a range of
time of characteristic scaleDt5 l s

2k. As t increases, the ef-
fect of the shiftDt for a given mode becomes less importa
The time coordianteh̃ is related tot by dh̃5 z̃k

22dt, where

z̃k is another smeared version ofa, As an example, suppos
that the only difference between thed11 dimensional action
and the (111)-dimensional one~28! is the measurezd21 for
the additional (d21) dimensions, then we have
7-4
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NONCOMMUTATIVE SPACETIME, STRINGY SPACETIME . . . PHYSICAL REVIEW D 66, 023517 ~2002!
zk
d21~ h̃ !5zd21yk

2~ h̃ !, z̃k~ h̃ !5ae f f~ h̃ ! ~32!

with yk given by Eq.~30!, andae f f by Eq. ~23!. In the case
of gravitational waves, the functionzk is denotedak , with ak
constructed from the scale factora in the same way aszk is
obtained fromz, say, in Eq.~32!.

This deformation has the advantage of preserving b
spatial translational and rotational symmetry of the~flat!
FRW metric, in constrast with constructions based on
commutation relations

@xm,xn#5 iumn. ~33!

We can now turn to the calculation of the spectrum of c
mological fluctuations in various expanding background c
mologies, including inflationary backgrounds. We emphas
here that except the flat FRW metric, so far we have
assumed anything about the stringy correction to the Eins
gravity. A key role in which the SSUR enters in the analy
of fluctuations is the existence of a characteristic timeh̃k

0 for
each modek which is the time when the SSUR is saturate

k5k0~ h̃k
0!. ~34!

According to Eq.~25!, the mode k cannot exist beforeh̃k
0 .

A major issue is in which state the fluctuations are gen
ated. On scales which are smaller than the Hubble radiu
the time of formation, the distinguished choice is the lo
vacuum state~the state which appears empty of particles
the comoving frame at the time of formation!. But it is un-
clear when should be the time to impose this initial con
tion. For modes which are generated when the waveleng
greater than the Hubble length, the choice is usually e
less clear. However, in our case, the choice is obvious fo
modes. Ath̃,h̃k

0 , the fluctuation modek does not exist. By
continuity of Nk , the operator representing the number
quanta of thekth mode measured with respect to the ad
batic vacuum~see e.g.@23# for a textbook discussion of thes
concepts!, then when the mode first becomes physical ah̃
5h̃k

0 , it must be in the vacuum state. Our choice is thus
consider the amplitude of the growing mode at the time
formation to be the same as the function would have in
vacuum state in the absence of cosmological expansion

As will be derived below, the fluctuations have a differe
spectral index in two wavelength regions which we call U
and IR, respectively. The UV modes are generated within
Hubble radius, and it turns out that for these modes the
proximation~35! holds, The IR modes are generated outs
the Hubble radius, where the effect of the SSUR is imp
tant, and the approximation~35! breaks down.

We first consider theUV region, namely values ofk for
which Dt is small in the sense that all smeared versions oa
can be approximated bya. As in Eq.~27!, the smeared scal
factorszk , z̃k are expansions of (Hp/Ms

2)2 ~and Ḣp2/Ms
4)

etc. The approximation

zk. z̃k.a ~35!
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Hp!Ms
2 . ~36!

As a increases with time, this approximation gets better a
better.

For this bound to be true at all times for a modek, we
only need to make sure that it is satisfied when the mode
appeared ath̃k

0 . SinceDxp5Dtp.1/p, the saturation of the

SSUR ath̃k
0 implies that

p5Ms ~37!

at h̃k
0 . Hence, Eq.~36! is equivalent to

H~ h̃k
0!!Ms . ~38!

For the ansatz~6!, as an example, the approximation~35! is
good if

k@A[a0
n11l s

n21 . ~39!

From Eq.~10!, the perturbation spectrum is determined
the earliest time when Eq.~11! is satisfied. In the absence o
the cutoff ~25!, this is the time when

zk9

zk
.k2. ~40!

Assuming Eq.~35!, this condition can be rewritten as

Ḣ12H2.p2. ~41!

For n.1 ~the accelerating case!, this occurs roughly when
the size of the fluctuation crosses the Hubble radius, i.e.

H~ h̃k!.p. ~42!

From Eq. ~38!, we see thath̃k
0<h̃k . This means that the

fluctuations are generated inside of the Hubble radius,
this was the initial definition of the UV region. Thus, it i
presicely in the UV region that the approximation~35! is
valid.

Since the UR modes are generated on scales inside
Hubble radius in their local vacuum state, and since the e
lution of the modes after that is no different than in the ca
of a commutative spacetime, it follows immediately that t
spectrum for the UV modes~39! is the same as the classic
case~12!. The uncertainty relation has no significant effe
for these modes, in agreement with the general considera
of @22#.

Now we would like to study theIR modes k!A which are
generated outside the Hubble radius, and for which the
fects of the SSUR are important. Although our discuss
about the IR modes will be more speculative because
Hubble expansion rate is above the string scale at the tim
IR mode formation, the following provides an interestin
example showing how new physics at the string scale
have significant effect on the spectrum of perturbatio
7-5
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ROBERT BRANDENBERGER AND PEI-MING HO PHYSICAL REVIEW D66, 023517 ~2002!
evading the pessimistic conclusion of@22#.4 As we will see,
our description of the SSUR results in a spectrum wh
except in the case of exponential inflation has a differ
spectral index than what would be obtained in commuta
space-time.

As an example, we takezk and z̃k given by Eq.~32! for
z5a. The first step in the analysis is to obtain the express
for tk

0 . Starting point is Eq.~25! which defines the initial
time. Inserting the expression~23! for aeff

2 and the formulas
~21! for bk

6 , and then using Eq.~6! for the scale factor, we
obtain

tk
05S S kls

a0
D 2(n11)/n

1k2l s
4D 1/2

. ~43!

For the IR modesk which we are focusing on, i.e.k!A, the
second term dominates over the first term. Thus, we h
bk

1. 1
2 a2(t1 l s

2k) andbk
2. 1

2 a22(t2 l s
2k) ~in the case of an

expanding universe!.
To find the power spectrum for these modes, we start fr

Eq. ~10! with the timeh̃k replaced by the timeh̃k
0 when the

modes are generated. We then use Eq.~32! to replacezk
2 by

the product ofz2 andyk , and then insert the expression f
yk from Eq. ~30!. After inserting the above approximate e
pressions forbk

6 we obtain

Pk;k2a22~tk
0!a21/2~tk

01 l s
2k!a1/2~tk

02 l s
2k!. ~44!

It is apparent that the nonlocal coupling between backgro
and fluctuation mode has a large effect. Making use of
~43! @and keeping in mind that the second term in Eq.~43!
dominates over the first one#, the final result becomes

Pk5c8k3/(n11), ~45!

where

c85
Ms

(5n21)/(n11)

2(n21)/2(n11)a0
3M P

2
. ~46!

This is obviously very different from the old result~12!.
Instead of a red spectrum we now obtain a blue spectru

To summarize, for an accelerating universe (n.1), the
spectrum has a negative spectral index in the UV region,
a positive one in the IR region. A smooth interpolation b
tween the two regions would yield a nearly flat spectrum
the transition region. Note that asn increases, the slope o
the power spectrum decreases. Thus, the more rapidly
Universe is accelerating, the closer the spectrum is to be
scale-invariant. This is similar to what occurs in ordina
power law inflation, except that the sign of the spectral ind
is opposite. In the limit towards exponential inflation, t
results for commutative and non-commutative space-tim
converge.

4After completion of this manuscript two papers appeared wh
reach similar conlusions concerning the potential observability
trans-Planckian physics in the spectrum of fluctuations@24,25#.
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The case of exponential inflation is very special in that
do not need to specifyzk or z̃k to determine the index of the
power spectrum. Despite the fact thatzk(h̃) and z̃k(h̃) are
different from a, their dependence onk happens to be the
same asa(h̃k

0): zk(h̃k
0)} z̃k(h̃k

0)}a(h̃k
0)}k. Therefore the

spectrum is scale invariant, like in the commutative case.
H!Ms , the approximation~35! is valid, and the spectrum is
roughly the same as Eq.~13!. But for H@Ms , the magnitude
can be different. For instance, if we take Eq.~32!, it is

Pk.
Ms

5

A2H3M P
2

. ~47!

If we assume that Eq.~13! is correct for the tensor metric
perturbations, the observational bound for gravitatio
wavesPk,10210 leads to the usual hierarchy problem@26#
H,1025M P of inflationary cosmology. But if Eq.~47! is
correct, the problem is alleviated. ForH.M P , we only need
MS,1022M P .

V. DISCUSSION

We have studied the consequences of the SSUR on
evolution of cosmological fluctuations in expanding cosm
logical backgrounds. Given a noncommutative spacet
obeying the SSUR, the cosmological background will still
described by the Einstein equations since the backgro
fields only depend on one spacetime variable. The equat
for the linear fluctuations, however, are modified. We ha
argued that the modifications take the form of an interact
of the fluctuating field with the background which is nonl
cal in time.

An important consequence of the SSUR is that for ea
comoving wave numberk, there is an earliest timeh̃k

0 at
which the fluctuating mode exists. We assume that the fl
tuation starts out with its vacuum amplitude at this tim
Since the dependence ofhk

0 on k is nontrivial, we expect that
the index of the power spectrum of cosmological fluctuatio
will be different than for commutative spacetime. We fin
that this is indeed the case for a range of wavelengths, ex
in the special case of exponential inflation in which we a
obtain a scale-invariant spectrum. Note that for power l
inflation (n.1) the spectrum of fluctuations is ‘‘blue’’ when
the SSUR is effective~for the infra red regionk,A) in
contrast to the case of a commutative spacetime in which
spectrum is ‘‘red.’’ The reason for this difference is that
our case, modes with smaller values ofk are generated late
than those with a larger value, and thus experience gro
due to squeezing for less time, whereas for commuta
spacetime the larger the value ofk, the later the mode leave
the Hubble radius and the less squeezing it will experien

Let us now conclude with a few remarks.
~1! Although we find the same requirementm521 as in

the undeformed scalar field theory for a scale-invariant sp
trum, it represents a special case because the spectru
different for other values ofm in the IR.

~2! In the case of exponential inflation, although the sp
trum is always roughly scale-invariant, the amplitudes

h
f
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different for largeH and smallH,
~3! It may appear a little counterintuitive that it is the I

fluctuation modes that are severly modified by the strin
spacetime uncertainty relation. This may be interpreted a
manifestation of the UV-IR connection.

~4! A realization of inflation in the context of noncommu
tative spacetime obeying the SSUR would not be subjec
the trans-Planckian problem of general inflationary mod
@1#. The case of exponential inflation in our model can a
be viewed as a test of the robustness of inflation, but wit
different kind of deformation of the dispersion relation th
those considered in@6#.

~5! In the case of scalar metric fluctuations, we had
make a choice of which variable to consider as the o
whose action is subject to the transformation from comm
tative spacetime to noncommutative spacetime outlined
Sec. III. It would be interesting to study the results for oth
choices.

~6! An intriguing possibility is that there is only one e
fective scale factor, i.e.,zk5 z̃k . With this assumption, we do
not need the approximation~35! to calculate the spectrum
The spectrum~10! can be interpreted as the physical ener
Ek squared ath̃k

0 for all modes withh̃k
0.h̃k

1 . The SSUR

implies thatEk(h̃k
0)5Ms , and so we obtain

Pk.
Ms

2

M P
2

~48!

for all UV modes~39!.
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APPENDIX: ESSENTIALS OF THE THEORY OF
COSMOLOGICAL PERTURBATIONS

For a detailed review of the calculation of metric pertu
bations, the reader is directed to other references@27,28# ~see
also@29# for a recent short review!. Here we outline the basic
steps with modifications due to noncommutative spacet
or SSUR effects.

There are two kinds of metric perturbations of interest
early Universe cosmology: the scalar and tensor fluctuatio
Tensor fluctuations correspond to gravitational waves. T
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perturbed metric only has nonvanishing space-space com
nentshi j which can be expanded in terms of the two ba
traceless and symmetric polarization tensorsei j

1 andei j
x as

hi j 5h1ei j
11hxei j

x ~A1!

where the space and time dependence is in the coeffic
functionsh1 andhx .

The Einstein action can be expanded to second orde
the metric fluctuations about a Friedmann-Robertson-Wa
~FRW! background~4!, and the action forh1 andhx reduces
to that of a free, massless, minimally coupled scalar field
the FRW background. To obtain the correct normalizati
the metric must be multiplied by the normalization fact
M pl /A2. In Fourier space, the action is

S5E dh
1

2
ad21~w2k8 wk82k2w2kwk!, ~A2!

wherew stands for the coefficient functionsh1 andhx , and
d denotes the number of spatial dimensions~set to 3 in the
following in most of this Appendix!. This leads to the equa
tion of motion

wk912
a8

a
wk81k2wk50. ~A3!

The Hubble friction term can be eliminated via a change
variables

m5aw, ~A4!

yielding the equation of motion

mk91S k22
a9

a Dmk50. ~A5!

The power spectrum of gravitational waves in a particu
stateu0& of the gravitational radiation field can be written
terms of the new fieldm as

Pg~k!52
k3

2p2

^0umk* mku0&
a2 . ~A6!

The two point function appearing in Eq.~A6! is that of a free
canonically normalized massless scalar field multiplied
2/M pl

2 .
Scalar metric fluctuations couple to matter, and give r

to the large-scale structure of the Universe. The descrip
of scalar metric perturbations is more complicated than
analysis of gravitational waves both because of the coup
to matter and also because some perturbation modes c
spond to space-time reparametrizations of a homogene
and isotropic cosmology. This is the issue of gauge fixing
simple way to address this issue is to work in a system
coordinates which completely fixes the gauge. A sim
choice is thelongitudinal gauge, in which the metric take
the form @27#
7-7
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ds25a2~h!@~112F!dh22~122C!g i j dxidxj #,
~A7!

where the space and time dependent functionsF andC are
the two physical metric degrees of freedom which descr
scalar metric fluctuations (g i j is the metric of the unper
turbed spatial hypersurfaces!. The fluctuations of matte
fields give additional degrees of freedom for scalar me
fluctuations. In the simple case of a single scalar matter fi
the matter field fluctuation can be denoted bydw. In the
absence of anisotropic stress, it follows from the Einst
equations that the two metric fluctuation variablesF andC
coincide. Due to the Einstein constraint equation, the rem
ing metric fluctuationC is determined by the matter fluctua
tion dw.

It is clear from this analysis of the physical degrees
freedom that the action for scalar metric fluctuations mus
expressible in terms of the action of a single free scalar fi
v with a time dependent mass~determined by the back
ground cosmology!. As shown in@30# ~see also@31#, this
field is

v5aS dw1
w08

H C D
5zR, ~A8!

wherew0 denotes the background value of the scalar ma
field, H5a8/a,

z5a
w08

H , ~A9!

andR denotes the curvature perturbation in comoving ga
@32#. The action for scalar metric fluctuations is@33#

S5
1

2E d4xA2gS v822g i j v ,iv , j1
z9

z
v2D , ~A10!

~whereg is the determinant of the metricg i j ) which leads to
the equation of motion

vk91S k22
z9

z D vk50, ~A11!

which under the changea→z is identical to Eq.~A5! for
gravitational waves. Note that ifa(h) is a power ofh, then
w08 andH scale with the same power ofh so thatz is pro-
portional toa, in which case the evolution of gravitationa
waves and scalar metric fluctuations is identical.

In analogy to Eq.~A6!, the power spectrum of the curva
ture fluctuationR is

PR~k!5
k3

2p2

^0uvk* vku0&
z2 . ~A12!

So far, the theory was developed for commuting space-t
variables. To make the transition to non-commutative spa
time, and to take into account the space-time uncerta
relation, we replace, as discussed in the main part of the
02351
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the k-independent functionz(h) by a k-dependent function
zk(h). In addition, we allow the initial timeh0 to depend on
k.

In order to show how the growth of the classical mo
function vk translates into the growth of the expectatio
value which determines the power spectrum we will ma
use of the Hamiltonian formalism. From the action~A10! it
follows that the momentum canonically conjugate to the fi
v is

Pk5v2k8 2
zk8

zk
v2k , ~A13!

and this leads to the Hamiltonian~see e.g.,@6#!

H5E ddkFkak
†ak1

i

2

zk8

zk
~ak

†a2k
† 2aka2k!G , ~A14!

where ak
†(h) and ak(h) are the creation and annihilatio

operators at timeh related tovk and its conjugate momen
tum by

vk5
1

A2k
~ak1a2k

† !, ~A15!

Pk5
2 i

A2k
~a2k2ak

†!. ~A16!

In the Heisenberg picture, the creation and annihilation
erators evolve with time, while the state does not. Assu
that the Universe is in the stateu0& defined by

ak~hk
0!u0&50, ~A17!

which is the vacuum for modek at some intial timehk
0 . It is

in general not the vacuum at later times.
The Bogoliubov transformation relates the creation a

annihilation operators ath0 with the corresponding operator
at the timeh:

ak~h!5ak~h!ak~h0!1bk~h!a2k
† ~h0!, ~A18!

ak
†~h!5b̄k~h!a2k~h0!1āk~h!ak

†~h0!, ~A19!

whereak andbk satisfy

akāk2bkb̄k51, ;k. ~A20!

The Hamilton equations@H,ak#5 i ȧk and its Hermitian con-
jugate take on a simpler form when written in terms of t
new variables

zk5ak2b̄k , jk5ak1b̄k . ~A21!

In terms of them they read

zk91S k22
zk9

zk
D zk50, ~A22!
7-8
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jk91S k22
~zk

21!9

~zk
21!

D jk50. ~A23!

The larger the value ofubku2(h), the larger the number o
particles at timeh created out of the initial vacuum stateu0&.

Let us denote the factors in Eqs.~A22!, ~A23! by

M5k22
zk9

zk
, N5k22

~zk
21!9

~zk
21!

. ~A24!

For smallh (h,21/k) ~scales smaller than the Hubble r
dius!, bothM andN are positive and approximately equal
k2. Thus,zk andjk oscillate. If the initial state is taken to b
the local vacuum state,

ak~h0!51, bk~h0!50, ~A25!

then the magnitudes ofz and j are of order 1 untilh5
21/k. This represents the oscillation of quantum vacu
fluctuations. We will refer to this regime as phase I. O
scales larger than the Hubble radius~at later times!, M andN
are dominated by the second~negative! term. In this period,
z and j correspond to frozen fluctuations which are und
going quantum squeezing and which scale likezk;a and
zk

21;a21, respectively. Sincea is increasing with time, by
Eq. ~A21! we can approximatevk by zk /A2k for sufficiently
late times. This is phase II. Whenk2 is much smaller than
both zk9/zk and (zk

21)9/(zk
21), and assuming thatz is an in-

creasing function, the dominant solutions are simply

zk5Ckzk , jk5
1

Ckzk
~A26!
n

,’’

e

02351
-

for realuk , vk . Note that the condition~A20! is satisfied for
this solution, but not for other solutions of the second ord
differential equations. Suppose that for sufficiently la
times, zk@1(zk!1) then vk. 1

2 zk /A2k (vk. 1
2 jk /A2k).

Since the initial condition iszk(h0)5jk(h0)51, it is
equivalent to say that forzk@1, for sufficiently largeh,
vk(h) is given by the solution to the differential equatio
~A22! with the initial conditionv(h0)51/A2k. For zk!1,
we replacezk by zk

21 . In general we want to find the large
of the two functionszk andjk . This then determines via th
relations~A21! the Bogoliubov coefficientbk , in terms of
which the power spectrum of metric fluctuations become

PR~k!5
k3

2p2

1

2k

ubku2

zk
2 . ~A27!

Note that the factor1/(2k) represents the vacuum norma
ization of the states, seen in Eq.~A15!.

In summary, for expandingzk , the spectrum is

PR~k!5
k2

4p2

1

zk
2~hk!

, ~A28!

wherehk is the time when the fluctuation modek crosses the
Hubble radius (M50). In this paper we also consider th
case of fluctuations outside the Hubble radius starting in
vacuum. For themhk should be taken to be the time whe
they start in the vacuum.
s.
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