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Abstract 

This paper is an introduction to discrete physics based on a non-commutative calculus of finite differences. This gives a 
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1. Introduction 

The purpose of  this paper is to present an introduction to a point of view for discrete foundations of  physics. In 

taking a discrete stance, we find that the initial expression of  physical theory will occur in a context of noncommu- 

tative algebra and noncommutative vector analysis. In this way the formalism of  quantum mechanics occurs first, 

but not necessarily with the usual interpretations. By following this line carefully we can show how the outlines of  

the well-known commutative forms of  physical theory arise first in noncommutative form. This much, the present 

paper will make clear with specific examples and mathematical formulations. The exact relation of commutative 

and noncommutative theories raises a host of  problems. 

In Section 2 of  this paper we discuss the properties of the noncommutative discrete calculus that underlies our 

work. The section ends with the consequences in our framework for a particle whose position and momentum 

commutator is equated to a (noncommutative) metric field. In Section 3 we discuss how our discrete stance leads 

to an inversion of  the usual Dirac maxim "replace Poisson brackets with commutators".  If we replace commutators 

with Poisson brackets that obey a Leibniz rule satisfied by our commutators, then the dynamical variables will obey 

Hamilton's  equations. Thus we can take Hamilton's  equations as the natural classical version of our theory. Section 4 

shows how the noncommutativity is neccessary in this approach and shows how certain representations of the theory 

lead to chaotic dynamics. Section 5 discusses the relationship of the discrete ordered calculus with q-deformations 

and quantum groups. We show that in a quantum group with a special group-like element representing the square 

of the antipode, there is a representation of the discrete ordered calculus. In this calculus on a quantum group the 
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square of the antipode represents one tick of  the clock. Then follows section (Section 6) on networks and discrete 

space-t ime. This section is a general exposition of ideas related to spin networks and topological quantum field 

theory. It is our speculation that the approaches to discrete physics inherent in discrete calculus and in topological 

field theory are deeply interrelated. At the end of this section we outline this relationship in the case of a recent 

model for quantum gravity due to Louis Crane. 

2. Discrete ordered calculus 

Consider successive measurements of position and velocity. In measurement of position, no time step is required. 

In measuring velocity, we need positions of two neighboring instants of time. 

Thinking discretely, let us assume that the particle has positions 

X, X',  X" . . . .  

at successive moments of time. Discrete unit time steps are indicated by the primes appended to the X. A general 

point in the time series at time t will be denoted by X t. By convention let the time step between successive points 

in the series be equal to 1: 

A t = l .  

Then we can define the velocity at time t by the formula: 

v ( t )  = X t+l - X t. 

More generally, if X denotes the position at a given time, then X '  - X denotes the velocity a t  t ha t  t ime ,  where the 

phrase "at that time" must involve the next time as well. In a discrete context there is no notion of instantaneous 

velocity. 

Measure position, and you find X. Then measure velocity, and you get X'  - X. Now measure position, and you 

get X'  because the time has shifted to the next time in order to allow the velocity measurement. In order to measure 

velocity the position is necessarily shifted to its value at the next time step. In this sense, position and velocity 

measurements cannot commute in a discrete framework. 

Our project is to take this basic noncommutativity at face value and follow out its consequences. To this end we 

will formulate a calculus of finite differences that takes the order of observations into account. This formalization 

is explained below. Remarkably, the resulting calculus is actually a discrete version of  time evolution in standard 

quantum mechanics. 

We begin by recalling the usual derivative in the calculus of finite differences, generalised to a (possibly) non- 

commutative context. 

D e f i n i t i o n  1. Let 

dX = X I - X 

define the finite difference derivative of  a variable X whose successive values in discrete time are 

X, X',  X" . . . .  

This dX is a classical derivative in the calculus of finite differences. It is still defined even if the quantities elements 

of the time series are in a noncommutative algebra. We shall assume that the values of the time series are in a 
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possibly noncommutative ring R with unit. (Thus the values could be real numbers, complex numbers, matrices, 

linear operators on a Hilbert  space, or elements of  an appropriate abstract algebra.) This means that for every element 

A of the ring R there is a well-defined successor element A',  the next term in the time series. It is convenient to 

assume that the ring itself has this temporal structure. In practice, one is concerned with a particular time series 

and not the structure of the entire ring. Moreover, we shall assume that the next-time operator distributes over both 

addition and multiplication in the sense that 

(A + B) '  = A'  + B'  

and 

(AB) '  = A 'B ' .  

An element c of  the ring R is said to be a cons tant  if c t = c. 

Lemma 2. 

d(XY) = X ' d ( Y )  + d(X)Y. 

Proof 

d(XY) = X I Y  ' - X Y  = X ' Y '  - X ' Y  + X ' Y  - X Y  

= X ' ( Y ' -  Y) + (X'  - X ) Y  = X ' d ( Y )  + d(X)Y. 

This formula is different from the usual formula in Newtonian calculus by the time shift of  X to X'  in the first term. 

We now correct this discrepancy in the calculus of  finite differences by taking a new derivative D as an instruction 

to shift the time to the left o f  the operator D. That is, we take X D(Y)  quite literally as an instruction to first find dY 

and thenfind the value o f  X. In order to find dY the clock must advance one notch. Therefore X has advanced to 

X'  and we have that the evaluation of  X D ( Y )  is 

X ' ( Y ' -  Y). 

In order to keep track of  this noncommutative time-shifting, we will write 

D X  = J ( X '  - X) ,  

where the element J is a special time-shift operator satisfying 

Z J  = J Z '  

for any Z in the ring R. The time-shifter, J ,  acts automatically to evaluate expressions in the resulting noncom- 

mutative calculus of finite differences. We call this calculus DOC (for discrete ordered calculus). Note that J 

formalizes the operational ordering inherent in our initial discussion of velocity and position measurements. An 

operator containing J causes a time-shift in the variables or operators to the left of J in the sequence order. 

Formally, we extend the ring of values R (see the definition of d above) by adding a new symbol J with the 

property that A J  = JA t  for every A in R. It is assumed that the extended ring R is associative and satisfies the 

distributive law so that J ( A  + B) = J A  q- J B  and J ( A B )  = ( J A ) B  for all A and B in the ring. We also assume 

that J itself is a constant in the sense that j t  = j .  
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The key result in DOC is the following adjusted difference formula: 

t e m m a  3. 

D ( X Y )  = X D ( Y )  + D ( Y ) X .  

P r o o f  

D ( X Y )  = J ( X ' Y '  - X Y )  = J ( X ' Y '  - X ' Y  + X ' Y  - X Y )  = J ( X ' ( Y '  - Y )  + ( X '  - X ) Y )  

= J X ' ( Y '  - Y )  q- J ( X '  - X ) Y  = X J ( Y '  - Y )  -t- J ( X  r - X ) Y  = X D ( Y )  + D ( X ) Y .  [] 

The upshot is that DOC behaves formally like infinitesimal calculus and can be used as a calculus in this version 

of discrete physics. In [13] Kauffman and Noyes used this foundation to build a derivation of  a noncommutative 

version of  electromagnetism. Another version of this derivation can be found in [12]. In both cases the derivation 

is a translation to this context of the well-known Feynman-Dyson derivation of electromagnetic formalism from 

commutation relations of position and velocity. 

Note that the definition of the derivative in DOC is actually a commutator: 

D X  = J ( X ' -  X )  = J X ' -  J X  = X  J -  J X  = [ X , J ] .  

The operator J can be regarded as a discretized time-evolution operator in the Heisenberg formulation of quantum 

mechanics. In fact we can write formally that 

X t = J 1 X j  

since J X '  = X J  (assuming for this interpretation that the operator J is invertible). Putting the time variable back 

into the equation, we get the evolution 

X t+At = j - 1 x t j .  

This aspect can be compared to the formalism of  Alain Connes'  theory of  noncommutative geometry [3]. 

In Connes'  theory there is a notion of quantized differential that takes the form (in his language) d e  --  [F ,  e] 

where F is a bounded operator on a Hilbert space H and [e] is a class in the K-theory of a certain algebra A acting 

on the Hilbert space. In this context Connes'  quantized calculus is used to obtain a wide range of connections with 

various aspects of physics, including a new view of  the standard model for fundamental particles. Our approach 

to aspects of the formalism of the DOC quantized calculus may fit into the context of Connes'  theory. This is a 

topic that derserves futher investigation. In this paper, and in our previous work we have used the most elementary 

noncommutative algebraic tools to obtain our results. It is our hope that these results will fit into more complex 

contexts that are directly related to both theory and measurement. 

In the discrete ordered calculus, X and D X  have no reason to commute: 

[X ,  D X ]  = X J ( X '  - X )  - J ( X '  - X ) X  = J ( X ' ( X '  - X )  - ( X '  - X ) X ) .  

Hence 

[X ,  D X ]  = J ( X ' X '  - 2 X ' X  + X X ) .  

This is nonzero even in the case where X and X' commute with one another. Consequently, we can consider physical 

laws in the form 

[ X  i, D X  j ] = g i j ,  
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w h e r e  gij is a function that is suitable to the given application. In [13] we showed how the formalism of elec- 

tromagnetism arises when gU is (~ij, the Kronecker delta. In [15] we show how the general case corresponds to 

a "particle" moving in a noncommutative gauge field coupled with geodesic motion relative to the Levi-Civita 

connection associated with the  gij. This result can be used to place the work of Tanimura [18] in a discrete context. 

It should be emphasized that all physics that we derive in this way is formulated in a context of  noncommutative 

operators and variables. We do not derive electromagnetism, but rather a noncommutative analog. It is not yet clear 

just what these noncommutative physical theories really mean. Our initial idealization of measurement is not the 

only model for measurement that corresponds to actual observations. Certainly the idea that we can measure time 

in a way that "steps between the steps of time" is an idealization. It happens to be an idealisation that fits a model 

of the universe as a cellular automaton. In a cellular automaton an observation is what an operator of the automaton 

might be able to do. It is not necessarily what the "inhabitants" of the automaton can perform. Here is the crux of 

the matter. The inhabitants can have only limited observations of the running of the automaton, due to the fact that 

they themselves are processes running on the automaton. I believe that the theories we build on the basis of DOC 

are theories about the structure of these automata. They will eventually lead to theories of what the processes that 

run on such automata can observe. It is quite possible that the well-known phenomena of  quantum mechanics will 

arise naturally in such a context. These points of view should be compared with [9]. 

In order to illustrate these methods, I will show part of the calculations related to 

IX i, X:Jl = gU, 

Here J(J is the shorthand for D X  j. Along with this commutator equation, we will assume that 

[X i , X  j ] = O ,  [ U , g j k l  =O, [X i , g j k ] = O .  

Here it is assumed that 

gij gjk = S~ 

and that 

gijgjk = ~k. 

The first result that is a direct consequence of  these assumptions coupled with the discrete ordered calculus is the 

symmetry of the "metric" coefficients g t j .  That is, we shall show that 

gtj ~__ g jr. 

Lemma 4. g~J = g ll. 

Proof. 

giJ = [x  i, X j ]  = [X i, [X j, j ] ]  

= - [ J ,  [X i , xJ]] - [X j, [J, Xil] = - l  J, O] + [X .j, [X i , J l ]  = [ X  j , [ X  i , J l ]  = gji.  

A stream of consequences then follow by differentiating both sides of the equation 

gU = i x  ~, x:J], 

where 

-- x J a j F  
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and it is understood that 

OjF = [F, Xj] = [F, gjk?~ k] 

for any function F of  the variables X k and their derivatives Xk. In particular, the Levi-Civita connection 

I-iJ k = (1/2)(OJg ki + Ok g ij _ Oi gj  k) 

associated with the gij comes up almost at once from the differentiation process described above. One finds that 

D2X i = G i _ gir g jSFrsX j - FiJk.yj,9,k, 

where Fr~. = [-~r, -~s]. It follows from the Jacobi identity that F,-s satisfies the equation 

Oi Fjl¢ + Oj Fki + Ok Fij = O, 

identifying Fij as a noncommutative analog of a gauge field. In a more technical sense, G i is a noncommutative 

analog of a scalar field, satisfying 

(OiGj) = (OjGi), 

where the brackets around this equation indicate an analog of the Weyl ordering for operator products. The details 

of this calculation can be found in [15]. 

This brief technical description of  the equations for a noncommutative particle in a metric field illustrates well 

the role of the background of discrete time in this theory. In terms of the backgound time the metric coefficients are 

not constant. It is through this variation that the space- t ime derivatives of the theory are articulated. Thus we are in 

this way producing the beginning of a theory of  space- t ime based on a background process. The background is a 

process with its own form of discrete time, but no space- t ime structure as we know and observe it. Our observation 

of  space- t ime structure appears as a rough (commutative) approximation to the processes described as consequences 

of  the basic noncommutative equations of the DOC. 

3. Poisson brackets and commutator brackets 

Dirac [7] introduced a fundamental relationship between quantum mechanics and classical mechanics that is 

summarized by the maxim replace Poisson brackets by commutator brackets. Recall that the Poisson bracket 

{A, B} is defined by the formula 

{a, B} = (oa/Oq)(OB/Op)  - (oa/Op)(OB/Oq) ,  

where q and p denote classical position and momentum variables, respectively. 

In our version of  discrete physics the noncommuting variables are functions of discrete time, with a DOC derivative 

D as described in the previous section. Since D X  = X J  - J X  = [X, J ]  is itself a commutator, it follows that 

D([A,  B]) = [DA,  B] + [a, DB]  

for any expressions A, B in our ring R. A corresponding Leibniz rule for Poisson brackets would read 

( d /  dt){A,  B} = { d A /  dt, B} + {A, d B /  dt}. 

However, here there is an easily verified exact formula: 

( d /  dt){A,  B} =-- { d a /  dt, B} + {a,  d B /  dt} - {a, B}(O~I/O q + Ol~/Op). 
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This means that the Leibniz formula will hold for the Poisson bracket exactly when 

( a o / a q  + o p / O p )  = o. 

This is an integrability condition that will be satisfied if p and q satisfy Hamilton 's  equations 

it = a H / O p ,  p = - a H / O q .  

This, of course, means that q and p are following a principle of least action with respect to the Hamiltonian H.  

Thus we can interpret the f a c t  D ( [ A ,  B]) = [ D A ,  B] + [A, D B ]  in the discrete context as an analog of  the principle 

of least action. Taking the discrete context as fundamental, we say that Hamilton's  equations are motivated by the 

presence of  the Leibniz rule for the discrete derivative of  a commutator. The classical laws are obtained by following 

Dirac 's  maxim in the opposite direction! Classical physics is produced by following the correspondence principle 

upwards from the discrete. 

Taking the last paragraph seriously, we must reevaluate the meaning of Dirac's maxim. The meaning of quanti- 

zation has long been a basic mystery of  quantum mechanics. By traversing this territory in reverse, starting from 

the noncommutative world, we begin these questions anew. 

4. Scalar variables, chaos and representations of the discrete ordered calculus 

The purpose of  this short section is to point out the inherent noncommutativity of the operators in any theory 

based on the DOC. It is natural to hope for actual scalar variables in the course of articulating a theory based on 

DOC. 

Consider the equation [X, D X ]  = J k  where k is a constant. This reads 

J ( X r X  ' - 2 X ' X  ÷ X X )  = J k  

and hence we may consider solutions to the equation 

( X ' X '  -- 2 X ' X  + X X )  = k. 

If X and X'  commute then this becomes 

(X - X')  2 = k 

with the solution 

X ~ = X 4- k 1/2. 

For some problems it may be sufficient to consider the situation where the variables are successively incremented 

or decremented by a constant. 

The problems arise when we go to more than one variable. For example, consider the equation 

[ X i ,  D X j ]  = J k ~ i j ,  

where i and j range from 1 to 3. Then for i :~ j we have 

[Xi,  D X j ]  = O. 

Let Xi = A and X j  = B.  Then this equation reads 

A J ( B  - B')  - J ( B  - B ' ) A  = O. 
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Hence 

A ' ( B  - B ' )  - (B  - B ' ) A  = O. 

Thus if A and B commute, we conclude that (A '  - A ) ( B '  - B) = 0. Unfortunately, this contradicts the equations 

[A,  D A ]  = J k  and [B, D B ]  = J k  that are given by our assumptions, except in the case where k = 0. This analysis 

shows that noncommutativity of the dynamical variables in theories based on the DOC is a part of life. 

Example  5. Noncommutativity can have a scalar source. For example, suppose that X = D T ,  where T and T'  are 

commuting scalars. Consider the equation 

[X,  D X ]  = j 2 k ,  

where k is a commuting scalar constant. Then we have [ D T ,  D D T ]  = j 2 k .  Let 

A = T ' - T  

and note that A is also a commuting scalar. Then D T  = J A ,  and therefore 

[ D T ,  D D T ]  = j 2 ( A " ( A '  - A) - (A ' r -  A ' ) A ) .  

Hence the equation [X, D X ]  : j 2 k  translates into 

A " ( A '  - A) - (A" - A ' ) A  = k, 

whence 

A" = ( k -  A A ' ) / ( A '  -- 2A).  

This recursion relation for A and its time series has remarkable properties. For a fixed non-zero value of k, the 

recursion is highly sensitive to initial conditions, with regions that give rise to bounded oscillations and other 

regions that give rise to unbounded oscillations. There are boundary values in the initial conditions where the 

system undergoes chaotic transition between bounded and unbounded behavior. 

We are investigating this method (of letting Xi  = DnTi  for some n, where T/ and T} are commuting scalars) 

for producing a system of noncommuting extrinsic dynamical variables with an underlying scalar structure. If this 

idea is correct, then there will emerge a picture of noncommutative discrete physics based on DOC as a global 

description occurring over a substrate of discrete chaotic dynamics. 

There are other possibilites for the direct representation of the discrete noncommutative dynamics. There may be 

matrix representations of these theories over finite fields, the simplest cases being modular number systems with 

prime modulus. This subject will be taken up in a future publication. 

5. Discussion on q-deformation 

The direct relation between the content of local physical descriptions based on the DOC calculus and more global 

considerations are a matter of speculation. One strong hint is contained in the properties of  the discrete derivative 

that has the form 

D q f ( x )  = ( f ( q x )  - f ( x ) ) / ( q x  - x ) .  

The classical derivative occurs in the limit as q approaches one. 
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In the setting of q not equal to one, the derivative Dq is directly related to fundamental noncommutativity. 

Consider variables x and y such that yx  = q x y  where q is a commuting scalar. Then the expansion of (x + y)" 

generates a q-binomial theorem with q-choice coefficients composed in q-factorials of q-integers [n]q, where 

[n]q = l + q  + q 2  + . . . + q ( n - 1 ) .  

The derivative Dq is directly related to the q-integers via the formula 

Dq (x n ) : [ll]qX n-I  . 

In the context of this paper, we have considered discrete derivatives in the form 

d A . f ( x )  = ( f ( x  + A) - f ( x ) ) / A .  

This will convert to the q-derivative i f x  + A = qx. Thus we need 

q = ( x + A ) / x .  

This means that a direct translation from DOC to q-derivations could be effected if we allowed q to vary as a 

function of x and introduced the temporal operator J into the calculus of q-derivatives. 

In general, many q-deformed structures such as the quantum groups associated with the classical Lie algebras 

appear to be entwined with the discretization inherent in Dq. The quantum groups have turned out to be deeply 

connected with topological amplitudes for networks describing knots and three-dimensional spaces. (See Section 6.) 

The analog for the quantum groups in dimension four is being sought. If there is a connection between the local and 

the global parts of our essay it may lie in hidden connections between discretization and quantum groups. Clearly 

there is much work to be done in this field. 

There is a clue about the meaning of the operator J ( D F  ---- [F,  J]  in the DOC) in the context of quantum groups. 

Quantum groups are Hopf algebras. A quantum group such as G = Uq (SU(2))  is actually an algebra over a field 

k with an antipode 

S : G  > G  

and a coproduct 

A : G  ~ G ® G ,  

a unit 1 and a counit 

~ : G - - - - - + k  

The coproduct is a map of algebras. The antipode is an antimorphism, S ( x y )  = S ( y ) S ( x ) ,  and generalizes the 

inverse in a group in the sense that S S ( x l  )x2 = e(x)  1 and S x l  S(x2) -- e(x)  1 where A(x)  = S, xl ® x2. 

An element g in a quantum group G is said to be a group-like element  if A(g)  = g ® g and S(g)  = g - J .  In many 

quantum groups (such as G = Uq (SU(2)))  the square of the antipode is represented via conjugation by a special 

group-like element that we shall denote by J .  Thus 

S2(x) : J - 1 y J  

for all x in G. This means that it is possible to define the discrete ordered calculus in the context of a quantum group 

G (as above) by taking J to be the special group-like element. Then we have 

D X  =- [X, J] = X J  -- J X  : J ( j - I x j  - X )  : j ( S 2 ( X )  - X) .  
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Conjugation by the special group-like element in the quantum group constitutes the time-evolution operator in this 

algebra. 

There are a number of  curious aspects to the use of  the DOC in a quantum group. First of  all, it is the case that in 

some quantum groups (for example with undeformed classical Lie algebras) the square of  the antipode is equal to the 

identity mapping. From the point of  view of  DOC, time does not exist in these algebras. But in the q-deformations 

such as Uq (SU(2)),  the square of the antipode is quite nontrivial and can serve well as the tick of the clock. In this 

way, q-deformations do provide a context for time. In particular, this suggests that the q-deformations of classical 

spin networks [ 16] should be able to accommodate time. A suggestion directly related to this remark occurs in [5], 
and we shall take this up at the end of  the next section of this paper. 

6. Networks and discrete space-time 

One can consider replacing continuous space (such as Euclidean space with the usual topology) by a discrete 

structure of relationships. The geometry of the Greeks held a discrete web of  relationships in the context of continuous 

space. That space was not coordinated in our way, nor was it held as an infinite aggregate of points. In general topology 
there is a wide choice for possible spatial structures (where we mean by a space a topology on some set). 

Discretization of space and time implicates the replacement of  space-time by a network, graph or complex that 

has nodes for the points and edges to indicate significant relationships among the points. 

Euler's work in the 18th century brought forth the use of abstract graphs as holders of  spatial structure. After 

Euler it was possible to find the classification of the Greek regular solids in the (wider) classification of the regular 

graphs on the surface of  the sphere. Metric can disappear into relationship under the topological constraint of Euler's 

formula V - E + F = 2, where V denotes the number of vertices, E the number of edges and F denotes the number 

of faces for the connected graph G on the sphere. 

A network itself can represent an abstract space. Embeddings of that network into a given space (such as graphs 

on the two-dimensional sphere) correspond to global constraints on the structure of  the abstract graph. 

Now a new theme arises, motivated by a conjunction of combinatorics and physics. Imagine labeling the edges of 

the network from some set of"colors".  These colors can represent the basic states of  a physical system, or they can 

be an abstract set of distinct markers for purely mathematical purposes. Once the network is labeled, each vertex is 

an entity with a collection of labels incident on it. Let there be given a function that associates a number (or algebra 

element) to each such labeled vertex. Call this number the vertex weight at that vertex. Let C denote a specific 

coloring of the network N and consider the product, over all the vertices of N of the values of the vertex weights. 

Finally let Z(N), the amplitude of the network, be defined as the summation of the product of the vertex weights 

over all colorings of  the net. Z(N) is also called the partition function of the network. 

Amplitudes of this sort are exactly what one computes in finding the partition function of a physical system or the 

quantum mechanical amplitude for a discrete process. In all these cases the network is interwoven with the algebraic 
structure of the vertex weights. It is only recently that topological properties of networks in three-dimensional space 

have come to be understood in this way [1,11,19]. This has led to new information about the topology of low 
dimensional spaces, and new relationships between physics and topology. 

A classical example of  such an amplitude was discovered by Penrose [17] in elucidating special colorings of 
3-regular graphs in the plane. A 3-regular graph G has three edges incident to each vertex. When embedded in the 
plane, these edges acquire a specific cyclic order. Three colors are used. One associates to each vertex the weight 

~ / " ~  ~Sa bc, 
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where a,b and c denote the edges meeting the vertex in this cyclic order, and the epsilon is equal to l, - 1 accordingly 

as the edges have distinct labels in the given or reverse cyclic order, or 0 if there is a repetition of labels. The resulting 

amplitude counts the number of  ways to color the network with three colors so that three distinct colors are incident 

on each vertex. This result is a perspicuous generalization of the classical four color problem of coloring maps in 

the plane with four colors so that adjacent regions receive different colors. 

The Penrose example generalizes to networks whose amplitudes embody geometrical properties of  Euclidean 

three-dimensional space (angles and their dependence). Geometry begins to emerge in terms of  the averages of  

properties of  an abstract and discrete network of relationships. Topological properties emerge in the same way. The 

idea of space can change to the idea of  a network with global states and a functor that associates this network and 

its states to the more familiar properties that a classical observer might see. 

6.1. Remarks  on quantum mechanics  

We should remark on the basic formalism for amplitudes in quantum mechanics. The Dirac notation (A]B) 

[7] denotes the probabili ty amplitude for a transition from A to B. Here A and B could be points in space (for 

the path of  a particle), fields (for quantum field theory), or geometries on space- t ime (for quantum gravity). The 

probabili ty amplitude is a complex number. The actual probability of  an event is the absolute square of the am- 

plitude. If a complete set of  intermediate states Cl ,  C2 . . . . .  C,  is known, then the amplitude can be expanded to a 

summation 

(A IB)  = r n ( A I C i ) ( C i l B ) .  i=1 

This formula follows the formalism of the usual rules for probability, and it allows for the constructive and destructive 

interference of the amplitudes. It is the simplest case of a quantum network of  the form 

A - - - , - - - C - - - , - - - B  

where the colors at A and B are fixed and we run through all choices of colors for the middle edge. The vertex 

weights at the vertices labeled • are (AIC) and {CIB), respectively. A measurement at the C edge reduces the big 

summation to a single value. 

Consider the generalization of  the previous example to the graph 

A - - -  * - - - C  1 - - -  * - - - C  2 * ... * - - - C  m - - -  B 

With A and B fixed the amplitude for the net is 

( A I B >  = ~ <AlCil >(C~IC~3)'"<Ci,~l ~> 
l< i t  <--'<ira <n 

One can think of this as the sum over all the possible paths from A to B. In fact in the case of  a "particle" traveling 

between two points in space, this is exactly what must be done to compute an amplitude - integrate over all the 

paths between the two points with appropriate weightings. In the discrete case this sort of  summation makes perfect 

sense. In the case of  a continuum there is no known way to make rigorous mathematical sense out of  all cases of such 

integrals. Nevertheless, the principles of quantum mechanics must be held foremost for physical purposes and so 

such "path integrals" and their generalizations to quantum fields are in constant use by theoretical physicists [9] who 

take the point of  view that the proof of a technique is in the consistency of the results with the experiments. When 

the observations themselves are mathematical (such as finding invariants of knots and links), the issue acquires a 

new texture. 
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Now consider the summation discussed above in the case where n = 2. That is, we shall assume that each 

Ckcan take two values, call these values L and R. Furthermore let us suppose that {LfR) = (RIL) = ~/~l l  while 

(LIL) = (RIR) = 1. The amplitudes that one computes in this case correspond to solutions to the Dirac equation 

[7] in one space variable and one time variable. This example is related to an observation of Feynman [9]. In [ 141 we 

give a very elementary derivation of this result and we show how these amplitudes give solutions to the discretized 

Dirac equation, so everything is really quite exact and one can understand just what happens in taking the limit to 

the continuum. In this example a state of the network consists in a sequence of choices of L or R. These can be 

interpreted as choices to move left or right along the light-cone in a Minkowski plane. It is in summing over such 

paths in space-t ime that the solution to the Dirac equation appears. In this case, time has been introduced into the 

net by interpreting the sequence of nodes in the network as a temporal direction. 

Thus one way to incorporate space- t ime is to introduce a temporal direction into the net. At a vertex, one must 

specify labels of be~)re and after to each edge of the net that is incident to that vertex. If there is a sufficiently 

coherent assignment of such local times, then a global time direction can emerge for the entire network. Networks 

endowed with temporal directions have the structure of morphisms in a category where each morphism points from 

past to future. A category of quantum networks emerges equipped with a functor (via the algebra of the vertex 

weights) to morphisms of  vector spaces and representations of generalized symmetry groups. Appropriate traces of 

these morphisms produce the amplitudes. 

Quantum nonlocality is built into the network picture. Any observer taking a measurement in the net has an effect 

on the global set of states available for summation and hence affects the possibilities of observations at all other 

nodes in the network. By replacing space with a network we obtain a precursor to space-t ime in which much of 

quantum mechanics is built into the initial structure. 

Remark 6. A striking parallel to the views expressed in this section can be found in [8]. Concepts of time and 

category are discussed by Crane [4,5] in relation to topological quantum field theory. In the case of Crane's  work 

there is a deeper connection with the methods of this paper, as I shall explain below. 

6.2. Temporality and the Crane Model for quantum gravity 

Crane uses a partition function defined for a triangulated four-manifold. Let us denote the partition function 

by Z(M 4, A, B)  = (AIB)M where M 4 is a four-manifold and A and B are (colored - see the next sentence) 

three-dimensional submanifolds in the boundary of M. The partition function is constructed by summing over all 

colorings of the edges of a dual complex to this triangulation from a finite set of colors that correspond to certain 

representations of the quantum group Uq(SU(2)), where q is a root of unity. The sum is over products of 15Jq 

symbols (natural generalizations of the 6J  symbols in angular momentum theory) evaluated with respect to the 

colorings. The specific form of the partition function (here written in the case where A and B are empty) is 

Z ( M  4) = NV-er~/7c,  dimq(K(~))/Tr dimq ] ()~(r))/7¢ 15Jq(L(~)). 

Here ,~ denotes the labeling function, assigning colors to the laces and tetrahedra of M 4 and v - e is the difference 

of the number of vertices and the number of edges in M 4. Faces are denoted by ~,  tetrahedra by r and 4-simplices 

by ~. We refer the reader to [6] for further details. 

In computing Z(M 4, A, B) = (AIB}M one fixes the choice of coloration on the boundary parts A and B. The 

analog with quantum gravity is that a colored three manifold A can be regarded as a three manifold with a choice of 

(combinatorial) metric. The coloring is the combinatorial substitute for the metric. In the three manifold case this is 

quite specifically so, since the colors can be regarded as affixed to the edges of the simplices. The color on a given 

edge is interpreted as the generalized distance between the endpoints of the edge. Thus (AIB)M is a summation 
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over "all possible metrics" on M 4 that can extend the given metrics on A and B. (AIB)Mis an amplitude for the 

metric (coloring) on A to evolve in the space-time M 4 to the metric (coloring) on B. 

The partition function Z ( M  4, A, B) = (AIB)m is a topological invariant of the four-manifold M 4. In particular, 

if A and B are empty (a vacuum-vacuum amplitude), then the Crane-Yetter invariant, Z(M4),  is a function of the 

signature and Euler characteristic of the four-manifold [6]. On the mathematical side of the picture this is already 

significant since it provides a new way to express the signature of a four-manifold in terms of local combinatorial 

data. 

From the point of view of a theory of quantum gravity, Z ( M  4, A, B) = (AIB)M, as we have described it 

so far, is lacking in a notion of time and dynamical evolution on the four-manifold M 4. One can think of A 

and B as manifolds at the initial and final times, but we have not yet described a notion of time within M 4 

itself. 

Crane proposes to introduce time into M 4 and into the partition function (AIB)M by labeling certain three- 

dimensional submanifolds of M 4 with special group-like elements from the quantum group Uq (SU(2)) and extend- 

ing the partition function to include this labeling. Movement across such a labeled hypersurface is regarded as one 

tick of the clock. The special group-like elements act on the representations in such a way that the partition function 

can be extended to include the extra labels. Then one has the project to understand the new partition function and 

its relationship with discrete dynamics for this model of quantum gravity. 

Let us denote the special group-like element in the Hopf algebra G = Uq (SU(2)) by the symbol J. Then, as 

discussed at the end of the previous section, one has that the square of the antipode S : G > G is given by 

the formula S2(x) = j - l x j .  This is the tick of the clock. The DOC derivative in the quantum group is given 

by the formula D X  = [X, J] = j (S2 (X)  - X). I propose to generalize the DOC on the quantum group to a 

DOC on the four-manifold M 4 with its hyperthreespaces labeled with special group-likes. This generalized calculus 

will be a useful tool in elucidating the dynamics of the Crane model. Much more work needs to be done in this 

domain. 
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