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Introduction. Let Xy,X2, ■■-,X„,--- be a sequence of independent real valued
random variables with a common distribution function F(x), and consider the
sums Xy + X2 + ■■• + X„. A fundamental theorem of classical probability
theory is the strong law of large numbers which asserts that with probability
one, Xy + X2+ ■■■ + Xn ~ n $xdF(x), provided that J"| x\ dF(x) is finite. It is
natural to inquire whether there exist laws governing the asymptotic behavior
of products X„X„-y ---Xy, where the X¡ are now identically distributed inde-
pendent random variables with values in an arbitrary group. This type of question
arises, for example, in considering solutions to differential or difference equations
with random coefficients [13]. To illustrate this, consider the problem of de-
termining the asymptotic behavior of a random sequence {<!;„} satisfying
£n = ut&n-i + c»£i!-2j where (u„,v„) forms a sequence of independent identically
distributed random vectors. In this case we can write

ßn + 11 -XX X  fi1] x - h+1   VJ+1\

and so the rate of growth of the £„ is governed by the behavior of the matrix
product X„Xn_y--Xy.

Bellman, who apparently was the first to consider questions of this kind,
studied random products of 2 x 2 matrices with strictly positive entries [2].
He showed that in a certain sense the weak law of large numbers holds for the
entries of the matrices X„X„_y -Xy. In [9] it was shown that a strong law of
large numbers is valid. More precisely, if y\f is the typical entry of XnX„ _y--Xy,
then for a certain constant a, n ~1 log y\f -* a with probability 1, provided the
entries of X¡ are positive and bounded away from oo and 0 in an appropriate
sense. It should be emphasized that for matrices with arbitrary entries, this type
of result does not hold and the analysis of [9] breaks down.

In the present investigation we shall consider a noncompact semi-simple
Lie group G and independent G-valued random variables {Xn} with a common
distribution p on G. The law of large numbers here can be given the following
form. We shall exhibit a finite dimensional linear space  "VG of functions \¡/(g)

Received by the editors August 14, 1962.
(!) This research was partially supported by the Air Force Office of Scientific Research.

377

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



378 HARRY FURSTENBERG [September

on G, such that to every probability measure p that is well behaved in a sense
to be specified, there corresponds a linear functional ap on "f~G and, with pro-
bability 1,

•KXA-!"*!) ~«a„0/0

as n->oo, for each ij/ei^c;. This may be illustrated by an example. Let G he
the group of conformai transformations of the unit disc onto itself. For every
g e G, set ij/'(g) equal to the non-euclidean distance of g(0) from 0. \¡j' itself does
not belong to ^G but it differs from a function \¡i ei^G by a bounded function
on G. Consequently, we will have n~l \¡i'(XnXn_x ■■■ Xx) -+ap(\¡/).

In general, let G be any semi-simple group and A an irreducible representation
of G by m x m matrices. Let u he a vector in Rm and let || • || denote a norm on
Rm. There will be a iieyG such that for each distribution p,
log IA (X„X„_ ! • • • X,) u || ~ nap(\¡í). A similar relation holds, under more restricted
conditions, for the angle between various column vectors of the product matrix
X„X„_1 ••■Xl, where G is a matrix group. We find that the logarithm of the
angle is asymptotic to na^o), and in certain cases we can show that ap(\¡/0) < 0.
This implies that the columns of the product X„X„-Y ••■ Xt axe "ultimately"
proportional.

In contrast to the classical situation, the computation of the limit
<xH(i/0 of n~1i¡/(X„X„-l---Xl) cannot, in general, be made directly in terms of
the measure p. The expression for ap(\j/) involves, in addition to p, an auxiliary
measure v on a space B(G) associated with the group G. It turns out that v is
determined by p as the solution to a convolution equation p* v = v, the meaning
of which will become clear presently.

The main step in the proof that the limit of n~li¡j(XnX„_1 ---X^ exists for
\j/ e í^q consists of showing that the above convolution equation determines a
unique probability measure v. This equation is natural in any case in view of
the appearance of v in the expression for ap(\]/). We shall study this question in
some detail. If a group G acts on a space M, then the product gx is defined for
g eG, xeM.lt follows that if p is a probability measure on G and v a probability
measure on M, then p * v may be defined as the measure on M giving the distrib-
ution of gx where g and x independently have distributions p and v respectively.
We now ask whether for given p, there exists a probability measure v on M satis-
fying p*v = v. We call such a measure a stationary measure for p. Moreover,
if v exists, we may ask if it is unique for a given space M. These two questions are
related, for if we let M(2) denote the space of pairs of distinct points of M, then
a stationary measure exists on M(2) if and only if there exist distinct stationary
measures on M.

As to the existence of a stationary measure for p on M, our analysis shows
that this is independent of the measure p and depends only on the space M in
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question (Theorem 2.1). More precisely, the necessary and sufficient condition is
that a certain subgroup H(G) leave fixed some probability measure on M. The
subgroup /7(G) as well as the space B(G) mentioned previously were introduced
in our discussion of a generalized Poisson formula. The proof of Theorem 2.1
and much of our discussion depends strongly on [8] and we shall summarize
these results in §0.

The question of the existence of a stationary measure for p on a G-space M
has independent interest. A probability measure on G induces on every G-space
M a "random walk" {Wn} where we let Wn+1 arise by applying a random g to
W„, g having distribution p. We may now inquire as to the nature of this random
walk. There are at least three possibilities that may be distinguished. The walk
may be transient; that is, with probability 1, W„ may ultimately leave every
compact set. It may be null-recurrent; that is, W„ may return with probability
1 infinitely often to some compact set, but the expected time for return to the
set from a point of M will be infinite. Finally, the expected time may be finite;
this is sometimes called the positively recurrent case. (These definitions are in-
formal and only serve to give an idea of the possibilities.) It may be seen that
the latter case will occur if and only if p possesses a stationary measure on M.

Our results imply that the question of the positive recurrence of {Wn} depends
only on the state space M and not on the measure p generating the random walk.
When M is compact, there will always be positive recurrence. For certain groups
G, under the assumption that M = G/L and L is a connected subgroup, we can
say conversely that if M is not compact, the walk is either null-recurrent or
transient.

For certain M we can also assert the transience of the random walk independent
of p. For example, if G is any noncompact semi-simple group the induced random
walk on G itself is always transient. (This follows from Theorem 7.6.) However,
there are homogeneous G-spaces for which the transience or recurrence of the
W„ does depend on the measure p.

The paper is divided into two parts, the first of which is concerned with the
question of stationary measures and the second with laws of large numbers'
Part II depends upon Part I primarily in the application of the uniqueness criterion
for a stationary measure (Theorem 2.1).

0. Preliminaries.
0.1. G-spaces. All the topological spaces to be considered in the sequel will be

assumed to be locally compact, Hausdorff, and separable. If G is a group then M
is a G-space if there is defined a continuous map (g, x) -* gx of G x M -* M,
such that gx may be considered the result of applying the group element g to x.
This means that gy(g2x) — (gyg2)x and ex = x where e is the identity of G. If
for each pair x, y e M the equation gx = y has a solution in M, then G is transitive
on M and M is a homogeneous space of G. If x0 e M, the set of g e G with gx0 = x0
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is called the stability group of x0. When G is transitive on M then M may be
identified with the coset space G/L, where L is the stability group of a point of M.

An equivariant map <f> of one G-space into another is one that commutes with
the action of G:g<j>(x) = <j)(gx). If Li and L2 are subgroups of G, Lt c L2, there
is a natural equivariant map of G/L^ -» G/L2 taking gLx into gL2.

0.2. Measures. The term measure will refer to a regular, borel measure. With
the exception of Haar measure, all our measures will be bounded. We will be
concerned almost exclusively with probability measures which are measures assig-
ning to the whole space the value 1. The integral \f(x)dp(x), which is defined
at least for borel measurable functions, will often be abbreviated to p(f). On
a locally compact space p is determined by the induced functional p(f) on the
class of continuous functions vanishing at co.

If M is a G-space and p and v are measures on G and M respectively, then
p * v is defined by

/t*v(/)= \f(gx)dp(g)dv(x).

Considering G itself as a G-space, this defines the convolution of measures on G.
If x is a point of a space, 8X will denote the probability measure whose support is
the single point x. For a measure v on a G-space M it will often be necessary to
consider the measures <5g*v. We shall abbreviate this to gv. Note that
Sv(f) — $f(gx)dv(x) so that gx has the distribution gv if x has distribution v.
It will sometimes be instructive to consider p * v as a weak integral

u*v =    gvdp(g) =    p*8xdv(x).

When we speak of convergence of a sequence of measures we will always mean
convergence in the weak sense: p„-+p if p„(f)->p(f) for every bounded
continuous function/ on the space in question.

0.3. Random walks. We shall use the term random walk to refer to the as-
signment of transition probabilities to points of a space. Specifically, by a random
walk on M we shall mean a continuous function px assigning to each xeM a
probability measure on M. The hypothesis of continuity implies that if we set
t/W = Px(f) then t takes continuous functions into continuous functions.

If in addition to the measures {px} we are given an arbitrary distribution
( = probability measure) v0 on M, there is determined a Markov process with
stationary transition probabilities. Namely, we let W0 have distribution v0 and
the joint distribution of W1,W2,---,Wn is determined inductively by setting the
conditional distribution of W„, given Wí,W2,—,Wn-í, equal to /%„_,. The
measure v0 is called the initial distribution of the process.
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0.4. Boundaries and Poisson spaces. Most of our considerations are limited
to noncompact semi-simple groups. By a semi-simple group we will always
mean a semi-simple connected Lie group with finite center. It is for these groups
that we established the results of [8] and aside from reference to these results we
will not require very much of the general theory of these groups. In this class
of groups are the so-called classical groups which include the groups SL(m,R)
and SL(m, C) of m x m unimodular real or complex matrices.

The conclusions of [8] are as follows. If G is a noncompact semi-simple group
it has nontrivial compact homogeneous spaces called boundaries. These are
characterized by the property that for any probability measure n on such a space,
there exists a sequence {g„} in G with g„n converging to a point measure. All
boundaries of a group G are equivariant images of one of them, B(G), called the
maximal boundary of G (and conversely, every equivariant image of B(G) is a
boundary). B(G) can be identified with a coset space G/H(G). The subgroup
H(G) is not uniquely determined, but the conjugates {g~lH(G)g} exhaust this
class of groups. They are referred to as minimal B-subgroups of G.

There are finitely many covering spaces {n} of B(G) which are also G-spaces,
and these correspond to the subgroups Hn of H(G) containing the connected
component H0(G) of the identity of H(G). These spaces {n} are the Poisson
spaces of G.

Now let p be an absolutely continuous probability measure on G. The solutions
to the equation

(0.1) f(g) = jf(gg'W(g')

are called p-harmonic functions on G. To each such measure p there corresponds
a Poisson space n^ (frequently the Poisson space of p is the maximal boundary
B(G)) and there exists a probability measure v on n,, with the following property.
Every bounded p-harmonic function on G is given by the "Poisson" represen-
tation

(0.2) f(g) =   f   f(gx)dv(x)

for some bounded function /on n„ ; every / on n„ determines a p-harmonic
function on G, and the correspondence /<-» / is one-to-one. The measure v in
formula (0.2) depends only on p and satisfies p * v = v. The p-harmonic functions
corresponding to continuous boundary functions / may be characterized by the
property of being left-uniformly continuous on G. This means that as gn-*
identity, f(g„g) -*f(g) uniformly in g.

If G is a semi-simple group, then G admits a decomposition G =K-A-N,
referred to as the Iwasawa decomposition [13, Chapter VI, §3]. Here K is any
maximal compact subgroup of G, A is an abelian group, N is nilpotent, and
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the product A- N = S is a solvable, connected, and simply connected
subgroup. This decomposition is meant to imply that each g e G can be express-
ed uniquely in the form g = kan, keK, aeA, neN.ln [8] it was shown
that for any such decomposition, S is contained in a minimal B-subgroup H(G).
Moreover, the normalizer of S is also contained in H(G). C. C. Moore has shown
(unpublished) that H(G) is identical with the normalizer of S. This means [5,
Chapter III] that if M is the centralizer of A in K, then H(G) can be written as
H(G) = M-A-N, and B(G) x K/M. If M0 is the connected component of the
identity of M, then H0(G) = M0- A-N, and the subgroups //„ correspond to
the subgroups of the finite group M/M0. The group M-A-N also plays an im-
portant role in the theory of representations of G [5].

Let p be a probability measure on G. Associate with p the random walk on
G defined by setting pg = gp (§0.3); that is, from each ge G there is a transition
to gg' where g' is distributed according to p. A p-harmonic function can then
be seen to be harmonic with respect to this random walk: if {W„} denotes a
Markov process associated with this random walk,then E(f(Wn+1) | W„) —f(W¿),
if and only if/ is /¿-harmonic. For certain classes of Markov processes [15]
there has been developed a notion of a Martin boundary of the state space in-
duced by the process. The non-negative (an a fortiori the bounded) harmonic
functions for the process are then given by a Poisson representation in terms of
measures on the Martin boundary. Also the "minimal" non-negative harmonic
functions correspond to a certain subset of the Martin boundary. In case the
measure p on G is sufficiently regular (p of class Bx, see Definition 7.3 below),
then a Poisson representation is valid for all non-negative p-harmonic functions
(in addition to the bounded ones) where the boundary space is taken as n,, [8,
Chapter V, §5]. Moreover, each point xeHp determines a minimal, non-negative
p-harmonic function

where v is the measure in (0.2) and m is a fixed measure on n^, and up to scalar
multiples, these exhaust the class of minimal non-negative p-harmonic functions.
Finally, it is not difficult to show that fx and fy axe proportional only if x = y.
These properties suggest identifying n,, as the Martin boundary of G induced
by the random walk on G corresponding to p. It ought to be pointed out that
using martingale convergence arguments, the existence of a Martin boundary with
these properties may be established for probability measures on arbitrary locally
compact groups G. It is also not hard to show that such a Martin boundary
will necessarily be a G-space. The semi-simplicity of G is needed in showing
that the space n„ is a homogeneous G-space, and in identifying it with one of a
finite number of covering spaces of the maximal boundary B(G) of G.

0.5. Groups of matrices. A group G of m x m real matrices naturally acts on
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an m-dimensional space Rm. The action is given by identifying Bm with real m x 1
matrices and letting G act by left multiplication. This identification will be im-
plicit whenever we speak of the action of a matrix group on a vector space. The
group G is called irreducible if the only subspaces left fixed by the matrices of
G are Rm and {0}. Otherwise it is called reducible.

The real (m — l)-dimensional! projective space pm_1 is obtained from Rm— {0}
by identifying two vectors if each is a scalar multiple of the other. If two vectors
are so identified then their images under a nonsingular linear transformation will
also be identified. It follows that if G is a group of matrices, then G acts on
Pm_1 as well as on Rm.

Part I. Random walks on G-spaces.
1. Stationary //-processes.
1.1. Generalities. Let G be a locally compact topological group, p a pro-

bability measure on G, and M a G-space. The measure p determines a random
walk on M in a natural way. Namely, to each point xeMwe assign the pro-
bability measure p*ôx on M as the transition probability measure from x. We
speak of this as the random walk induced by p.

Definition 1.1. A Markov process {Z„} with state space M and with trans-
ition probability measures px = p*ôx will be called a p-process on M. (The
index n ranges either over the non-negative integers or all integers.)

A p-process {Z,„ n ïï 0} may always be obtained in the following way. We
consider a sequence Xy,X2,---, of G-valued random variables which are in-
dependent and all have distribution p. Let Z0 be an M-valued random variable with
arbitrary distribution and independent of the X„, and set Z„ = X„X„-1---X1Z0.
Then Z„+1 = Xn+1Zn, where Xn+i is independent of Z„. It follows that the con-
ditional distribution of Z„+1, given Z„, is p*ôZn which shows that {Z„} isa it-
process. Conversely, it is easily seen that every p-process arises this way.

We are particularly interested in stationary p-processes. Since a p-process is
determined by its initial distribution, its stationarity depends on the initial dis-
tribution.

Lemma 1.1. Let {Z„, n^O} be a p-process on M and let v be the distri-
bution of Z0. {Z„} is stationary if and only if p*v = v.

Proof. Since the distribution of Zx is p * v, it follows that the process can
be stationary only if p * v = v. Conversely, if p * v = v, then all the Z„ have the
same individual distributions. Now the joint distribution of a set of variables
(Zh, Zk+y,---,Zh+m) is determined by the distribution of Zh and the transition
probabilities between consecutive variables. Since all this is independent of h,
it follows that the process is stationary.

Definition 1.2. A probability measure v on M is called a stationary measure
for p if p * v = v.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



384 HARRY FURSTENBERG [September

There are two questions with which we shall be concerned : for a given G-space
M, does there exist a stationary measure, and if it exists, is it unique? The first
of these questions only arises for noncompact spaces, for we have

Lemma 1.2. // M is compact, there exists at least one stationary measure
for p on M.

Proof. Let v' be any probability measure on M and set v„ = n _1 Zô_1p** v'
where pk denotes the fc-fold convolution of p. Since M is compact, some sub-
sequence of {v„} converges to a probability measure v, and since p * v„ — v„ -» 0,
we have p * v = v.

1.2. A basic lemma. In this section we shall establish a lemma which is
useful for showing the nonexistence of a stationary measure in certain cases.
It is necessary first to lintroducel certain notation. If Z is a random variable
with values in M, we shall denote the distribution of Z by E*(Z). That is to say,
E*(Z) is a probability measure on M such that for any bounded continuous
function/ on M, E*(Z)(f) = E(f(Z)). More generally, suppose that Z is defined
over a sample space Q and that #" is a c-field on Q. We define the conditional
distribution E*(Z \ ¡F) by the equality

(1.1) £*(Z|^)(/) = E(/(Z)|iF).

Thus E* (Z | J5") is itself a random variable with values in the space of probability
measures on M. Because the space M is separable, as we shall assume, it may
be shown that there is a uniquely determined (up to null sets) random variable
E*(Z\lF) satisfying (1.1) for bounded continuous/.

If {Y„,n ^ 0} is a stationary process, it may be imbedded in a doubly infinite
stationary process in an essentially unique way, setting the joint distribution
of (Y_„, Y_„+1,---,y_1) equal to that of (Y0,Yt,— ,y«-i). Suppose now that
{Z„, n ïï 0} is a stationary p-process on a G-space M. We may suppose there are
given variables {X„, n ^ 1} with values in G so that Z„ = XnXn_1 ■••X1Z(i, where
the X„ axe independent of each other and of Z0 and where E*(X„) = p. The
process {(Xn+1,Z„), n 2; 0} is stationary and may be extended so that the index
n may also take on negative values. We then have ZB+1 = Zn+1Z„ for all n, and
Xn+i will be independent of all Zk, k^n. We shall refer to the X„ as the as-
sociated G-valued random variables for the process {Z„}.

Lemma 1.3. // {Z„} is a stationary p-process and {X„} the associated
G-valued random variables, then with probability 1,

(1.2) E*(Zn\Xn,Xn.u-)=  limX1IXB_1...Xp,_tE*(Zo).
k-* oo

Recall that since G acts on M, it acts on the measures on M so that the product
on the right side of (1.2) is defined.
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Proof. Let i^ be a bounded continuous function on M.

E%Zn\Xn,X„_y,---)(i¡,) = E(ilj(Zn)\X„,Xn-y,---) = iimEW(Zn)\Xn,Xn_y,---,Xn-k),
k-*(X>

by a martingale convergence theorem [6, Chapter VII, Theorem 4.3]. Now
Z„ = X„X„-y ■•-X„-kZn_k_y, so that

EW(Zn)\Xn,X^y,-,Xn_k)=E(MXnX^y-X^kZn^y)\X,,,Xn_y,-,Xn_k)

= jilt(XnX„_y-Xn^kOdv(0

where v = E*(Z0), since Xn,X„-y,---,X„_k are independent of Z„_k_1, and the
latter has distribution v. It follows that

E(yj,(Zn)\Xn,Xn_y,-,X„_k) = XnXn_y-Xn_kv(ip)

(see §0.2) and as k -* co ,

lim £0KZ„) | *„,*„_!,-,X„_fc) =lim XnXn_y-X^kE*(Z0)(^).
k-*ao fc-*oo

A group G acts on itself by left multiplication. We may inquire whether G,
as a G-space, possesses a stationary measure for p.

Theorem 1.1. // G is any locally compact group, p a probability measure
on G, then G possesses a stationary measure for p only if p has its support in a
compact subgroup of G.

Proof. Suppose that {Z„} is a stationary p-process on G and that {Xn} are
the associated independent variables. There is a compact set AjcG with
£*(Z0)(A1) > \, and for some sample sequence for which (1.2) is valid we can
find an open set A2 with compact closure such that £*(Z0 \X0,X_y, ---)(A2) > \.
Then ultimately X0X-y — X-kE*(Z0)(A2) > \ by (1.2), and it follows that
X0X_y •••Z_fcA1 nA2 is nonempty. (Note that v(A) = gv(gA).) Hence
X0X-y-X-keA2Ay1 czK2Al~1 = A3 where A3 is compact. This holds for
k> k', say, so we have X_n_j ■-■ X-n^meA31A3 for k' z%n<n + m. Now by
the ergodic theorem, any m-tuple (gy, - - ■, gm) of elements of G in the support of p
can be approximated arbitrarily closely by some (JÏ_n_1,---,.X'_„_m)occuring in
almost any sample sequence. It follows that all products of group elements in the
support of p lie in the compact set A4 = A3"1A3. But then the support of p lies
in a compact semigroup <zz G and therefore in a compact subgroup of G.

We recall that a compact semigroup with cancellation (and therefore a compact
sub-semigroup of a group) is a group.

We remark that if G is then taken to be the group of reals, then the standard
device for proving this theorem would be the use of characteristic functions, a
device which is not available for the general case.
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Another application of Lemma 1.3 is the following.

Theorem 1.2. Let p be a probability distribution on the set of m x m uni-
modular matrices and let G be the smallest closed subgroup of SL(m,R) con-
taining the support of p. Then p admits a stationary measure on the G-space
Rm— {0} only if G is either compact or reducible.

Proof. Let {Z„} be a stationary /¿-process on Rm — {0}, and let {X„} be the
associated G-valued variables. Choose a sample sequence ••• X_2,X_i,X0 so that

(1.3) E*(Z0\X0,X_u-) = UxnX0X-l--X_kE*(Z0),
k-* oo

and such that any m-tuple (gi,---,gm) of elements of G in the support of p is
approximated arbitrarily closely by m-tuples (XH-u---,Xn-^) of the sample
sequence. If G is not compact, then as in the preceding proof, the set of matrices
{XQX_t ■■■ X-k} cannot be bounded in the group G. Since the matrices of G are
unimodular, this implies that for some subsequence g„ = XqX-^---X_kn, we
have |g„||-»°o, where \\g\\ = max|gy|. Passing to a subsequence we may
assume that gj || g„ || converges elementwise to a matrix h. || h || = 1, and so h is
clearly not the 0 matrix. It follows that for u e Rm, hu can vanish only if u belongs
to a proper subspace V c jRm. Now, if hu ^= 0, then || gnu | -» co, where || • | now
denotes a norm in Rm. On the other hand, by (1.3), gnE*(Z0) converges to a
probability measure on Rm. This is therefore only possible if E*(Z0) has its
support in V. Let V ' be the smallest subspace of Rm containing the support of
£*(Z0); we have V <= V. It is easily shown that since p*E*(Z0) = E*(Z0), almost
every g, but for a set of p-measure 0, must take V into V. G is therefore generated
by elements taking V into V and this says that G is reducible. This proves the
theorem.

1.3. An application to continued fractions. In this section we interrupt our
main line of reasoning to present an application of Lemma 1.3 to a different kind
of question. We will encounter this problem again in Part II in a more general
setting.

Theorem 1.3. Let G be the group of fractional linear transformations
taking the unit disc D of the complex plane onto itself:

geG*>gz = p^-^,     |p| = l,|a|<l.

Let p be a probability measure on G whose support is not contained in a proper
subgroup of G and let {Xn} be a sequence of independent G-valued random
variables with distribution p. Then with probability 1, X2X2 ••• X„(z) converges
to a point of {| C | = l}/or each z in the interior of D, and the limit point is inde-
pendent of z.
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Proof. We can replace the variables {X„, n ^ 1} by variables {X_n, n^l}
and the assertion becomes that of the convergence of X_yX-2--- X_„(z). Since
the group G is noncompact and the support of p is not contained in a compact
subgroup of G, we conclude as in the proof of Theorem 1.1 that with probability
1, the group elements {X-yX^2---X-„, n = 1,2,--} do not remain bounded.
Now let us suppose that we have

gn(z) = X_yX_2 -■X_n(z) = Pn(z + a„)(l + ^z)-1.

It is clear that if we have a sequence g„k -* oo, then | a„k | -» 1, and since the g„ do
not lie in a compact subset of G this must be true of some subsequence.

Now consider the action of G on the boundary B of D: B = {z: | z | = 1}. Since
B is compact, there will be a stationary p-process {Z„} on B (Lemma 1.2), and we
can take the X„ as forming the associated G-valued variables. By Lemma 1.3,

E*(Z_y\X_y,X-2,-) =   limX-y-X-nE*(Z0) =   limg„£*(Z0)
n-*oo n-»co

(1'4) =   Hm gnkE*(Z0).
k~-* go

Passing to a subsequence of {g„k} we may suppose that p„k->p', <xnk-*a', where
necessarily | a' | = 1. It follows that for all Ç e B,

fJO- P'(C + a')(l + ä'C)"1 - P'a'
unless 1 + â'C = 0, or equivalently, unless Ç = — a'. We see from (1.4) that unless
E*(Z0) assigns positive measure to the point — a', £*(Z_1|Z_1, X_2,---) is
concentrated on p'a'. It is not difficult to show that the first alternative cannot
occur. That is, if £*(Z0) assigns positive measure to a single point of B, then since
p*E*(Z0) = E*(Z0) we can see that p would be concentrated on a subgroup of
G taking a finite point set of B into itself. Therefore, the measure
£*(Z_! \X-y,X_2,---)is concentrated on p'a',and by (1.4), g„E*(Z0) converges
to the point measure at p'a'. Since £*(Z0) is not a point measure, this will happen
only if for the entire sequence {gn}, [a„| -* 1 and p„a„-> p'a'. But then we will
have for every z with | z | < 1,

g«(z) = P«(z + a.) (1 + ä„z) _1 -* p'a'.

This proves the theorem.
Theorem 1.3 may be reformulated for the half-plane Imz > 0. We then have,

Corollary. Let {(u„,v„)} be a sequence of independent pairs of random real
numbers satisfying u„v„ < 0, and such that all pairs have the same distribution
which we assume is such that the matrices
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are not concentrated in a proper subgroup ofSL(2,R). Then with probability 1,
the continued fractions

»i

V2 +

V„   +   Z

converge whenever z is not real, and the limit is independent of z.

2. Application of the Poisson formula.
2.1. Criterion for existence of a stationary measure. In this section we

shall assume that G is a semi-simple group and that p is an absolutely continuous
probability measure on G. With these assumptions the conclusions of [8] are
valid; these are summarized in §0.4. In particular, to the measure p there cor-
responds a homogeneous G-space n„ which is one of a finite number of compact
homogeneous covering spaces of the maximal boundary B(G), and there is a
measure v on n,, satisfying p * v = v which plays a distinguished role in the rep-
resentation formula for /¿-harmonic functions on G. In our present terminology,
the measure v is a stationary measure for p, and it consequently generates a
stationary /¿-process.

Definition 2.1. The stationary /¿-process on n,, with initial distribution v,
where v is the measure occurring in the Poisson representation formula (0.2), is
called the distinguished p-process.

We next observe that, conversely, beginning with a stationary measure for p
on any G-space, we can generate /¿-harmonic functions. Namely, suppose that
M is a G-space and n a stationary measure for p on M. Set

(2.1) f(g) = ( (j>(gx)dn(x)
Jm

where (j> is a bounded borel measurable function on M. Then

Í f(gg')dp(g')=  f        <¡>(gg'x)dp(g')dn(x) =  f    <Kgy)dp*n(y)
Jg J g*m J m

(2.2)
=       <P(gy)dn(y) = f(g).

Jm

From this observation we can deduce

Theorem 2.1. Let M be a G-space. There is a one-to-one correspondence
between the stationary measures of p on M and the measures on M invariant
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under H^ (recall Up = G/Hp). In particular, there exists a stationary p-process
on M if and only if Hp has an invariant probability measure on M, and this
occurs if and only if the subgroup H(G) has an invariant probability measure
on M.

Before proving this theorem we introduce some notation which will be useful.
In general, let L be a closed subgroup of G, co a bounded measure on G/L, let
M be a G-space and suppose that A is a measure on M that is invariant under L.
If a is the natural map G -* G/L we can find some measure co on G with cr(co) = co.
Then the measure cö * X is defined on M, and we claim that this measure on M
is independent of the choice of cö for a given co. Namely

(2.3) f   f(x)dco*X(x) =   f      f(gx)dco(g)dX(x) =  \ F(g)d&(g)
JM Jg xm Jg

where F(g) = $f(gx)dX(x). Since X is invariant under L, it follows that F(gl) = f(g)
for / e L, so that F = F'° a for some function F' on G/L. The last integral of (2.3)
is then ¡GiLT'(y)do(co)(y) = $GiLF(y)dco(y). It follows that the measure &*X
depends only on co and X whenever X is invariant under L.

Definition 2.2. We shall denote the measure co* X, in case X is invariant
under L, simply as co*X.

Theorem 2.1 will now follow from

Lemma 2.1. If M is a G-space and Xis a probability measure on M invariant
under Hp, then v*X is a stationary measure for p on M, where v is the station-
ary measure on Ylp= G[Hp of the distinguished p-process. Conversely, every
stationary measure v' on M has the form v*X where X is invariant under Hp
and the correspondence v'<->X is one-to-one.

Proof. For the first statement we observe that associativity holds for the
convolutions of Definition 2.2 so that p * (v * X) = (p * v) * X. Since p * v = v we
have p*(v*X) = v*X, so that v' = v*X is stationary. To justify the associativity,
we simply note that if o(m) — co then o(p * co) = p * co since a is equivariant.
We turn now to the converse statement, so let v' be a stationary measure on M
for p. Let Mc = M u {oo} be the one point compactification of the locally com-
pact M, if M is not compact already; otherwise, set Mc = M. In any case, letting
g co = co for g e G, Mc will again be a G-space. Let cj>(x) be a continuous function
on Mc and form the /¿-harmonic function (see (2.1))

(2.4) Hg) =  f  4>(gx)dv'(x).
JMc

Since c\> is continuous on Mc it follows that cp is left-uniformly continuous on G.
By §0.4 we then have
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-/
(2.5) cb(g) =      í(gy)dv(y)

where tp is continuous on n„. Each point y e Tlp induces a positive linear func-
tional on the class of continuous functions on Mc by sending cb -» cb(y). This
functional determines a probability measure Xy on Mc and we will have cb(y) — Xy(cp).
In general, if i^ is a function on a G-space and yeG, let \j/y denote the function
\¡iy(p) = ip(yp). Returning to the foregoing situation we observe that by (2.4),
(cbyy = cby. It follows by the uniqueness of the boundary function in (2.5), that
((p7)* = tpy. From this we conclude that

(2.6) yXy = Xyy,       yeG, yelT^.

Let y0 be the point of n,, whose stability group is //„. (y0 corresponds to the
identity coset in G/Hp.) Set X = Xyo. From (2.6) we see that Hp leaves X invariant.
Moreover, by (2.4) and (2.5),

v'(cp) = tb(e) = fcy)dv(y).
Jnß

Now let v be a measure on G mapping onto v under G -* G/Hp. We then have

»'(« =   f     ky)dv(y) =   Í $(gy0)dv(g)
Jnp Jg

=    f Xgyo(cp)dv(g) =    f gX(cp)dv(g) = v *X(cb).
Jg Jg

By Definition 2.2, v*X = v*X and this proves that v' = v*X. Note that if M
is not compact, X is nevertheless concentrated on M (A(co) = 0), for if not, v'
would have to assign positive measure to the point at oo and we are assuming
that v' is a measure on M.

We must still prove that the correspondence v'<->A is one-to-one. What must
be shown is that v * Xy = v * X2 for two measures Xy and X2 on M, implies Xy = X2.
For this we note that if g„v->v0, then gn(v*X)-*v0*X; this is an easy conse-
quence of Definition 2.2. By Lemma 5.4 of [8], if {Xn} is a sequence of inde-
pendent G-valued random variables with distribution p, then with probability 1,
XyX2---X„\ converges to a point measure on n,,. All we need is that there is
some sequence {g„} in G with g„v converging to a point measure, say gnv -* ôy,
y e Típ. Therefore if v * Xy = v * X2 it follows that ôy * Xy = ôy * X2 Now if y = gH
then öy*X, = gX, so that it follows that gXy = gX2, whence Xy = X2. This proves
the lemma.

Proof of Theorem 2.1. All that remains to the proof of Theorem 2.1 is show-
ing that Hp has an invariant measure on M, if and only if H(G) leaves invariant
a measure on M. This follows from the fact that //„ is always a subgroup of
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finite index in H(G) (see [8, Chapter V]). Clearly, if H(G) has an invariant pro-
bability measure on M so does Hß <= /7(G). Suppose conversely that X is a pro-
bability measure fixed under Hß. Then the set of measures {hX, h e H(G)} will
be finite. The average of these measures is evidently an //(G)-invariant measure
and so this proves our assertion.

An important consequence of Theorem 2.1 is that the existence of a stationary
measure on M for p depends only on M and not on p. For, the group /7(G)
occurring in Theorem 2.1 does not depend on the measure p.

2.2. Applications of the criterion. In the remainder of this section we will
apply the criterion of Theorem 2.1 to the existence and uniqueness problem for
stationary measures.

Lemma 2.2. If Ly c L2 are subgroups of G with L2/Ly compact, then there
is a stationary measure for p on G/Ly if and only if there is one on G/L2.

Proof. Let a denote the natural map G/Ly -* G/L2. Since a is equivariant
it follows that if Vy is a stationary measure on G/Ly, then a(vL) is a stationary
measure on G/L2. For the converse, let v2 be a stationary measure on G/L2
and let Q denote the set of all probability measures vx on G/Ly satisfying
a(\y) = v2. It is easy to see by the Hahn-Banach extension theorem [1], that Q
is nonempty. Q is clearly convex; we claim it is also compact. Note that under
the hypothesis that L2/Ly is compact, if A is a compact subset of G/L2, then a'1 (A)
is a compact subset of G/Ly. Now suppose that vj^is a sequence of measures
in Q, and suppose £ > 0 given. Let A be a compact subset of G/L2 with
v2(A) > 1 - e; then v[n) (a~1 (A)) > 1 - e. It follows that if v[n) converges to a
measure on G/Ly, that measure assigns a value ^ 1 — e to a'1 (A). This be-
ing the case for every e, we see that the limit measure is again a probability
measure. Hence Q is compact. Define the mapping t : Q -* Q by setting
t(v1) = p*v1. Since a(p*Vy) = p*a(vy) = p*v2 = v2 it follows that x actually
does take Q into itself. It is also an affine map and since Q is compact and con-
vex we conclude [7] that there is a measure vx eQ with xvL = vt or p*vt = vt.
This completes the proof of the lemma.

Corollary. Let My be a compact G-space and let a :My-*M2 be an equi-
variant map. If v2 is a stationary measure for p on M2 then v2 = a(vy) where
Vy is a stationary measure for p on My. Here a is onto.

Proof. With Q defined as before, Q is again nonempty and convex. This
time the compactness of Q follows from the compactness of My. The remainder
of the proof is then the same as for the lemma.

Theorem 2.2. If M is a boundary of G (see §0.4) then the G-space M x M
supports a unique stationary measure for p and this measure is concentrated
on the diagonal of M x M.
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(M x M is the space of all ordered pairs of points of M ; it is a G-space by
setting g(x,y) = (gx,gy). It is not homogeneous because the diagonal which
consists of pairs {(x,x)} remains invariant under G. The theorem implies, in
particular, that the space of distinct pairs of points of M does not carry a station-
ary measure.)

Proof. Suppose the theorem has been demonstrated in case M is the maximal
boundary B(G). According to §0.4, every boundary is an equivariant image of
B(G) and so M x M is an equivariant image of B(G) x B(G). Applying the co-
rollary to Lemma 2.2 to a stationary measure on M x M, it would then follow
that such a measure is concentrated on the diagonal of M x M, and is unique.
We therefore restrict our attention to the case M = B(G). By Lemma 2.1, it
will suffice then to prove that there is a unique measure X* on B(G) x B(G) in-
variant under Hp, and that this measure is concentrated on the diagonal. Let
cb1 and cb2 denote the two projections from B(G) x B(G) to B(G). The c¡>¡ axe
equivariant maps. Since Hp c H(G) and the latter is the stability group of some
point of B(G), it follows that Hp leaves fixed a point x0 e B(G), x0 representing
the identity coset in G/H(G).

Let cbt(X*) = X¡. X¡ is a measure on B(G) invariant under //„. Since [//(G) : Hp~]
is finite, the set of measures {hX¡, h e H(G)} is finite. Let I be the average of the
measures in this set. Then 1 is invariant under H(G). Since G/ H(G) is compact
it follows that the set of measures {gl, ge G} is compact. But B(G) is a boundary,
and so some gnX converges to a point measure. Since a limit of these is again of
the form gl, it follows that I is a point measure, I = 8X. If x ^ xQ then
7.&X0 + i^x would be invariant under H(G) and would not be a point measure.
The preceding argument shows that this cannot happen since B(G) is a boundary.
Therefore x = x0 and 1 is concentrated at x0. By the definition of I it follows that
X¡ must also be concentrated at x0 and so X¡ = 8Xo. The only measure on
B(G) x B(G) satisfying cj)¡(X*) = 8X0, i = 1,2, is the measure concentrated at the
diagonal point (x0,x0), so this proves the theorem.

The next theorem will be very important for the derivation of the laws of large
numbers to be discussed in Part II.

Theorem 2.3. If M is a boundary of G, there is one and only one stationary
measure for p on M.

Proof. The existence of a stationary measure follows from Lemma 1.2. Suppose
now that vL and v2 are two stationary measures for p on M. Let cbl and cf>2 he
the two projections of M x M on M and observe that if n is a measure on M x M
then p * cj)¡(n) = c¡>¡(p * n). If we take n = vixv2 then cb¡(n) = v¡ so we also have
cb^p" * n) — p" * v¡ = v¡ by stationarity. Now some sequence of averages of p"*n
converges to a stationary probability measure %' on M x M and the latter still
satisfies c¡}¡(n') = v¡. By Theorem 2.2, %' has support on the diagonal of M xM.
But then cp^n') = cf>2(n') and Vj = v2 as was to be shown.
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Remark. We could also have demonstrated Theorem 2.3 without Theorem 2.2
by using Lemma 2.1. The proof given shows, in addition, the connection between
the uniqueness of the stationary measure on M and the nonexistence of a stationary
measure off the diagonal of M x M.

2.3. Existence of stationary measures. We shall next apply Theorem 2.1
to show that certain homogeneous spaces of G cannot support stationary measures.

Definition 2.3. A topological group is said to have the fixed-point property if
whenever it acts continuously on a compact convex set by affine transformation,
then there necessarily exists a fixed point of the group in this set.

This notion was used frequently in [8]. We found there that a connected Lie
group has the fixed-point property if and only if it has a normal solvable subgroup
such that the quotient group is compact.

Lemma 2.3. // L is any connected Lie group then L possesses a subgroup H
with the fixed-point property such that L/ H is compact.

Proof. This follows from Theorem 1.10 of [8] where it is shown that the minimal
B-subgroups of a connected Lie group have the fixed-point property. The quotient
of a Lie group by a B-subgroup is a boundary and this is compact by definition.

Lemma 2.4. Let H be a closed subgroup of G with the fixed-point property.
Then p admits a stationary measure on G/H only if H is contained in a minimal
B-subgroup /7(G), and if /7(G) preserves a probability measure on /7(G)/H.

Proof. Suppose p admits a stationary measure on G/H. Then by Theorem 2.1,
/7(G) leaves fixed a measure X on G/ //. Now H has the fixed-point property, and
so H leaves fixed a measure n on the compact space G//7(G). In accordance
with Definition 2.2 we may form the convolution X*n, X being a measure on
G/H and the measure % being invariant under H. For he H (G), hX = X, so
h(X*n) = X*n, and X*n is an //(G)-invariant measure on G/H(G). Since the
latter space is a boundary, it follows that the only such measure is the one con-
centrated on the identity coset, /7(G), of G/H(G) (see the proof of Theorem 2.2).
Let x0 denote this point of G//7(G). Since X*n is concentrated on one point,
the same is, a fortiori, true of n. Thus H keeps some point, say yx0, fixed,
or HyH(G) c yH(G) so that H c yH(G)f~1. Since yH(G)y~l is again a minimal
B-subgroup of G we may suppose to begin with that /7(G) was chosen as this
subgroup. We may thus suppose that H c /7(G).

Consider now the measure X left fixed by /7(G) on G/ H. Since H <zz /7(G) there
is a natural equivariant map G/ H -* G/ /7(G). The measure X is mapped into a
measure on G/ /7(G) invariant under /7(G). The image of X is thus concentrated on
the coset /7(G) of G//7(G). This means that in G/H, the measure X was con-
centrated on /7(G)//7 c G/H. It follows that /7(G) preserves a probability
measure on //(G)/ H. We have thus established the assertions of the lemma.
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Theorem 2.4. In case H(G) is solvable and L is a closed subgroup of G, then p
admits a stationary measure on G/L only if either G/L is compact or L has
infinitely many connected components.

Proof. By Lemma 2.3, if L has finitely many connected components, it contains
a subgroup H with the fixed-point property such that L/H is compact. In that
case, by Lemma 2.2, p will admit a stationary measure on G/L only if it does
so on G/H. We may now apply the foregoing lemma to conclude that, in this
case, H is contained in H(G), a minimal B-subgroup of G, and H(G) preserves
a finite measure on H(G)/H. But Mostow has shown that a solvable group will
preserve a finite measure on a homogeneous space only if the space is compact [14].
Thus we would find H(G)/ H compact. Since G/ H(G) is compact, G/ H would
be compact and, a fortiori, G/L is compact. This proves the theorem.

Remark 1. The hypothesis that H(G) be solvable is verified in the cases
that G = SL(m,R) or SL(m,C). In fact, in [8], the subgroups H(G) axe deter-
mined explicitly in these cases, and it is found that H(G) may in both cases be
taken as the subgroup of triangular matrices.

Remark 2. If L has infinitely many connected components, G/L may carry
a stationary measure without being compact. For example, let G = SL(m, R)
and let L be the subgroup of matrices with integer entries. It is known [3] that
G/L has a finite invariant measure which will also be a stationary measure. On
the other hand, G/L is not compact.

The next theorem shows the significance of the nonexistence of a stationary
measure for the random walk induced by p on the space. For the proof we re-
quire a preliminary lemma.

Lemma 2.5. Let M be a locally compact space and {px} a random walk
on M. Define

(2-7) xf(x) = jf(y)dpx(y)=   px(f),

where f(x) is a bounded borel measurable function on M, and se
F(x) = t/(x) —f(x). If {Z„} is a Markov process with transition probability
measures {px}, then with probability 1,

(2.8) \   2 F(Zk) -> 0"     o

as n-* co.

Proof.    Set Wn+1 =  IS (rf(Zk) -f(Zk+1))/(k + 1).
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E(Wn+1\Zi,-,Zn) =  Wn + -±-rE(xf(Zn) -f(Zn+l)\Zu-,Zn)n + l

=  Wn + -^jxf(Zn) - -^nE(f(Zn + 1)\Zi,-,Zn) = Wn,n + I n+ l

since it follows from (2.7)thatE(f(Zn+i)\Zu---,Z„) = t/(Z„). Hence {Wn} forms
a martingale. Since /(x) is bounded, say \f\<c, E(W2+1)^,4c2I,?(l/k2).
This implies that W„ converges, as n -> co, with probability 1 [5, Chapter VII,
Theorem 4.1]. By the Kronecker's lemma, it follows that

Si>/(Z*)-/(Zt+1)} - o(n),
o

and rearranging terms, we have the assertion of our lemma.

Theorem 2.5. Let M be a G-space that does not admit a stationary measure
for p. Let {Z,,} be any p-process on M, and let A be any compact subset of M.
If n(k) denotes the index nfor which Z„ belongs to A for the kth time for n^.0
(n(k) ^ co), then n(k)/k-+cc with probability 1.

In other words, the process drifts to co in the sense that it returns to any
fixed compact set less and less frequently.

Proof. The conclusion of the theorem is equivalent to the statement that if
i/V(x)is any continuous function with compact support on M then with probability 1,

(2.9) \"ï i¡,(Zn)-*0.n    o

Consider the random walk on M induced by p (§1.1) and apply Lemma 2.5.
We will in fact show that (2.9) will be valid under our hypotheses whenever (2.8)
is valid. So let {Z„} be a sample sequence for which (2.8) is valid for all con-
tinuous/ vanishing at co. (It would suffice to require this for a dense set of/
and so this will be the case for almost all sample sequences.) Suppose that there
is a ij/' with compact support for which (2.9) is not valid; so for some subsequence
{nj, «¡_1 Zo'~ V(Zn) -> a # 0. By refining the sequence n¡ sufficiently we may
assume that n^1 Zo'~V(Z„) converges as ¡"->oo for any countable set of
bounded functions \¡/, and hence for a dense set of continuous functions vanish-
ing at co, and hence for all continuous functions vanishing at co. This defines
a linear functional on the class of continuous functions on M vanishing at co
and since the functional is positive and bounded, it corresponds to a non-negative
bounded measure n on M. Since n(\¡i') # 0, the measure n does not vanish. On
the other hand, we have n(F) = 0 when F = %f-/. Thus

f zf(x)dn(x) =  !f(x)dn(x)
or
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\f(gx)dp(g)dn(x) = \f(x)dn(x)

or p*n(f) = n(f), whence p*n = n. Since n=£0, this contradicts the hypo-
thesis that p does not admit a stationary measure on M. This proves the theorem.

In Theorem 2.2 we saw that if M is a boundary of G, then the only stationary
measure on M x M is concentrated on the diagonal. Denoting the diagonal
by D, we conclude that the G-space M x M - D does not support a stationary
measure. Suppose ^ is a neighborhood of D in M x M; the complement of
% is then a compact subset of M x M — D. Applying Theorem 2.5 we find
that any p-process on M x M stays in °U with the exception of a set of indices
of density 0. More specifically, let {Z„} be a «-process on M x M obtained by
setting Z0 = (xy,x2) where the x, are distinct points of M and letting
Z„ = Xn---XyZ0, where the Xn are the associated G-valued random variables.
We then have

Corollary. Let {Xn} be a sequence of G-valued independent random var-
iables with distribution p, let M be a boundary of G and d(-,-) a metric on M.
If Xy and x2 are any two points of M, the sequences {X„Xn_y-XyX¡} for
i = 1,2 approach one another with probability one in the sense that
d(XnXn-y--XyXy, XnXn-y--XyX2)<£ for any e>0, for all n outside a set
of density 0.

2.4. Uniqueness of stationary measures. According to Theorem 2.1, the
stationary measures for p on a G-space are in correspondence with the measures
on the space invariant under the group Hp. Previously, we used this to draw
conclusions about the stationary measures for p using properties of the group
Hß, but we can also reverse the direction of this argument. Thus, suppose that
Py and p2 are two measures with the same Poisson space, ílPí = n^, and suppose
that one can show that for py there exists a unique stationary measure on a
certain G-space. Then HPi = HP2 has a unique invariant measure on the space,
from which it follows that p2 also has a unique stationary measure. We will use
this reasoning to show that if HP=H(G), then p has a unique stationary mea-
sure on any compact homogeneous space of G.

Theorem 2.6. Let M be any compact homogeneous space of G. Then
/7(G) leaves fixed a unique probability measure on M.

Proof. To prove the theorem we shall show the existence of an absolutely
continuous probability measure p on G with Hß = /7(G) and such that p has
a unique stationary measure on M. Suppose momentarily that p has been chosen.
Let Q denote the compact, convex set of probability measures on M which are
stationary for p. To show that Q consists of a single member it will suffice by
the KreTn-Milman theorem, to show that Q contains only one extremal. Let us
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first observe that if v is an extremal of Q, the corresponding stationary p-process
on M is ergodic. For if the p-process {Z„} were not ergodic, then by [6, p. 460],
there would be a nontrivial stationary variable which is a function of Z0 ; say
/(Z0) =f(Zy). We can take/ between 0 and 1, and form the measure dv' =fdv.
We claim that v' is again stationary:

P*v'(</>) = j j cb(gx)f(x)dp(g)dV(x) = E(cb(Zy)f(Z0))

= E(cb(Zy)f(Zy)) = j cp(x)f(x)dv(x) = v'(cp).

But then v = v' + (v - v') is a nontrivial decomposition of v and it cannot be
extremal.

From this it follows that if v' and v"are distinct extremal measures in Q, they
must be mutually singular. For, let {X,,} be a sequence of G-valued random
variables, independent and with distribution p. By the ergodic theorem (for the
stationary p-process determined by v'), we have for almost all x with respect
to the measure v':

lim N'1   If(Xn-Xyx) = v'(f)
JV-»cc 1

with probability 1. The same assertion holds for v"(f) for almost all x with respect
to v". Hence, unless v' = v", these two must be mutually singular. As a conse-
quence we find that if we wish to show that p has a unique stationary measure
on M, it suffices to show that no two stationary measures for p can be mutually
singular. We now proceed to construct a measure p for which this will be the
case.

If S <zz G, let ms denote the Haar measure of G restricted to S : ms(A) = m(A n S)
where m denotes the Haar measure on G, (which we suppose fixed once and
for all). Let x0 be a point of M. Since M is compact we can find a compact set
J <zz G such that Jx0 = M. Now let A c G be a compact set with m(A) > 0. Set
B = A3~1 so that for any geJ,Bg=>A. We can suppose that A is large enough
that B contains an open neighborhood of the identity of G. Now set p=m(B) ~1mB.
We claim that if x is any point in M then the measure p * ôx dominates a fixed
measure, namely, m(B)~1mA*ôXo. For if x is any point in M, there is a geJ
with x = gx0. Then mB * dx — mBg * «5^. Now since Bg > A, for geJ, mBg ̂  mA
and mB * ôx ^ mA * ôXo. We thus have

(2.10) p*ôx^m(ByxmA*ôX0=n0.

Since m(A) > 0, the measure on the right is not trivial. Since (2.10) holds for
all xeM, we find by integration that

(2.11) p * n ^ 7t0
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for any probability measure n. Consequently, if n is a stationary measure for p,
n a: n0. It follows that no two stationary measures for this p can be mutually
singular; hence, p has a unique stationary measure on M. To complete the
proof of the theorem, we remark that by Theorem 5.3 of [8], since the support
of p contains a neighborhood of the identity, the Poisson space of p coincides
with B(G).

Combining the foregoing with Theorem 2.1 we have

Corollary. // p is a measure whose Poisson space coincides with B(G),
then on every compact homogeneous space of G, there exists a unique stationary
measure for p.

We might mention a connection between Theorem 2.6 and some problems
of ergodic theory. Let G = SL(2, R) and let Y he a discrete subgroup with GjT
compact. The "horocycle flow" on G/T is the flow obtained by left multiplication
on G/T with the group {g, = (¿ [)}. It is known that this flow is ergodic with
respect to the unique G-invariant probability measure on G/T, and that the flow
is minimal. (See Flows on homogeneous spaces, by L. Auslander, L. Green, and
F. Hahn, Annals of Mathematics Studies Number 53.)

Both of these would result simultaneously if it were known that the G-invariant
measure on G/T is the only probability measure invariant under the subgroup
{gt}. Theorem 2.6 implies a weaker result, namely, that this measure is the only
one left invariant by the subgroup H(G) which, in this case, can be taken as

«<»-(;:-)■

a group containing the subgroup {g,}.

3. Proper /¿-processes.
3.1 Definition 3.1. Let M be a G-space, {Z„, — co < n < oo} a stationary

/¿-process and let {X„, — oo < n < co} be the associated G-valued random
variables, so that Z„+1 = X„+lZ„. We say that {Z„} is a proper p-process if
each Z„ is measurable over the a-field generated by {Xn,X„_1,---}.

We have Z„ = XnX„-l---Xn.k+iZ„.k, so that Z„ is a function of the "past"
Xm and any Zn-k. If the effect of Z„_fc becomes negligible as fc-> co so that Z„
actually is determined by the Xm, m^n, then we say that the process is proper.
For example, the corollary to Theorem 2.5 suggests that this might be the case
when Z„ is a stationary p-process on a boundary of G. We shall see that in fact
this is so, and we will moreover be able to determine all the proper /¿-processes
for a given p.

Let n,, be the Poisson space of p, and v the measure on Tlp for which the
Poisson formula was valid. This measure induces the distinguished p-process
(Definition 2.1).
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Lemma 3.1.    The distinguished p-process is a proper process.

Proof. According to [8], Lemma 5.4, X0X^ y ■-■ X-kv converges to a point mea-
sure on n,, with probability 1 as k -* oo. By Lemma 1.3, denoting the distinguished
p-process by {Z„}, we have E*(Z0\X0,X-1 •••) = limi_,00.X0X_1 •••Z_fcv which
is a point measure. It follows that Z0 is measurable with respect to {X0,X_y, ■■-}
and so {Z„} is a proper process.

If M is a boundary of G then by Theorem 2.3, M carries a unique stationary
measure for p. In other words there is a unique stationary p-process on M.

Theorem 3.1. The unique stationary p-process on a boundary of G is a proper
p-process.

Proof. Every boundary is an equivariant image of the maximal boundary B(G).
On the other hand, each nM is a covering space of B(G) and the projection
Tip^*B(G) is equivariant [8, Chapter V]. Thus every boundary is an equivariant
image of n^, say a: Tlp-* M. If {Z„} is a stationary p-process on Tlp it follows that
a(Z„) is a stationary p-process on M; the latter being unique, we conclude that
the stationary p-process on M is an equivariant image of the distinguished p-
process. Since the latter is a proper p-process, it follows readily that any equi-
variant image is one as well.

Theorem 3.2. Every proper p-process is an equivariant image of the distin-
guished p-process.

Proof. Let {Z„} denote the distinguished p-process and {W„} an arbitrary
proper p-process, and let M be the state space of {W„}. If the stationary measure
for {W„} is v', then by Lemma 2.1, v' = v*X where X is an //„-invariant
measure on M. Now Z0Z_X ••• X_„v = X0X_y ••• X_„£*(Z0) converges to
£*(Z0 |X0,X_y --■) by Lemma 1.3, and the latter is a point measure since {Z„} is
is proper. We may thus write X0X.y •••X_„v-k5Zo. It follows that
X0X-y ■•■X^„v' ->ôZo*X =gX for some g eG. But, if {W„} is a proper p-process,
then

Xo*-i-*-«v' = X0X_y -X_nE*(W0)-+E*(W0\X0,X-y,-) = ôWo

so that gX = ôWa and X must be a point measure. We thus find that Hp leaves
fixed a point x e M, X = ôx, and v' = v * ôx. From the expression for v' we see that
its support is contained in the set Gx cz M. Now the set Gx is compact since
H^x = x, and so Gx is a continuous image of G/ //„ = n,, which is compact.
Thus {W„} takes place on an equivariant image of Tlß. Finally we have

<Vo = ¿z0 * ¿

from which it follows that ôWn = ôZn*X and so {W„} is an equivariant image
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of {Z„}. (For the definition of the convolution used here, see Definition 2.2.)
This proves the theorem.

In particular, if p is such that n^ = B(G), then a stationary p-process is proper
if and only if the state space is a boundary of G. In general, this notion provides
a probabilistic characterization of the Poisson space n„. It is the state space for
a "maximal" p-process which is a subprocess of {Xn}.

An illustration of a nonproper stationary p-process is the following. Let Tbe a
discrete subgroup of G such that G/T has finite invariant measure. The G-invariant
probability measures n on G/T is clearly a stationary measure for any p on G.
The resulting process { Wr} cannot be a proper process since

E*(W0\X0,X_1,-) = limX0X_1-X_kE*(W0)=lixnX0X_l-X.kn = n.
Jt—> oo k-*co

4. Comparison with solvable groups.
4.1. We will show by a single example that a number of the foregoing re-

sults are not valid for Lie groups in general. In the case to be considered, G will
be solvable. By [8], Corollary to Theorem 1.2, the boundary of a solvable group
is trivial. For semi-simple groups the /¿-harmonic functions on G and the proper
/¿-processes are related to a covering space n„ of the maximal boundary. In
the case to be considered we will find that proper /¿-processes exist and nontrivial
/¿-harmonic functions exist even though the maximal boundary is trivial.

Let variables Xn be given by

where {£„} is a sequence of independent, identically distributed random variables
satisfying £„ > 0 and £ (log £„) < 0. The group G is the two-dimensional solvable
group G = {(0 ï),u>0}. Consider the random power series 5^°= o^n-i ■■■i\n-kzk.
Its radius of convergence is given by liminfJt_œ(^„_1 ••• Ç„_k)~llk,and by the
law of large numbers, since £(log£„) < 0, this is seen to be larger than 1 with
probability 1. We may thus define variables un by

(4.1) «„ = 1 + €„+ Un-i + - + Un-x - L-k + ■-■

Then m„+1 = l + £,+ 1 u„, or

(""') - f-o'   ¡)   (Í)
so that if we setZ„ = (""), {Z„} forms a p-process. Here the G-space M is the
set of vectors (*). This shows that our criterion for the existence of a stationary
measure cannot be carried over verbatim from the semi-simple case, since in
this case H(G) = G and there is no measure on M preserved by G. (Compare
with Theorem 2.1.)
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Moreover, it is immediately evident from (4.1) that {Z„} is a proper p-process.
Thus, for solvable groups, a proper «-process may have a noncompact state
space.

Finally, by means of the process Zn, we can construct nontrivial p-harmonic
functions on G. Namely, let v = £*(Z0) and for any bounded continuous func-
tion cp on M, set cp(g) = gv(cb).

cb(gg')dp(g')  =     gg'v(cp)dp(g') = g(p*v)(tp)

= gv(4>) = <¡>(g)

so cp(g) is a p-harmonic function. To see that cb(g) will in general be nontrivial
observe that

4>(X0X_y-X.k) = X0X-y-X-kE*(Z0)(cp)^E*(Z0\X0,X_y,-)(cb)

= E(cp(Z0)\X0,X_y,-).

Since {Z„} is a proper p-process, cb(Z0) is measurable with respect to {Xn, n z% 0}
so that cb(X0X_y •••X-k)-* cb(Z0). Hence cp(g) will not always be constant,
and there exist nontrivial p-harmonic functions on G although it has a trivial
boundary.

5. Brownian motion in symmetric spaces.
5.1. Definition of Brownian motion. When the measure p on G is properly

restricted it is possible to associate with it a class of Markov processes other than
the p-processes considered up till now. Namely, let G be a noncompact semi-
simple group (with finite center) and K a maximal compact subgroup of G. We
will suppose that the measure p is left-invariant under K : kp = pfor keK.lf
mK denotes the normalized Haar measure on K we can write p = mK*p; con-
versely, if p = mK * p', then p will have this property. The space G/K is a symmetric
Riemannian space and any noncompact symmetric Riemannian space has this
form. We will denote the natural map G ->G/K by a. As usual, a is an equivariant
map. Now consider a "transposed" p-process on G; that is, we consider the
random walk that assigns to each g e G the measure gp on G. More precisely,
if {X„} are G-valued independent random variables with distribution p and W0
is G-valued and independent of all the X„, we set Wn = W0XyX2 ••• Xn, so that
we now multiply on the right rather than on the left. Here W0 may have any
distribution.

Definition 5.1. For any absolutely continuous probability measure p on G
satisfying kp = p, k e K, the process U„ = a(W„) on G/K is called a discrete
brownian motion.

Since a does not commute with right multiplication by elements of G, it is
not evident that {U„} is again a Markov process.
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Theorem 5.1.   A discrete brownian motion is a Markov process.

Proof. Suppose U„ = cr(Wn) is the brownian motion in question. To show
that {U„} is a Markov process, it will suffice to show that iff is abounded borel
measurable function on G/K then £(/([/„)| W„-t, W„-2,---) is a function of
[/„_!, since the o -field generated by {Wp j<n) contains that generated by
{Uj, j < n}. Let /denote the composition of/ with o:f(Un) = f(W„). Then

E(f(Un)\Wn_2,Wn_„-) = E(f(Wn)\Wn-uWn-2,-)

= E(f(Wn_lXn)\Wn_i,Wn.2,-)

and since X„ is independent of {Wj, j < n}, the right side can be written

Íf(K-ig)dp(g) =   f ff(Wn_ikg)dkdp(g)
JG JKJG

with dk denoting the element of Haar measure on K.But ¡ Kf(W„-1kg)dk de-
pends only on the coset Wn_1K = o(W„.1) = UH-t so that E(f(U„)\Wn-i, Wn-2,—)
is a function of !/„_! as was to be shown.

The space G/K is a Riemannian space and one may speak of harmonic func-
tions on G/K as those annihilated by the Laplace-Beltrami operator on G/K.
In [8, Chapter IV], we showed that a bounded/ is harmonic if and only if the
corresponding function f(g) on G satisfies

jj(gkg')dk = ¡(g)

for all g'. Comparing this with the expression above for E(f(U„) \ Wn_u Wn-2,---)
we conclude that

Corollary. If f(g) is a harmonic function on G/K and {Un} is a discrete
brownian motion on G/K, then E(f(Un) | U„-i,U„_u—) =/(!/„_!) and {f(U)}
is a martingale.

The continuous parameter brownian motions in G/K may be denned as pro-
cesses {1/(0} with continuous paths for which {U(nz)} defines a discrete brownian
motion for each x > 0. These are much more restricted than the discrete brownian
motions and correspond to a choice of an invariant Laplacian operator on G/K.
On the other hand, every measure of the form mk*p' generates a discrete
brownian motion. One of the conclusions of [8] is that all these processes define
the same set of harmonic functions.

5.2. Limit behavior of brownian motion. Let B(G) be the maximal boundary
of G ; it is shown in [8] that the maximal compact subgroup .K is transitive
on B(G). It follows that there is a unique probability measure m on B(G) which
is X-invariant. Consider the set of measures Gm = {gm, ge G}. Since gkm = gm
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for ke K it can be seen that there is a map from G/K onto Gm. In Chapter II of
[8] we showed that this map is actually one-to-one, so that the symmetric space
G/K may be realized as the space Gm of measures on B(G). We let D = Gm
and let D denote the closure of D as a set of probablity measures. The fact that
B(G) is a boundary implies that the point measures of B(G) are members of D,
and in this way we can identify B(G) with a subset of D. We refer to this subset
as the distinguished boundary of D.

Theorem 5.2. // {[/„} is a discrete brownian motion on D = G/K then with
probability 1, U„ converges to a point of the distinguished boundary of D.

Proof. We may suppose that U0 = a(g0), then C7„ = a(g0XyX2 •■■ Xn). Now,
in identifying G/K with Gm, we map a(g) onto gm. We thus may take
Un = g0XyX2---Xnm. Next, observe that the /¿-invariant measure m on B(G)
is stationary for p since k(p * m) = (kp) * m = p * m, so that p * m is X-invariant,
hence equal to m. Therefore, m is the unique stationary measure for p on B(G).
Thus, if {Z„} is the unique stationary p-process on B(G), E*(Zn) = m. Since
B(G) is a boundary we have, by Theorem 3.1, that {Z„} is a proper process. Then
Z0 is measurable over {X0,X_y,---} and so £*(Z0 \X0,X_y, •••) = ôZo with
probability 1. By Lemma 1.3,X0X_y-X-.kE*(Z0)-* ôZoorX0X_y ■■■X_km^*ôZo
with probability 1. The Xn being independent, we can change indices and infer
that with probability 1, XyX2---Xkm converges to a point measure on B(G),
and as we have seen, this is a restatement of our theorem.

Corollary. Let U(t) be a brownian motion in a Cartan domain 2). With
probability 1, lim,.,«, U(t) exists and is a point of the Bergman-Silov boundary
of'S.

Proof. A Cartan domain is a symmetric space which is imbedded in some
complex C as a bounded set and whose isometries are analytic transformations.
We have shown [8, Theorem 4.5] that there is an equivariant map of D into C"
taking D onto @> and the distinguished boundary B(G) of D onto the Bergman-
Silov boundary of 3>. The corollary then follows readily from Theorem 5.2.

Part II. Laws of large numbers.

6. Spherical functions on a semi-simple group.
6.1. Spherical functions and cocycles. If {Xn} is a sequence of inde-

pendent, identically distributed variables with values in a multiplicative group
of positive reals, then the law of large numbers can be stated:
n~1logXnXn_y ■•■X1-*E(logX„). The function logi on this group is charac-
terized up to a constant multiple by the functional equation: logst = logs +logi,
and the requirement of continuity. In extending this law to group-valued random
variables, we shall consider a family of functions defined by analogous condi-
tions. On a semi-simple group it would be without interest to consider functions
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f(g) satisfying f(gig2) =f(gi) +f(g2) since any such function would vanish
identically. (A homomorphic image of a semi-simple group is semi-simple and
iff did not vanish identically it would map the group onto the reals which do
not form a semi-simple group.) There is, however, an analogous functional
equation which has nontrivial solutions. In this section we shall define these
functions and study how they may be represented.

As before, G is a semi-simple group (with finite center). K will denote a fixed
maximal compact subgroup of G. If M is a boundary of G then K is transitive
on M [8, Theorem 1.4] and there exists a unique /¿-invariant probability
measure on M. We denote this measure in each case by m. MK denotes the nor-
malized Haar measure on K and we shall usually abbreviate dmK (k) to dk. A
function/(g) on G will be called left-uniformly continuous (l.u.c.) iff(g'g) —f(g)
is uniformly small in g for g' sufficiently close to the identity of G. A function
may be l.u.c. without being bounded on G. However, if/(g) is l.u.c, all the
differences f(g'g) —f(g) axe bounded functions of g, as follows readily from
the connectedness of G.

Definition 6.1. An l.u.c. real valued function \¡i(g) is called an A-spherical
function (A-s.f.) if for every gt,g2eG,

(6.1) £ f(gikg2)dk = «Mgi) + Hgil

From (6.1) we find that i¡/(kg2) = \¡/(g2) and \¡i(gik) = rj/(gi), so that in general

(6.2) Hkigk2) = iP(g)        kuk2eK.

Setting g2 = e in (6.1), we obtain

(6.3) <Ke) = 0.

Definition 6.2. A real valued function cb(g) is called an M-spherical function
(M-s.f.) if cb(g) > 0, logcf>(g) is l.u.c, and if

(6.4) £ <t>(gikg2)dk =  ct>(gl)cb(g2)

for every gi,g2eG.
An M-spherical function is zonal spherical in the sense of Gel'fand [10; 13,

Chapter X]. From (6.4) we deduce

(6.5) <K.kigk2) = cb(g)       ki,k2eK; cb(e) = 1.

The set of ,4-sprierical functions form a linear space, whereas the set of M-
spherical functions have no such structure. As we will ascertain, the linear space
of A-spherical functions is finite dimensional.
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Definition 6.3. If M is a G-space, an 4-cocycle on M is a real valued con-
tinuous function on GxM satisfying p(gyg2,x) = p(gy,g2x) + p(g2,x) for
gy, g2eG, xeM, and p(k,x) = 0forkeK.

Definition 6.4. If M is a G-space, an M-cocycle on M is a positive contin-
uous function on G x M satisfying a(gyg2,x) = a(gy,g2x)a(g2,x) for gy,g2 e G,
xeM, and a(k,x) — l for keK.

Clearly the M-cocycles are just the exponentials of the /1-cocycles.
Definition 6.5. The real vector space of v4-spherical functions will be de-

noted by yc; the space of .,4-cocycles on the maximal boundary B(G) will be
noted by #"G.

6.2. Representation of ^-spherical and M-spherical functions. If M is a
G-space on which K is transitive, then every ^4-cocycle on M leads to an ^4-s.f.
and every M-cocycle to an M-s.f. Suppose p is an A-cocycle on M; set

(6.6) i¡,p(g) = f  p(g,x)dm(x)
Jm

where m is the unique /¿-invariant probability measure on M. Then

$p(g'g) =      (P(g',gx) + p(g,x))dm(x)
Jm

(6.7) -Íp(g',gx)dm(x) + i¡/p(g).
M

Since p(e,x) = 0 for all x e M it follows that as g' -* e, the integral in (6.7) goes
to 0 uniformly in g. This shows that \¡/p is l.u.c. Moreover,

¡l>p(gikg2)dk  = p(gykg2,x)dm(x)dk
Jk JkJm

= p(gy,kg2x)dm(x)dk + p(k,g2x)dm(x)dk
JkJm JkJm

+  I       p(g2,x)dm(x)dk.
Jk Jm

If, in the first integral on the right, we integrate with respect to k first, we obtain
$MP(guy)dn(y) where n is a /C-invariant measure. Hence n = m. The second
integral vanishes, so we have

fP(gikg2)dk =      p(gi,y)dm(g) +      p(g2,x)dm(x)
Jk Jm Jm

= i/^i) + ^p(g2y

In a similar way it may be shown that an M-cocycle determines an M-s.f. by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



406 HARRY FURSTENBERG [September

(6.8) 4>a(g)=   I   a(g,x)dm(x).
JM

Since the M-cocycles are exponentials of /4-cocycles, it will be convenient to use
the notation <j>p for the M-s.f. determined by ep where p is an .4-cocycle. Thus

(6.9) cbp(g) =   f ep<e-x)dm(x).
Jm

Theorem 6.1. Every A-spherical function is given by (6.6) with M = B(G).
Moreover, the correspondence p-*il/p is an isomorphism of WG onto "Tq.

Proof. Let \¡i(g) be an ,4-s.f. We shall consider ^4-cocycles R(gt,g) on G
itself. Let Q be the set of these cocycles satisfying (a):

| R(gi,g) | S supf eC| i¡/(gig) - \¡j(g) I

(this is finite because i/' is l.u.c.) and (b): for every g' eG,

lr>(g)=ÍR(g,kg')dk.

The set Q forms a convex set in the linear space of real valued ^4-cocycles on G.
We introduce a topology in this linear space by taking as neighborhoods of 0,
sets of v4-cocycles R(gi,g) which are uniformly close to 0 on compact subsets of
G x G. We shall show that Q is a compact set with respect to this topology.

Since \¡/ is l.u.c, we have by (a) that R(r¡, g) -> 0 uniformly in g and R, as n -* e.
We shall show that the functions of Q axe equicontinuous in both variables; in
other words, that R(r]igi,r]2g2) ->■ R(gi,g2) uniformly in ReQ as t]t -> e, rj2-*e
for fixed gug2. By the functional equation for /4-cocycles we have

R(Vigi,ri2gz) = Rilugilzgz) + Riguligz),

and the first term on the right is small if r]t is close to e, uniformly in R. It suf-
fices to consider R(gi,lg2) with t)-*e.

Rigulgi)   = R(gi*l>gi) - R(%gz)

= R(gifigT1n~1ngi,g2) - R(i,g2)

= R(giVgI11~1,rtg1g2) + R(ngl,g2) - R(t],g2)

= R(gingî1v~\ngig2) + Rfagigz) + R(gug2) - R(i,g2)-

Since ginger]'1 ->e as r\-*e, the first, second, and fourth terms on the right
-» 0 uniformly in ReQ and the result follows. From the equicontinuity we con-
clude in the usual way that Q is compact; hence a compact, convex subset of
a locally convex topological linear space.

We next show that G acts on Q by affine transformations. Namely, set
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hR(sug) = R(gi,gy);
both (a) and (b) are preserved, and zyR is again a cocycle on G, so ry : Q -» Q.

The set Q is nonempty. In fact, setting R(gy,g) = ip(gyg) — »Kg), we find
R e Q. To begin with, R is an ^-cocycle on G as is readily verified, (a) is trivially
satisfied and (b) becomes

Hg)  = jmgkg')-Hkg'))dk

=  ¡Hgkg')dk-Hg')

which is (6.1).
Finally we recall from [8, Theorem 1.4], that the minimal B-subgroup /7(G)

has the fixed-point property. This implies that /7(G) has a fixed point in Q.
Equivalently, there exists an R(gy,g)eQ with R(gy,gh) = R(gy,g) for heH(G).
We may then identify R with an A-cocycle p on G/H(G) or B(G) : R(gy,g) = p(gt,gH).
Then (b) becomes

Hg) =      p(g,kx)dk = p(g,y)d(mK*ôx)(y),
Jk Jb(G)

where x e B(G). Now mK * ôx is a /¿-invariant measure on B(G) ; hence mK *Sx = m
and

*(*) p{g>y)dm{y) = \pp(g).
J B(G)

This shows that the mapping p -»• i/^ of ii^G into ^G is onto.
To complete the proof of the theorem we must show that if \pp = 0 then p = 0.

Suppose \¡ip = 0, then

0 =   \p(gg',x)dm(x) =    p(g,g'x)dm(x)+   p(g',x)dm(x)

=    P(g,g'x)<M*) + '/'p(£') =   p(g-,£'x)iMx) = \p(g,y)dg'm(y).

But B(G) is a boundary and so a sequence {g'„} may be chosen so that g'nm
converges to any preassigned point measure ôx on B(G). It follows that p(g,x) =0,
and this proves the theorem.

Let G = K-A-N be an Iwasawa decomposition of G relative to Z¿ [13, Chap-
ter VI]. A-N is a solvable group, N its commutator and A is an abeliangroup.
We set r = dim A.

Theorem 6.2.   dim fG = dim#"G = r.

Proof.   Let S = A- N; by [8, Theorem 1.4], S may be taken as a subgroup
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of H(G). Let x0eB(G) he the point left fixed by H(G); then S leaves x0 fixed.
Since K is transitive on B(G), each xeB(G) can be written x = kx0, so that
p(g,x) = p(g,kx0) = p(gk,x0) - p(k,x0) or p(g,x) = p(gk,x0). Hence each
,4-cocycle on B(G) is determined by the function p(g,x0) on G. Now
p(kg,x0) = p(fe,gx0) 4- p(g,x0) = p(g,x0) so that this function is left invariant
under K. Hence p is determined by the function p(s,x0) on S. But since S leaves
x0 fixed, we have p(SiS2,x) = p(s!,x0) + p(s2,x0) so that p(s,x0) is ahomomor-
phism from S to the reals. Such a homomorphism takes JV -» 0 and it follows
that p is determined by a character on A = S/N.

This shows that dim fG = dim #^c ^ r. The reverse inequality depends upon
the decomposition H(G) = M-A-N, where M is the centralizer of A in K
(§0.4). Suppose that x(s) is a homomorphism from S to the additive group of
reals. We define a cocycle on B(G) by setting p(ks, x0) = x(s), and
p(k1s,k2x0) = p(sk2,x0). It may be verified that if this definition is unambiguous,
then p is actually an A-cocycle. To show that the definition is unambiguous, it
is necessary to show that if k^x^ = k2x0, then p(skl,x0) = p(sk2,x0)for allseS.
To evaluate p(sk¡,x0), we set sk¡=kts{, so that p(sk¡,x0) = x(si). We proceed now
to show that for any x, x(si) — x(s2) under these circumstances. We have

where k = fcj~1/c2, k' = k2'í'kí . Since fc^1/c2x0 = x0, k = k11k2eH(G). So
fc e //(G) n /£ = M. Since M is in the normalizer of S, k~l stke S. We then find
k~\k'Yls2eS, so k'^T^SnK or Jfc'-fc"1. Hence s2 = fc_1s1fe. Now
the automorphism s->k~lsk takes JV into itself (M is also in the normalizer
of JV). Writing sx = an, we find fe_1s1fc = kT1 akk~1nk = a(k~ 1nk) since keM.
Thus x(/c-1Si/¡:) = x(a) = x(si) smce /vanishes on JV. This proves that xCsi^xta)
which shows that p is well defined. This argument shows that a nonvanishing
character on S leads to a nonvanishing ^4-cocycle on B(G) and so dim 'Vq = r.
This completes the proof of the theorem.

Remark. It is natural to conjecture that in a like manner, all M-spherical
functions are given by (6.9) with M = B(G). In fact, using Harish-Chandra's
spherical function formula [13, Chapter X, Theorem 6.16], this can be shown
to be the case, but with p a complex-valued ^.-cocycle. In the latter representa-
tion, a spherical function is determined by a homomorphism from A to the
complex numbers. The arguments of the foregoing theorem show that such a
homomorphism corresponds to a complex-valued ^4-cocycle on B(G).

6.3. An example. Let G be the group of fractional linear transformations
of the complex plane leaving fixed the unit circle :

G = {g:gz = p(z + oe)(l + äz)-1, |p| = 1, |a| < 1}. It may be checked that
B(G) is the unit circle F = {£ : | ( | = 1}. We obtain an M-cocycle on B(G) by
taking a(g,C)= \g'(0\, since (gig2)'(0 = g'i(g20g¡(0 and for K the compact
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group of rotations in G (a = 0), we have | /c'(Ç)| = 1, ke K. p = loga will then
be an ^4-cocycle on T.

The /¿-invariant probability measure on T is given by (l/2ni)r,~1d£, so

M*> - ¿íj>«k«>l f
- iH '°-'K) f I
=  #{logg'(0)} = log|g'(0)|.

Ifgz = p(z + a)(l + ôcz)-1,theng'(0) = p(l-|a|2) and ^p(g) = log(l-|a|2)
= log(l — | g(0) ¡2). In this case, r = 1, and so every A-spherical function on G is
a multiple of this \pp. The M-spherical functions are more complicated but they
have been treated more extensively (see e.g. [11]).

7. Asymptotic behavior of \p(XnXn-y ■•■X1).
7.1. Uniqueness of stationary measure and laws of large numbers. The

next lemma is essentially contained in [4],

Lemma 7.1. Let M be a compact space and {px} a random walk on M (see
§0.3). A probability measure v on M will be called stationary for this random
walk if for each f, v(f) = ¡px(f)dv(x). Suppose that there exists a unique sta-
tionary measure v for the random walk, and let {Z„} be any Markov process
with transition probability measures {px}. Then with probability 1

(7-1) l"Íf(Zk)-*v(f)
«   o

for any continuous f on M.

Proof. Recall Lemma 2.5 where it was shown that for functions of the form
rf—f, t defined by (2.7), the averages in question tend to 0 with probability 1.
Let {Zk} be a sample sequence for which this is the case and suppose that for
some subsequence n, we have n,1 Eô'_1/(Z4)-»c. By sufficiently refining the
subsequence, we may assume that lim^^n,-1 Y!'o~1F(Zk) exists for all con-
tinuous F on M.

This limit defines a functional on the space of continuous functions on M,
and we may check that this functional corresponds to a probability measure
on M. Let v' be this measure; then v'(f) = c. Now v'(t£ - £) = 0 or v'(tF) = v'(£)
and

jpx(F)dv'(x) = v'(F)

for all continuous F. But this implies that v' is a stationary measure for {px},
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and so v' = v. Therefore c = v'(f) — v(f). Thus any convergent subsequence
of the left side of (7.1) converges to v(f), and since the sequence is bounded,
this establishes the desired result.

The same method of proof yields a stronger result:

Lemma 7.2. Let N be the set of stationary measures on M for {px}. With
the notation of Lemma 7.1, we now have that (7.1) is valid in general, for func-
tions f with the property that Vy(f) = v2(f) for any Vy,v2eN. The measure
on the right side of (7.1) is then any measure in N.

These results apply in particular to G-spaces where the random walk {px}
is that induced by the measure p on G. A stationary measure is then one that
satisfies for all continuous/ on M:

jf(x)dv(x)   = jp*ôx(f)dv(x)

= jf(gx)dp(g)dv(x)

= \f(y)dp*v(y)

or, equivalently, p*v = v. A stationary measure for the random walk induced
by p is then a stationary measure for p. Lemmas 7.1 and 7.2 may then be applied
to compact G-spaces for which we have information regarding the stationary
measures.

We have in mind a slightly more involved application. Let M be a compact
G-space and/(g, x) a continuous function on G x M. Suppose that \f(g, x) | < F(g)
where F(g) is integrable on G with respect to the measure p. Let {Z„} be a p-pro-
cess on M and let {X„} be the associated G-valued random variables.

Lemma 7.3.    Under the foregoing assumptions we will have with probability 1,

(7.2) - "Zf(Xk+1,Zk)^ f   f f(g,x)dp(g)dv(x),
n  o Jg Jm

where v is a stationary measure for p on M, provided that the expression on
the right side of (7.1) is independent of which stationary measure v is chosen.

Proof. Compactify the space G x M by forming M = (G x M) U M and
assigning a topology to M as follows: G x M will be open in M and
(g*> xn) ~* y e M if gn ~* °° (i-e- gn g°es outside of every compact subset of G)
and gnx„ -» y. On M we define a random walk by assigning to the point (g, x)eM
the product measure p x ôgxon G x M cz M and to the point yeM, the product
measure p x ôy on GxM. We can see that this is a continuous assignment of
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measures. Let us determine the stationary measures for this random walk.
If v is such a measure, since v = X^pícív(í)> and each p$ assigns measure 0 to
M c M, the same is true of v. So v will be a measure on the product space G xM.
Let us show that v is a product measure. Suppose /x is a function of g alone,
and/2 a function of x alone. Then

Kfifi)   =   \li(g,x)(fif2)dv(g,x)
(7.3) J

=  I Kfi)f2(gx)dv(g,x) = p(f1)\f2(gx)dv(g,x).

Take /2 = 1; we see that v(/i) = vifù- Take/t = 1; then v(/2) = $f2(gx)dv(g,x).
(7.3) then becomes

v(/i/2) = v(/i)v(/2),

which implies that v is a product measure. Moreover, we have v(/t) =p(/x) which
implies that the G component of v is p. From the expression for v(/2) it follows
that if v is the M component, then p*v(f2) = v(/2) whence p*v = v. Thus we
conclude that a stationary measure for the given random walk has the form
p x v where v is a stationary measure on M for p.

Consider now the composite process {(Xk+1,Zk)} occurring in our lemma.
This can be considered a Markov process on M since G x M c M. Moreover, the
transition probability measures agree with those under consideration since
(Xk+1,Zk)^(Xk+2,Zk+i) = (Xk+2,Xk+lZk) and Xk+2 is independent of all the
preceding variables. The assertion of Lemma 7.3 now follows immediately from
Lemma 7.2 for those functions f(g,x) on G x M which can be extended to conti-
nuous functions on M. Clearly, functions f(g,x) vanishing outside a compact set
of G x M have this property. To establish Lemma 7.3 for the class of functions
under consideration, it suffices to approximate / by an/ ' of compact support in
G x M such that both sides of (7.2) are small for/-/'. Choosef'(g,x)=f(g,x)
for g inside a large compact set of G, and/ '(g, x) = 0 for g outside a larger compact
set, retaining the inequality |/'(g>*)| < F(g) everywhere. Then

\(f-f')(g,x)\<F'(g)
where J"£ '(g)dp(g) can be made arbitrarily small. The right side of (7.2) is then
clearly small for /-/'. The same, however, is true for the left side by the law of
large numbers for F'(Xk). This proves the lemma.

7.2. Laws of large numbers. Even in the classical case, some restriction must
be placed on the distribution of a random variable for the validity of the law of
large numbers. In our case we have the following restriction:

Definition 7.1. A probability measure p on G is of class Bj if it is absolutely
continuous, and if for each A-cocycle p(g, x) on B(G) we have
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(7.4) sup  \p(g,x)\dp(g)< co.
J G    xsB(G)

Definition 7.2. Let p be of class By, and let v be its unique stationary measure
on B(G) (see Theorem 2.3). If p eifG we set

(7.5) a„(p) = f f   p(g,x)dp(g)dv(x).
JgJm

(7.5) assigns to each p of class Bx a linear functional a„ on iVG. This functional
will play a very significant role in the sequel.

Theorem 7.1. Let p be of class By and let {Xn} be a sequenceof independent
G-valued random variables with distribution p. If peWG then with probability!,

(7.6) n-1 p(XnXn_y-Xy,x)^a,ip),       n -+ co

for any x e B(G).

PrOOf. p(XnXn-y-Xy,X)=H:1p(Xk+y,Xk   -   XyX)    =   1^ P(X k + y , Z k)
where {Zj is a p-process on B(G). Our theorem will now follow from
Lemma 7.3 if we can verify the hypotheses of that lemma. For one thing,
| p(g,x) | <supx | p(g,x) | which we assume is integrable with respect to p by (7.4).
Moreover, since p has a unique stationary measure on B(G) (Theorem 2.3),
there is no ambiguity on the right hand side of (7.2) in our case. This completes
the proof of the theorem.

The next theorem expresses our formulation of the law of large numbers for
the group G.

Theorem 7.2. Let \pp be the A-spherical function corresponding to p (by
(6.6)). Under the hypotheses of Theorem 7.1 we will have, with probability one,

(7.7) n-^p(XnX^y-Xy)^%(p)     n-*co.

Proof. By (6.6), this will follow from (7.6) by integrating over B(G),
if we can justify the passage to the limit under the integral. Let
F(g) = supxs B(G)\p(g,x)\; F(g) is integrable with respect to p by (7.4). Now

\p(XnX„_y-Xy,x)\   =   | Ï   p(Xk+y,Xk-XyX)\^"Ï   F(Xk+y).
k=0 k=0

Therefore
n-1

In-VtXA-i"*!,*)!^"-1    I F(Xk^.y),

and by the law of large numbers for {F(Xk)} this is bounded as n -* co, with pro-
bability 1. Thus, with probability one, the expressions n'1 p(X„Xll_1 ■■■Xi,x)
are uniformly bounded in x and we may pass to the limit under the integral sign.
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Let us consider the example of §6.3. If gz = p(z + a)(l + az) ',
P(g,0 = log|g'(0\, t(s) = log(l - |g(0)|2). We find that

»uppOr.0 = log 1±J|BJ
ç6r 1 - |g(0)|

and this function must be integrable with respect to p for p to be of class Bx.
Rewriting the law of large numbers, (7.7), for that case, we find

(7.8) n'1 loga-iXA^.-.^ÍO)!2)  -+  a».

This expression, incidentally, gives information concerning the /¿-process in the
disc {| z| < 1} which starts at the origin. As we will see later, ap(p) is in this case
strictly negative, and (7.8) shows the rate with which the /¿-process in the disc
converges to the boundary.

As was pointed out in the Introduction, the limits ap(p) in (7.6) and (7.7) ap-
parently cannot be computed directly in terms of p and p, but their expression
requires knowledge of the stationary measure v on B(G). There is an exception
to this which we point out in the next theorem.

Theorem 7.3. If p has the form p = p1*mK*p2, then v = pt*m, where m
is the unique K-invariant measure on B(G), and

(7.9) a» =   f  f f f  f p(gikg2,g[k'x)dp1(gl)dpl(g[)dp2(g2)dkdk'
JKJKJGJGJG

for any xeB(G).

Proof. It suffices to show that px*m is a stationary measure for p. Now
since m is the unique /¿-invariant probability measure on B(G), it follows that if
n is any probability measure on B(G), mK*n = m.Hence (mK*p2)*(p1*m) = m,
and (pl*mK*p2)*(pl*m) = pl*m. This proves the theorem.

In general, however, we cannot determine v and ap explicitly. In the remainder
of this section we shall attempt to obtain information regarding ap(p) without
evaluating it explicitly. Of particular interest is the question of whether ap(p)
is > 0 or < 0, since these would imply in particular that ^-»-co or \¡t-> — oo
respectively. For example, it is not entirely trivial that the /¿-process in the disc
{|z| < 1} referred fo previously is "transient", i.e., that the process does not
return infinitely often to a compact subset of the disc. This, however, follows
from (7.8) together with the information that ap(p) < 0 in that case. Notice
that the strict inequality is essential here.

7.3. Negative ^-cocycles. We will now further restrict the class of proba-
bility measures on G.

Definition 7.3. An absolutely continuous probability measure p on G cor-
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responds to a non-negative function p(g) in L1(G). If p(g) is bounded and of
compact support we shall say that p is of class Bx.

It turns out that for certain ^4-cocycles p we can make the assertion a^(p)<0
or ap(p) > 0 independent of the measure p, so long as p is of class BM. It turns
out to be more convenient to consider the case a„(p) < 0.

Definition 7.4. An /4-cocycle p e #"G is called a negative cocycle if for
every p of class Bx, ap(p) < 0.

Lemma 7.4. // p is of class Bx and v is the stationary measure for p on
B(G), then the Radon-Nikodym derivative dv/dm is bounded, where m is the
K-invariant probability measure on B(G).

Proof. Let dp = p(g)dg where dg is the element of Haar measure on G and
set A(g) = supk eKp(gk). Since p(g) is bounded and of compact support and K
is compact, the same holds for A(g). Then

f      f(x)dv(x)=    f        \ f(gx)dp(g)dv(x)    =    f f f(gx)P(g)dgdv(x)
J B(G) JB(,G)J G J B(G)J g

f(gkx)p(gk)dgdkdv(x)-Í //■Jb(G)JkJg

since the  Haar measure on  G is right invariant (G is semi-simple). Since
p(gk)^A(g),iff^0,

f    f(x)dv(x) S  f     f f f(gkx) A(g)dgdkdv(x)
Jb(G) Jbíg)JkJg

f(gy)Mg)dgd(mK*v)(y)-í i
Jb(G)Jg

'I \Jbcg)J i
f(gy)Hg)dgdm(y)

B(G)J g

since mK*v = m. We can replace gy by x if we replace dm(g) by dgm(x).Then

jB c f(x)dv(x) ̂ JJ £ g /(x)-^(x)dm(x)} A(*)dg.
'B(G) J Gl JB(G)

It follows that

£»*/.£«>«*.
which is finite by virtue of the fact that A is bounded and has compact support.
Here dgm/dm denotes the Radon-Nikodym derivative of the two measures,
and we have used the fact that (dgm/dm)(x) is a continuous function on G x B(G).

We can prove now
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Theorem 7.4. Let p be an A-cocycle on B(G) such that the corresponding
M-spherical function satisfies cj>p(g)^ 1 for all g eG. Then unless p = 0, p is
a negative cocycle and aj^p) < 0 whenever p is of class Bœ.

Proof. We have \j/p(g) = $B(G)P(g> x)dm(x) and we define i¡/'p(g) =
JB(G)p(g,x) dv(x), where vis the stationary measure for p which we assume to be

of class Bœ.The contention of the theorem is that afl(p)= JG^i'p(g)dp(g) < 0. Now

«Ap(g) Ú log f       e"(*'x) dm(x) = log <pp(g) =g 0.
J B(G)

By Theorem 7.2, n~l ^^X^n^i ■•■Xl)^>alx(p) so that ap(p) is, in any case,
^ 0. Thus it remains to show that we cannot have ^p(g)dp(g) = 0. Suppose,
to the contrary, that this integral vanishes. Then

f K(gg')Mg')  =  f f     p(gg',x)dv(x)dp(g')
JG JgJ B(G)

=  f f     p(g,g'x)dv(x)dp(g') +f     \ p(g',x)dp(g')dv(x)
J GJ BIG) JB(G)JG

= [    P(g,y)d(p*v)(y)+Í rp(g'W(g')
J BIG) J G

Í
B(G)

p(g,y)dv(y) = ij/p(g).

It follows that \\i'p is a /¿-harmonic function (§0.4). We shall show that if p is
of class Bx, \¡j'p is bounded away from + co. Namely, by Lemma 7.4, dv/dm
is a bounded function on B(G) ; say dv/dm < c. Then

rP(g) = fji P(g>x)Tdx)dm(x)
B(G) äm

p^'x)<^-(x)dm(x)
B(G) dm

Ú logf

g loge + log        ep(s'x)dm(x) = loge + \o%cbp(g)
J  BIG)B(G)

^ loge.

Added in proof. Let/(g) be a /¿-harmonic function, bounded on one side and
satisfying f(kg) = f(g), keK. If {X„} is a sequence of independent G-valued
random variables with distribution /¿, then Un(g)=f(gXl •••X„) forms a mar-
tingale and converges to some F(g;Xl,X2,---). In Theorem 3.1 of [8] it was
shown  (for  |/|  bounded,  but boundedness  on  one  side is  sufficient) that
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F(g;xy,x2, •■■) is independent of g. The function f(g) = i¡/'p(g) satisfies these
conditions, so we may conclude that with probability 1,

l¡Jp(hgXy-Xn)-¡Pp(gXy-Xl)-*0

as n -> co, for all h, g e G. This gives

¡P(h,gXy-Xnx) dv(x)-*0.

By [8, Lemma 5.4], Xy ---X^ converges to a point measure on B(G), with
probability 1. It follows that p = 0 and the theorem is proven.

7.4. v4-cycles on arbitrary boundaries. We have been treating primarily
cocycles on the maximal boundary B(G). However, we saw in §6.2 that an ,4-co-
cycle on any G-space on which K acts transitively determines an ,4-spherical
function. In particular, this will be the case for boundaries.

If M is a boundary then there is an equivariant map a : B(G) -» M. Let p be
an A-cocycle on M. Form p*(g,x) = p(g,a(x)) for xeB(G). Then

P*(gig2>x) = p(gig2,a(x)) = P(gi>g2<r(x)) + p(g2,a(x))

= p(giMgix)) + p(g2,a(x)) = p*(gug2x) + p*(g2,x)

so that p* is an ^4-cocycle on B(G). We claim that p* determines the same A-s.f.
and M-s.f. as p.

For

iïpAg) = p*(g,x)dm(x) = p(g,a(x))dm(x)
J B(G) Jb(G)

p(g,y)dam(y) =     p(g,y)dm(y) = \pp(g)
Jm Jm

since am is again /¿-invariant if m is. Similarly we find cbp,(g) = <pp(g). Finally,
we notice that a^p*) can be obtained in terms of p. For if v is the unique stationary
measure for p on B(G), then <r(v) will be the unique stationary measure for p
on M. Then

%(P*) = P(g,a(x))dp(g)dv(x)
JgJbíg)

Sí'J Gj M
p(g,y)dp(g)da(v)(y)

r

and the latter integral may be denoted by a„(p). We can now extend Theorem
7.4 to the case of cocycles on an arbitrary boundary.

Theorem 7.5.   Let p be an A-cocycle on a boundary M such that cbp(g) :£ 1
for all g eG. Then unless p = 0, we will haveap(p) <0, whenever p is of class Bx.
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Proof.   cbp,(g) = cbp(g) and ap(p*) = ap(p).
To illustrate this, let M be a nondegenerate boundary of G and m its K-in-

variant probability measure. Form

dg~1m
a(g>x) =-dm-(x)-

Since m is /¿-invariant we have clearly o(k,x) = 1. Also

, ^.      dg2l gf1 m dg2_1 g^m        dg2l m
o(gig2,x) = --r1-(x) = —j—-(x) —-(x)dm dg2lm dm

dgï1 rn.     . dg^1m . . , .   .       .
= -^-(g2*)—r—W = ^t.^^^gz.x)dm dm

by the rules for the Radon-Nikodym derivative. Thus a is an M-cocycle on M
and p = loger is an A-cocycle. Evaluating cbp we find

4>p(g) =      a(g,x)dm(x) = J   -|^(x)dm(x)

=  f dg^mW = 1-
JM

Moreover, p is not identically 0 since otherwise o = 1 and g~lm = m for all
ge G. But this is impossible since M is a boundary and there is a sequence gnm
converging to a point measure. We can therefore apply Theorem 7.5 to deduce
that a„(p) < 0.   Incidentally, this proves

Theorem 7.6. There is a negative cocycle for any compact semi-simple
group.

An interesting consequence is

Corollary. // G is any noncompact semi-simple group and p a measure
of class Bœ then the random walk induced by p on G is transient.

Proof. Let p be a negative cocycle on G; then ^(^X,,.! ■■■X1)-+ — co
with probability 1.

The set of negative cocycles forms a cone in the vector space #"c. We would
conjecture that this cone has a nonempty interior, i.e., that there always exist r
linearly independent negative cocycles, where r = dim #"G.

8. Random products of unimodular matrices. In this section we shall describe the
asymptotic behavior of XnXn_y ■•■Xi where the X¡ are independent, identically
distributed, random unimodular m x m matrices. We are interested in the rate
of growth of the column vectors of the product X„X„_1---X1 (§8.3) and the
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behavior of the angles between the various row vectors and column vectors
(§8.1). In §8.2 we shall discuss another type of limit behavior that occurs here;
namely, if the underlying distribution p is of class Bx, then the rows of the pro-
duct matrix all tend, as n -* co, to a fixed direction.

We shall denote by Rm the m-dimensional real vector space of m x 1 real
matrices. B,m will denote the space of 1 x m real matrices. If aeSL(m,B),
u e Rm, v e B,m then the products au, va, and van are all defined. If in Rm — {0}
we identify two vectors that are scalar multiples of one another we obtain the
space Pm_1. We denote by Ptm_1 the space obtained similarly from Rt- {0}. If
ueRm (resp. B,m) we wiH 'et " denote the corresponding element in pm~1 (resp.
Ptm_1). Given two vectors ut, u2, we let (uy, u2) denote the acute angle between
the lines through ux and w2,0 ;£ <w1; w2> ̂  n/2. <ut, u2> depends only on üy and w2
and we shall also use the notation <û1,û2>.

8.1. Angles between column vectors. We take G = SL(m,B) and p will be a
probability measure of class Bœ on G. K will be the group of orthogonal matrices
of G. In [8, Chapter I], it was shown that the maximal boundary of G is the flag
manifold Fm consisting of all m — 1-tuples of subspaces (Vy,V2, —, Vm-y) where
the V, are i-dimensional subspaces of Bmand Vycz V2<zz ■■■ <zz Vm-y. The action
of G on Fm is that induced naturally by the action of SL(m,B) on Rm. We will not
be concerned directly with the maximal boundary Fm, but with two of the bounda-
ries onto which Fm maps. Namely, we take My to be the set of 1-dimensional
subspaces of Rm and M2 to be the set of pairs (Vu V2), Vy c V2 and dim V, = i.
Notice that My is the same as Pm_1. My and M2 are both boundaries of G;
both have natural topologies with respect to which they are compact, and both
are G-spaces.

We introduce a third G-space M[2) which is not compact. M[2) is defined as the
set of ordered pairs of distinct points in Mi. The space M[2) may be compactified
by adjoining M2 as follows. For every pair of distinct 1-dimensional subspaces
VI and V¡ofRm let ß(V[, Vy) denote the element of M2 given by Vy = V[ and
V2 = 2-dimensional space spanned by V[ and Vy. Now set M = M{2)uM2 with
the following topology: M\2) is open in M and a sequence (Vy\n, Vytf)-*(Vy,V2)eM2
if the angle between Vy'„ and V'y\n goes to 0 and ß(Vy\n, V¡ n)-*(v\, V2). With this
topology M is a compact G-space.

We can describe this setup geometrically as follows. A point of M{2) consists of
a pair of points of My. This point will tend to infinity on MÍ2)if the pair of points
on My tend to one another. In the limit, assuming that one of the pair converges
on My, the pair of points determine not just a single point of My but also a line
element at that limit point. The set of these (points of My and line elements
through them) constitutes M2.

If x eM[2), x = (u',u") with u' and u" eP"'~\ set co(x) = <«',«">. Define

(8.1) a(g, x) = co(gx)/ co(x).
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Since K acts on Rm by rotations co(kx) = cu(x) and o(k,x) = 1. From the form of
(8.1) it is immediate that a(gig2,x) = o(gug2x)o(g2,x). "Hence cr(g,x) is an
M-cocycle on M(2). Now M[2) is dense in M, and it is possible to show that
o(g,x) extends continuously to x eM. The extension is then again an M-cocycle
and its restriction to M2 is also an M-cocycle. The latter, which we shall denote by
cr2, may be described in this way. K acts on the manifold Mx in such a way that
there is a unique Riemmanian metric (up to scalar multiple) on M1 which is
invariant under K. Each g 6 G sends a tangent vector at peMi onto a tangent
vector at gp. The ratio of the lengths of these vectors depends on p, on the direc-
tion of the tangent vector at p, and on g. The first two of these correspond to a
point ¿j of M2 and the ratio in question is just <r2(g, Ç).

Lemma 8.1. p has a unique stationary measure v on M which has its support
on M2.

Proof. M = M[2) UM2 and M[2)= Mt x M1- D where D is the diagonal
of Mj x M,. By Theorem 2.2, since Ml is a boundary of G, there is no stationary
measure for p on Mt x Mi — D. Thus any stationary measure for p on M must
have its support on M2. But M2 is also a boundary and so it possesses a unique
stationary measure.

Let p2(g,0 = log<72(g,Ç) he the A-cocycle on M2 determined by <t2. We then
have

Lemma 8.2. // {Xn} is the G-valued process of independent random variables
with distribution p, then with probability I, for any xeM,

(8.2) lim n1 logo(XnXn_1-Xux) = a„(p2).
n-»oo

Proof. We have

n-1logo(X¡,Xn_l-X1,x) = n"1 "t loëo(Xk+1,Xk-XlX)
k=0

n-l

= n'1 llogcr(Xk+í,Zk)
k=0

where {Zk} is a /¿-process on M and {Xk} axe the associated G-valued random
variables. We may thus apply Lemma 7.3 to the function f(g,x) = log<x(g,x).
Since p is of compact support the hypothesis that/(g,x) be bounded by an in-
tegrable function of g is satisfied. Moreover, there is a unique stationary measure
on M for p so that the right side of (7.2) is unambiguous. Finally, the integral over
M in (7.2) reduces to an integral on M2 since v is supported on M2. The resulting
expression is then just ap(p2).
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It should be observed that though the right side of (8.2) depends on the G-space
M2, the limit is the same for allxeM, and thus for xeM[2\ Using (8.1) we obtain

Theorem 8.1. Let pbe a measure of class Bx on SL(m,R) and let {Xn} be the
corresponding process. If u' and u" are any distinct nonzero vectors in Rm,
then with probability 1,

»xl/n , MP2)(8.3) QLnXn.i-Xiu',X„Xn_l-XiU"y
We shall show next that a„(p2) < 0.

Lemma 8.3.   ¡Ml o2(g, x)dm (x) — 1 for all g eG.

Proof. Each x e M2 determines a 2-dimensional subspace of R m. Let Kx be the
subgroup of K leaving fixed the orthogonal complement of this subspace. Kx is
then isomorphic to the circle group. Since m is /¿-invariant we may write

<x2(g,x)dm(x) = o2(g,kx)dk\ dm(x)
JMi JMi \J K )

where dk now represents the element of Haar measure on Kx. To prove the lemma
it will suffice to show that for each g and x

(8.4) Jk,
o2(g,kx)dk = 1.

We may parametrize the elements of Kx by {k(t)} with 0 :g t < 1, so that dk
is replaced by dt. Let u(0) denote a unit vector in Rm lying in the 1-dimensional
subspace determined by x. Then let u(t) = k(t)u(0). u(t) describes a circle as í
ranges over the unit interval, and the vector du(t)/ dt has constant magnitude 27t.
Now let v(t) be the unit vector in the direction of gu(t). We then have

(8.5)

where

dv(t) ¡\   I ¡i du(t)
dta2(g, k(t)x) =

is the euclidean metric. Then

a2(g,kx)dk  =        o2(g,k(t)x)dt

dt

L ir*
2tc Jo

udv(t)
I  dt dt

-èj*

where ds is the element of length on the curve described by v(t). But the total
length is 2n since the curve is a circle. This proves the lemma.

Applying Theorem 7.5 we find

Theorem 8.2. The exponent ap(p2) in (8.3) is strictly negative.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1963] NONCOMMUTING RANDOM PRODUCTS 421

8.2. The rows of XnX„_y ■■•Xi. In this section we shall give a generalization
of Theorem 1.3 regarding the convergence of continued fractions. The assertion
will be that if ueP,"1-1, then uX„X„_y- Xy converges with probability 1. In
particular, the rows of X„X„-y ■■■Xi converge as n-* co. For 2 x 2 matrices this
yields Theorem 1.3, except that in the present section, we have to impose greater
restrictions on the measure p. We shall assume throughout this section that p is
of class Bœ, a condition that was not needed in Theorem 1.3.

Let tí', u" e B,m and v',v" e Rm. We shall set

(8-6) (u,u,v,v) -(l|V)(B.p)

where the products (u V), etc., represent the usual scalar product.
If v',v"eRm or R?, we shall denote by d'Ad" the (m(m - l)/2)-tuple of

determinants

V'j   v)
KJ-

We shall consider this as an element in the euclidean space of m(m — 1)/ 2 di-
mensions. If v' and v" are vectors of fixed magnitude then the magnitude of
v' A v" is of the same order as the angle between v' and v", as this angle goes to 0.
The following identity is well known :

(8.7) (u'v')(u"v") - (uV)(wV) = («' A u")-(v' A v").

From (8.7) we obtain

Lemma 8.4.
, ,   .   ,   „,    ,       (u' Au")-(v' Av")
(u,u;v,v)-l=      (mV)(mV)      •

We see that if either v' and v" are close together or u' and u" are close, and
neither v" is close to being orthogonal to u'nor v' to u", then (u',u";v',v") is close
toi.

Lemma 8.5. // p is of class Bœ and M is a boundary of G, then there is a
constant c such that if m is the K-invariant probability measure on M and
7i = p * n0 for any probability measure n0 on M, then dn/ dm i% c.

Proof. The proof is identical to that of Lemma 7.4, where this was proved for
the stationary measure on M. The only property of a stationary measure used was
the fact that it had the form p * v for a probability measure v.

Let {e¡,i = 1, •••,m} represent a basis in Rm and {/,-, j — 1, •••, m] a basis in BJ".
We shall denote by Yn the random product XnX„_y ■■■ Xy.

Lemma 8.6. With probability 1,
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(8.8) (/„/,-; Ynet, Ynek)^i

for all i, j, l, k as n -* co.

Proof. By Theorem 8.1 and 8.2 the angle between Y„e, and Y„ek goes to 0 at
a strictly exponential rate: say (Y„et, Y„ek')<ci exp (~nß). Let Oj c /'""'consist
of the points whose corresponding unit vectors u satisfy (/¡u)<exp(— nß/3).
If Y„e, $ QÍ and Y„ek $ Q'n then we have from Lemma 8.4 that

11 - ifjj-, Y„e„ Ynek) | < c2 exp (- nß/3)

for some constant c2. If these conditions are fulfilled for all but finitely many n,
then (8.8) is valid. The lemma will thus follow if we can show that the proba-
bilities of Y„e¡ e Qj occuring infinitely often or of Y„ek e Q„l occurring infinitely
often vanish. If suffices to show (Borel-Cantelli) that ÜP(Y„el e QJn) < oo.
Since the distribution of Y„e, = Ynet has the form p*n0 on P"1-1, and Pm~l is a
boundary of G, it follows from Lemma 8.5 that it suffices to show T,„m(QJ„) < oo.
But clearly

m(QÍ) < c3exp(- nß/3)

for some constant c3. This proves the lemma.
Now

(fjjl Ynei,Ynek) = (ftYH,fjYn; euek).

Apply Lemma 8.4 to the latter cross-ratio. Since (8.8) is valid for all i, j, I, k we
conclude that for any i,j the angle between ftY„ and f¡Y„ goes to 0 at an expo-
nential rate. Combining Theorems 8.1 and 8.2 with the foregoing we find

Theorem 8.3. Under the hypothesis that p is of class Bœ, the angles between
the various rows and the angles between the various columns of XnX„_1 ■••X1
go to 0 at an exponential rate as n -> oo, with probability 1.

Let us now consider P(m_1 as a G-space with G acting on the right. P¡"_1 then
carries a unique stationary measure n for p. We will then have n*p = % and
from this it follows (since p is absolutely continuous) that % is not concentrated
on a linear subvariety of Ptm_1. Consider the corresponding stationary process
on Prm_1. Since Ptm_1is a boundary, this is a proper /¿-process (§3). Combining
this with Lemma 1.3 we conclude that, with probability 1, nXnXn_1 ■■•Xi
converges to a point measure 8W where IF is a random variable on P¡"-1. Now
the rows of Y„ = X„Xn_1 ■•■Xl axe almost proportional (Theorem 8.3) and so
for all elements u e P,m_1 but for those close to a linear subvariety, the direction
of uY„ will be close to that of any row of Y„. Since n is not concentrated on a
linear subvariety and 7tY„^c5^ we conclude that for any e¡, e¡Yn-+ W. Finally
since the basis {e¿} is arbitrary we may state
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Theorem 8.4. Let p be of class Bœ and let uePj" 1. There is a random
variable W defined in terms of Xy,X2,X3,••• such that with probability 1,

(8.9) uXJl^y-Xy^WeP?-1-

Moreover, W does not depend upon u.

Remark. It is obvious that for uePm_1, X„X„_y •••AT1u will not converge
in general. For if {Z„} is the stationary p-process on Pm_1, then
X„X„-y •••X1Z0 = Z„. Thus the sequence X„X„-y ---XyV in general oscillates in
pm- 1

8.3. Rate of growth of the vectors XnXn_y-XyU. It follows from Theo-
rem 8.3 and the fact that the matrices X„X„-y-Xy are unimodular that the
norms of at least some of the column vectors in X„Xn„y •■Xy must be growing
at an exponential rate. We shall find that this is the case quite generally and for
a general distribution p on SL(m, R), the p-processes on Rm — {0} tend to
co at an exponential rate.

Again we let p be a measure on SL(m, R). This time, however, we let G denote
the smallest closed subgroup of SL(m, R) containing the support of p. p will
not be required to be absolutely continuous. As usual {X„} denotes the G-valued
variables with distribution p. We are interested in the action of G on Rm.

Consider the M-cocycle on Rm— {0} defined by

(8.10) a(g,u) =  |U«|/H|.
Note that a(g, u) depends only on g and wePm_1. We can therefore define an
M-cocycle on pm_1 by ay(g,u) = a(g,u). We set p = logtr, p1=log<r1.

Let us consider the stationary measures on pm_1 for p. These form a convex
set whose extremals correspond to the ergodic stationary p-processes on pm_1
(see the proof of Theorem 2.6). More precisely we can say if {Z„} is the corre-
sponding stationary p-process and {X„} the associated G-valued variables, that
{(X„+y,Zn)} is an ergodic process. We shall call the extremal measures ergodic.

Lemma 8.7. Suppose that G is irreducible and that /log || g || dp(g) < co
and let n be an ergodic stationary measure for p on Pm-y. Then there exist m
linearly independent vectors Uy,---,um in Rm such that, with probability 1,

(8.11) »-Mogll^-X^l-f f       Pi(gA)dp(g)dn(è:)JgJPm->

as n~* co, i = 1, —,m.

Proof. Denote the right hand side of (8.11) by a. If {Xn,Z„} are as before,
we have Xn+iZ„ = Zn+1. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



424 HARRY FURSTENBERG [September

(8.12) n-Vi(X„-Z1;Z0) = n1  Z Pl(Xk+uZk).
k=0

Now Ip^X^+^Zj)! ^log|Xt+1| so that we may apply the ergodic theorem
and we find that the expression in (8.12) converges to a, with probability 1. This
means that for almost all £ePm_1 (with respect to n), n~1pl(X„---X1,i])^ a.
Now G is irreducible and we have p * n = n. If n had its support in a linear sub-
variety of Pm_1, the support of p would leave fixed a linear subvariety and G
could not be irreducible. Hence the support of % is not contained in a proper
linear subvariety and so there exist independent (¡1,---,^m with

B"Vl(i.-ii,€|)  -  «•
Now let {, = «„ u^R"; then Pl(g,^ = log(|| gu,||/|| «J). We thus have
n-1log||X1,-X1u<|->a.

Theorem 8.5. // G ¿s irreducible and J"|| g | dp(g) < oo, the expression
J-J"pi(g,Ç)dp(g)dn(Ç) for a stationary measure n for p is independent of the

stationary measure n. Denoting the common value by x^pj), we have, with
probability 1,

(8.13) n-'logll^-Xiul^a^p!)
or all nonzero vectors u e Rm.

Proof. The second assertion is equivalent to the statement that
n~1p1(Xn---X1,i;)^>ati(p1) for all £ePm-1. In this form it follows from Lemma
7.3 once it is established that the expression denoted by ajj)^ is independent
of the stationary measure n. Now let nl he one ergodic stationary measure for p
on Pm_1. By Lemma 8.7,

n"1 log || Xn-XlU || -> jjpi(g,^)dp(g)dn1(c:)

for a basis of Rm. But then it follows that for all u e Rm,

(8.14) lim sup n" ! log || X,,-*!«! ^ | \ pl(gA)dp(g)dni(Ç).
n-+ oo J J

Now let 7t2 be any other ergodic stationary measure, and apply Lemma 8.7. We
then see that

(8.15) Jjpifg, Qdrtg)dn2(Q Ú jjpi(g, i¡)dp(g)dní(0.

Interchanging the roles of iti and 7t2 we find that in (8.15), equality must hold.
Then J" $Pi(g,Ç)dp(g)dn(Ç) is the same for all ergodic—or extremal—stationary
measures, and hence for all stationary measures.
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The rest of our discussion will be devoted to showing that if G is noncompact,
<xp(py) is strictly positive. This will show that the vectors Xn — Xl grow expo-
nentially under our hypotheses. Note that the condition of noncompactness of G
alone is not sufficient. For example, if G = (¿ Í) then XyXyU will not be of
exponential growth because G is not irreducible.

Let co denote the /¿-invariant probability measure on Pm~1. In §7.4 we observed
that (dg~1co/dœ)(Ç) was an M-cocycle of SL(m,B) on Pm_1. The next lemma
gives the relationship between this cocycle and the cocycle Oy(g, i/) defined above.

Lemma 8.8.    Oy(g,Ç)m (dg~lœ/d<o)(.0 = 1.

The proof is straightforward and we omit it.

Lemma 8.9. Suppose that a stationary measure % for p on pm~l ¿s equi-
valent to co in the sense of absolute continuity (7t-<co, co-<,ri). Then

(8.16) oi^py) = - -j-jj log^-^(0dp(g)d7i(0.

Proof. By Lemma 8.8, py(g,i) = - (l/m)log(dg~1co/dco)(i,). (8.16) willfol-
low if we can replace dg"1co/dcx> by dg~1n/d% in the integral. The difference be-
tween the corresponding expressions is

=   friog^rrf (t)dp(g)dn(i;)-jjlog ̂ -(Ç)dp(g)dn(t;)

= JJlog ~(gtl)dp(g)dn(il) - Jjlog -^(Odp(g)dn(0

= jjlog^(n)dp(g)d(p*n)(r1)-jjloë -^(Ç)dp(g)dn(i,) = 0

since p*n = n.

Corollary. // a stationary measure nfor p on Pm-1 is equivalent to co, then
aß(Pi) > 0 unless G leaves fixed the measure %.

Proof.    For

by Jensen's inequality, and equality can only hold if the integrand of the second
integral is constant almost everywhere with respect to n. But in this case
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g~ln = n. If this holds for almost all g in the support of p it must hold for all
of G and we see that G leaves n fixed.

Let || n || denote the norm of the measure n on pm~l as an element of the dual
to the Banach space of continuous functions on Pm~l.

Lemma 8.10.    // 7t! and n2 are probability measures on P"1-1 then there is
a constant c> 0 such that

(8.17) ¡ Jti  — 71,      < C{-WW-
(// 7i2 is not absolutely continuous with respect to nt the right hand side is oo
taking log 0 = — co.)

Proof.    || 7t! — 71-2 || = SUP | \(4>dTii — cbdn2) | where | c¡> | g 1. We may assume
that 7t2 -< Tii, so we have

71« — 7T-,

_   /* I /íÍ7t2 |   i 1 /í¿7l2 |

J I      tjdliyl I      /s/diix I

Mt)H= 20
1/2

1/2

Since, in any case, || ni — %2 || ^ 2, it is only necessary to establish that (8.17)
holds as  J"log(íÍ7t2/d7r1)íi/7r1 ->0. Now

1-

and this establishes the lemma.

Theorem 8.6. Let G be a noncompact subgroup of SL(m,R) such that no
subgroup of G of finite index is reducible. Then a„(Pi) > 0 and with probability 1,
¡Xn-'-Zj«! grows exponentially as n->co for all ueRm— {0}.

Proof. Let us first show that under the present hypotheses, G cannot leave
fixed a measure on Pm-1. For since G is noncompact we can find a sequence
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{g„} in G and two linear subvarieties V1,V2<zzPm~1 such that for all Ç$Vt,
#„<!;-> V2. This implies that if n is an invariant measure on Bm_1 for G then n
must be concentrated on Vy U V2. Consider finite unions of proper linear sub-
varieties of P"1-1 with 7t-measure unity. Vy U V2 is such a union. Let
Wy U W2 U • • • u Wk be a minimal such finite union in the sense of set-theoretic
inclusion. Since G preserves n each \JjgWj again has this property. The intersection
{J W, n glf,- would comprise a smaller set with this property unless the two are
identical which is only possible if each g permutes the varieties W¡. Then the
subgroup of g taking W¡ -» W, is of finite index in G and is reducible contrary
to hypothesis. Thus G has no fixed measure on Pm_1.

Now choose a sequence of measures {p„} on SL(m, R) with p„ -> p weakly
and with the property that each p„ has a stationary measure n„ on P"_1
such that 7t„ is equivalent to co. For this it is only necessary to choose pn as a
measure given by a nowhere vanishing density in SL(m,R). We may assume
that 7i„ converges on pm_1 and the limit measure n will be a stationary measure
for p since one verifies easily that p„-*p, 7r„->7r implies pn*n„-*p*n. We
have, moreover, a^„(Pi) -* <xp(py). To prove the theorem it will therefore be suf-
ficient to prove that

liminf 0LPn(py) > 0.
n-*oo

Since n„ is equivalent to co we may apply Lemma 8.9, and what we shall show
is that

(8.17) liminf |-JJlog ^J^--" (c:)dpn(g)dnM)\ > 0.

Finally, by Lemma 8.10, this will be the case unless for some subsequence, which
we take to be the original sequence, we have

(8.18) J||g"1n.-«.||2dA,fe)-0.

Suppose now that (8.18) were valid. Since p„->p, it follows from (8.18) that if
g is in the support of p, there is a sequence gn-*g such that
|| g„nn — k„ I = || 7t„ — g~1 n„\\ -* 0 (since any neighborhood of g has p„-measure
> £ > 0 for some e and for n larger than some n0). Now let cb be a continuous
function on P™"1 with \cp\ ^ 1. Then

| gnn(cb) - nn(cb) | ^ | gnn(cp) - g„nn(<P) \ + fl £A - «„ ||.

Now ^7c„(</)) = n„(Lg(p) where Lf(/.(i) = <p(gÇ). Then

(8.19) | gn,^) - 7t„(cb) | ̂  fl Lgcp - Lgncp fl„ + || g„7r„ - «„ fl.
Since #„-»£, Lgntp-*Lgcb uniformly, and both parts of the right side of (8.19)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



428 HARRY FURSTENBERG

go to 0. We conclude that | gn(ab) - n(cb) | = lim | gnn(cb) — n„(cb) \ = 0 and g7t = 7t.
Thus if (8.18) were true, then every g in the support of p, and hence all of G,
would leave 7t fixed. We have already shown that this will not happen. This
completes the proof of the theorem.

Corollary. // G is a semi-simple group with no compact factors and A is
any irreducible representation of G, then for any vector v in the representation
space of A, \\ A(X„X„_1 •••X1)v || grows exponentially with probability I, as
n -* oo.
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