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Abstract. Both this paper and Chain recurrence and attraction in noncompact
spaces, [Ergodic Theory Dynamical Systems (to appear)] are concerned with
the question of extending certain results obtained by C. Conley for dynamical
systems on compact spaces to systems on arbitrary metric spaces. The basic
result is the analogue of Conley's theorem that characterizes the chain recurrent
set of / in terms of the attractors of / and their basins of attraction. The point
of view taken in the above-mentioned paper was that the given metric was of
primary importance rather than the topology that it generated. The purpose
of this note is to give results that depend on the topology induced by a metric
rather than on the particular choice of the metric.

The goal of this paper is to extend a theorem of C. Conley from the setting
of dynamical systems on compact metric spaces to metric spaces that are only
locally compact. Conley's result connects the chain recurrent set of / with the
collection of attractors and basins of attraction of /, as follows:

Theorem (Conley). If X is a compact metric space and f: X —> X is continu-
ous, then the chain recurrent set of f is the complement of the union of the sets
B(A)-A, as A varies over the collection of attractors of f ; here B(A) denotes
the basin of attraction of A (the set of points whose omega-limit sets lie in A).

Definitions are given in the next section. An earlier paper [7] described one
extension of Conley's theorem to the noncompact case. In [7] it was assumed
that the distances defined by the given metric on X were themselves important;
as a consequence some of the dynamical structures (the analogues of the chain
recurrent set and of attractors and their basins) could change if the metric was
changed—even if the new metric induced the same topology as the old. There
are circumstances where this point of view is appropriate (see [8]), but in general
it is preferable to have a theory in which the dynamical structures are invari-
ant under changes of metric (or equivalently, under topological conjugacies).
Describing such a theory is the main goal of this paper. There are two main
results. The first is the counterpart of Conley's theorem, and the second is the
existence of global Lyapunov functions in the case that X is second countable
(which is also a generalization of a theorem of Conley).

The approach taken in this paper was suggested by John Franks and the
author benefitted from conversations with him.   Part of the motivation for
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1140 MIKE HURLEY

considering the connection between chain recurrence and attractors came from
several recent papers dealing with dynamics on noncompact spaces [3, 5, 6, 10].

1. Definitions and background

Suppose that (X, d) is a metric space and that /: X —► X is continuous.
If e > 0 then a nonempty open subset U of X is called E-absorbing if U
contains the e-ball about f(x) for each x in U. U is absorbing if it is e-
absorbing for some e > 0 ; in other words, U is absorbing if / maps U a
uniform distance into its interior. The closed set A = f)n>of"(U) is called the
attractor-like set determined by U. The open set cf~(U) = \J„>of~"(U) is the
set of all points whose omega-limit sets are contained in A , and it is called the
basin of A relative to U, B(A; U).

When X is compact these definitions can be simplified. Compactness implies
that: (1) U is absorbing if and only if U contains the closure of f(U) ; (2)
A is nonempty and invariant (f(A) = A) ; and (3) B(A ; U) is independent of
U in the sense that if W is a second absorbing set that also determines the
attractor-like set A, then B(A ; U) = B(A ; W). Because of (3), in the compact
case we can abbreviate B(A; U) to B(A) ; in the compact case A is usually
referred to simply as the attractor determined by U.

Without compactness the situation is less straightforward [7]: A can be
empty (even though we require that U be nonempty); A is forward-invariant
(f(A) c A), but may fail to be invariant; and different absorbing sets may de-
fine different basins even when they determine the same attractor-like set A.
In order to deal with this last difficulty the extended basin of A is defined to
be the union of the sets B(A ; U) as U varies over all the absorbing sets that
determine A . The extended basin of A will be denoted as B(A) ; in an attempt
to avoid confusion we will usually write cf~(U) instead of B(A; U) for the
basin of A relative to U . It is worthwhile to note that the extended basins of
two attractors might overlap without the attractors intersecting. This is obvious
if one of the attractors is empty; more generally all that can be said about a
point x G B(A\) n B(A2) is that either its omega-limit set is empty or else its
omega-limit set is in AXC\A2.

An e-chain (or an e-pseudo-orbit) for / is a sequence xo, Xi, ... , x„ with
the property that d(f(x¡), xj+x) < e for 0 < j < n - 1. This e-chain is said
to go from xo to x„ and have length n . In this paper the length will always be
finite and at least 1. The chain recurrent set of / is the set

WR(f) — {p\for each e > 0 there is an e-chain from p back to p}.
The chain recurrent set is always closed and forward invariant; when X is

compact it is invariant and nonempty. Note that if there is an e-chain of length
zz from p back to p, then by concatenating this chain with itself k times we
obtain an e-chain of length kn from p back to p ; thus for any chain recurrent
point p there is an arbitrarily long e-chain that begins and ends at p .

It is not hard to see a connection between the chain recurrent set of / and
the collection of absorbing sets for /. The basic observation is that if x is
a point of an e-absorbing set U, then the e-ball about f(x) is contained in
U so that any e-chain of length 1 beginning in U must also end in U. The
obvious induction now shows that any e-chain beginning in U must also end in
U . In fact slightly more is true: if 3 is any positive constant less than e , then
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NONCOMPACT CHAIN RECURRENCE AND ATTRACTION 1141

any ¿-chain beginning in U must end at a point within 8 of f(U). If x e U
is chain recurrent then for any 3 there is a ¿-chain beginning and ending at
x, and so (by letting 8 -* 0) we conclude that any chain recurrent point in U
must actually be in /( U). This proves

Lemma 1.1. If U is an absorbing set for f, then WR(f) n U is contained in
JW)-

Lemma 1.1 is a first step towards proving Conley's theorem, both in the
compact case [1] and in the noncompact [7]. Unfortunately the most general
result in [7] is not as nice as Conley's theorem, unless additional assumptions
are made concerning / (for instance the assumption that f~x(K) is compact
for every compact K c X). In the next section we will modify the definitions
of absorbing set and of chain recurrence, replacing the positive constants e in
those definitions by continuous positive functions on X. With these modified
definitions we are able to obtain precisely the same conclusion as in Conley's
theorem without any additional assumptions on / ; see Theorem 1 below.

2. Variable epsilons

When one takes the view that the only intrinsically important feature of the
metric d on X is the topology that it defines, then the use of a constant e in the
definitions of absorbing sets and chain recurrence is unnatural. One alternative
is to replace the fixed e's of the last section by arbitrary positive functions. Let
3° denote the set {e: X —> (0, c»), continuous}.

Definitions. A nonempty open subset U of X is weakly absorbing for / if
there is a function e € ¿P with the property that Be^x^(f(x)) c U for
each x e U (B¿(p) denotes the ball of radius 3 centered at p). U is
weakly absorbing if and only if f(U) c U : the inclusion is a clear con-
sequence of U being weakly absorbing, and the converse follows by setting
e(x) = [d(x, f(U)) + d(x,X- U)]/2 . _

When U is weakly absorbing the set A = Ç\n>ofn(U) is the weak attractor
determined by U. As before we will set B(A; U) = cf~(U) and B(A) will
be the union of the sets B(A ; U) as U ranges over the collection of weakly
absorbing sets that determine A .

If e e 9° then x0, Xi, ... , x„ is an e(x)-chain if d(f(Xj)), xj+x) < e(f(Xj))
for 0 < j < n - 1 . A point p is called strongly chain recurrent for / if for
each e e £P there is an e(x)-chain of length at least 1 that begins and ends
at p . The set of all strongly chain recurrent points of / will be denoted as
WR+(f).

Clearly any absorbing set is weakly absorbing and WR+(f) c 'ë'R(f). When
X is compact the new definitions are equivalent to the earlier ones where e was
constant. In the noncompact case it is not hard to give examples where the new
definitions are indeed different from the old.

Example 1. Let X be the subset of the plane consisting of all points of either of
the two forms (zz, 0) or (n, 1/zz) where zz > 1 is an integer. Define /: X —> X
by f(n , 0) = (n + 1, 0) and f(n, 1/zz) = (1,0). If d is the metric inherited
from the usual metric on the plane, then the requirements that an absorbing
set be nonempty, forward invariant, and mapped uniformly inside itself show
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1142 MIKE HURLEY

that any absorbing set must contain each point of the form (zz, 0). However if
e(n, y) = 1/2« then any set of the form {(zz, 0)|zz > k} is weakly absorbing.
Similarly, with this choice of e(x) it is apparent that no point of X is strongly
chain recurrent; this contrasts with the fact that every point of X on the x-
axis is chain recurrent in the weaker sense. Further features of this example are
described in [7, Example 2.4].

The proof of Lemma 1.1 can be repeated to show

Lemma 2.1. // U is weakly absorbing for f then any strongly chain recurrent
point in U is actually in f( U).

In fact, slightly more than this is true. If p e cf~(U) then there is a positive
integer zz with f"(p) e U. An argument based on the continuity of / and
the fact that U is open shows that if a constant ¿o > 0 is sufficiently small
then any r50-chain of length zz beginning at p must end in U. If we define
8(x) = min{f5o, e(x)} then the proof of Lemma 1.1 shows that any <5(x)-chain
of length at least zz + 1 that begins at p will end within do of f(U). If p is
strongly chain recurrent then there is such a chain that also ends at p . Letting
¿o go to 0 yields the following.

Lemma 2.2. If U is weakly absorbing for f then any strongly chain recurrent
point in @~(U) is actually in f(U).

Proposition 2.3. Suppose that X is a locally compact metric space. If U is
weakly absorbing for f then any strongly chain recurrent point in cf~(U) is
actually in A, the attractor-like set determined by U.
Proof. Since U is weakly absorbing for /, it is certainly weakly absorbing
for /" for every zz > 1 . Thus the proposition follows from the last lemma
provided that we can show that every strongly chain recurrent point for / is
also strongly chain recurrent for each /" ,

(1) WR+(f)eWR+(fn).

(The opposite inclusion is trivial.) The proof of (1) follows from the following
lemma, whose proof we defer to an appendix.

Lemma 2.4. Suppose that X is a locally compact metric space, that f:X—>X
is continuous, and that e: X —> (0, oo) is also continuous. Then there is a
continuous map 5 : X —► (0, oo) with the property d(x, y) < 8(x) that implies
d(f(x), f(y)) < e(f(x)) for all x e X.

Now suppose that p e WR+(f) and that zz > 1 and e e 3s are given. Using
induction and the last lemma one sees that there is a function 3 e ¿P with the
property that any ¿(x)-chain for / of length zz beginning at a point y will end
at a point that is within e(f"(y)) of f"(y). It follows that if Xq, x\ , x2,....,
xnk is a ¿(x)-chain for / of length zczz, then Xo, x„ , x2n , ... , x„k is an
e(x)-chain for f" of length zc . The concatenation argument given after the
definition of chain recurrence shows that there is a ¿(x)-chain for / that begins
and ends at p and whose length is a multiple of zz. Thus there is an e(x)-chain
for / " that begins and ends at p. This establishes ( 1 ) and so completes the
proof of the proposition.    D
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NONCOMPACT CHAIN RECURRENCE AND ATTRACTION 1143

Theorem 1. If X is a locally compact metric space and f:X—>X is continuous,
then të'R+(f) is the complement of the union of the sets B(A)-A, as A varies
over the collection of attractor-like sets of f,

(2) X-WR+(f) = \jB(A)-A.
Proof. The proposition shows that the set on the right in (2) is contained in the
set on the left. The opposite inclusion is obtained via the same argument as in
[1] or [7], which goes as follows. Suppose that p is a point that is not strongly
chain recurrent, and pick e e S6 such that there is no e(x)-chain from p back
to p . Then p is not an element of the open set U = {y\ there is an e(x)-chain
from p to y} . Note, however, that f(p) is certainly in U, so that p e (f~(U).
In addition U is weakly absorbing: if y e U then there is an e(x)-chain from
p to y, and, therefore, there is an e(x)-chain from p to any point that is
within e(f(y)) of f(y). In other words, U contains the ball of radius s(f(y))
centered at f(y), which shows that U is weakly absorbing. To finish, let A be
the attractor-like set determined by U ; then p e B(A ; U) - U c B(A) -A.   D

3. Remarks
This section contains several remarks and examples to fill out the basic ex-

position of the previous section. The first question to be addressed is whether
using arbitrary positive continuous functions in the definition of strong chain
recurrence is too strong a restriction; for instance, does it force the conclusion
that the closure of the forward orbit of a strongly chain recurrent point is com-
pact? The following example shows that this is not the case; a related example
is presented in more detail on page 343 of [11]. Let X be the horizontal strip
in the plane X = (-oo, oo) x [-1, 1]. The map / on X is the time 1 map of
a flow cj). On the upper boundary of X, </> moves points to the right with unit
speed, and on the lower boundary it moves points to the left with unit speed. cf>
has a repelling fixed point at the origin. All other orbits spiral clockwise away
from the origin and have their omega-limit sets equal to the union of the two
boundary lines. As long as we have some control over the time parametrization
of the flow, say, if the speed is everywhere bounded by 1, then it is evident that
we can arrange that any point on the boundary of X is strongly chain recurrent
for /.

A second question that arises concerns the definition of the weakly attracting
set determined by a weakly absorbing set U as f)f"(U). When X is compact
it is not necessary to take the closures of the sets in the intersection, but the
following example shows that without compactness it is necessary to take the
closure.

Example 2 [7, §2.6]. Here X is a subset of the plane, consisting of a countable
number of bounded horizontal line segments:

• the bottom segment: B = {(x, 0)|0 < x < 1} ,
• the top segment:  T = {(x, 2)|0 < x < 1/2}, and
• the intermediate segments: Z„ = {(x,l/zz)|0<x<l}.

Note that the top segment includes its left end point (0, 2) while none of the
other segments include either of their end points. The map / takes B to itself,
sending (x, 0) to (x2, 0), and it sends T into B, f(x ,2) = (x + 0.5, 0).
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Each of the remaining segments is mapped to the segment directly above, the
map being f(x, 1/zz) = (x2, l/(zz- 1)) if zz > 2 and f(x, 1) = (x/2, 2). It is
not hard to see that the point (0,2) is strongly chain recurrent even though it is
not in the image of /. Since X itself is trivially absorbing, we have a strongly
chain recurrent point that is in an absorbing set but not in its image. Thus if
the closure operations are omitted in the definition of a weakly attracting set
the conclusion of Theorem 1 would be false.

Example 2 also shows that WR+ (f ) is not necessarily invariant: f(WR+(f))
(which is closed in X) does not contain the strongly chain recurrent point
(0,2). It also illustrates an important difference between the compact case and
the noncompact case: in the example there is no e-chain from (0, 2) back to
itself that is contained in WR+(f). When X is compact there is always such
an e-chain; see [1, p. 38] or [12].

The fact that a set U is weakly absorbing if and only if f(U)cU makes it
clear that the property of being weakly absorbing is maintained by topological
conjugacies. It now follows from Theorem 1 that strong chain recurrence is
also maintained by a topological conjugacy. In particular, these properties are
unaffected if the given metric is changed to a different metric, provided only
that the two metrics define the same topology on X. The failure of this result
is perhaps the main defect in the (constant e) definition of absorbing sets and
WR used in [7]. This failure is illustrated by Example 1 of §2. In that example
X was a discrete subset of the plane, and the given metric was the one inherited
from the plane. Using that metric WR(f) was nonempty; if instead we use
the equivalent metric p(x, y) = 1 if x / y then WR(f) is easily seen to be
empty.

4.  LYAPUNOV FUNCTIONS

There is a natural decomposition of WR+(f) into equivalence classes under
the relation: p ~ q if and only if for each e e 30 there are e-chains from
p to q and from q to p. Each equivalence class is called a chain transitive
component of /. The arguments of §2 make it clear that if a chain transitive
component C intersects a weakly absorbing set U then C must be contained
in the weak attractor determined by U.

A complete Lyapunov function for /: X —► X is a continuous map L: X —► R
with the following properties:

(i) L(f(x)) < x for all x , with equality if and only if x e WR+(f).
(ii) L is constant on each chain component and takes on different values

on different chain components.
(iii) If C and C are distinct chain components with the property that for

each e e ¿P there is an e-chain from C to C then L(C) > L(C').
(iv)  L(WR+(f)) is nowhere dense.

Theorem 2. Suppose that X is a locally compact, second countable metric space,
and that f: X —» X is continuous. Then there is a complete Lyapunov function
for f ■

The proof outlined below is adapted from the proof of the corresponding
theorem in [7], which in turn was adapted from proofs in [1, 4]. There are
two parts to the proof.   In the first we construct a "Lyapunov-like" function
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for a given weak attractor A. This is a continuous function h : X —► [0,2]
with the properties: h is 0 on A, h is 2 on the complement of B(A), and
0 < h(f(x)) < h(x) < 2 for all other x . This part of the argument is not much
different than the corresponding arguments in [1, 4, 7]; consequently, we will
only give a rough outline of this first part of the proof. The Lyapunov func-
tion L will be defined as an infinite linear combination of these Lyapunov-like
functions; the second part of the proof is to show that for a given / there is
a countable collection of Lyapunov-like functions that capture enough infor-
mation about the dynamics for L to satisfy properties (i)-(iv). The reduction
afforded by the second part of the proof is necessary, as it is possible for / to
have an uncountable number of distinct weak attractors; see [7] for an example.

Throughout this section we will assume that X is a locally compact, second
countable metric space. These assumptions ensure that we can write X =
\Jn>0K„ where each Kn is compact and is contained in the interior of Kn+X.

First we describe the construction of a "Lyapunov-like" function h : X —►
[0, 2] for a single weak attractor A . Write X = [J K„ as above and let y/ : X —►
[1, oo) be a continuous function with the property that y/(x) > n for x in the
complement of Kn . Let M(x) be the minimum of 1 and the distance from x
to A (set M(x) =1 if A = 0). Define

r'  '     M(x) + y/(x) • dist(x, X - B(A))
(again, take dist(x, X - B(A)) = 1 if X - B(A) = 0). <f> is continuous,
takes on values in [0, 1], is 0 only on A, and is 1 only on X - B(A). It
can be verified that each x e B(A) has a compact neighborhood on which
the functions <fi o // converge uniformly to 0 as j -» 00 . Because of this last
property, if we let g(x) = supj>0{4>(fj(x))} then g is continuous and satisfies
0 < g(f(x)) < g(x) < 1 for all"x . Define

OO

h(x) = Y,g(f'(x))/2i-
(=0

If x e A then h(f(x)) = h(x) = 0 ; if x e X -B(A) then h(f(x)) = h(x) = 2 ;
and if x € B(A) - A then 0 < h(f(x)) < h(x) < 2.

We will define L as
00

(3) L(x) = £/z„(x)/3"
«=i

where {h„} is a countable collection of Lyapunov-like functions. It is clear that
L is continuous, nonnegative and that L(f(x)) < L(x) for all x. To verify
the rest of the properties (i)-(iv) of a Lyapunov function we need to show that
if x is not strongly chain recurrent then hn(f(x)) < h„(x) for some zz, and
that if C and C are distinct chain components then there is an hn that is 0
on one of C, C and is 2 on the other.

Lemma 4.1. For any given f there is a countable subset i?x of 3s with the
property that if y e Y = X - WR+(f) then there is an e e <§1 such that no
s(x)-chain both begins and ends at y.
Proof. For brevity we shall say that a point p is e(x)-recurrent if there is an
e(x)-chain that begins and ends at p . The proof is based on the observation that
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if y is not strongly chain recurrent there is a neighborhood N of y and an e e
& with the property that no point of N is e(x)-recurrent. To establish this fact
choose 8 e3° such that y is not ¿(x)-recurrent. Let K and K' be compact
neighborhoods of y, f(y), respectively, and let 3q denote the minimum value
of 3(x) on KuK'. Choose a > 0 small enough that d(y, z) < a implies: (1)
zeK; (2) f(z) e K' ; and (3) d(f(y), f(z)) < 80/2 . Let ß be the smaller of
a and So, define e(x) = \ min{/?, 8(x)}, and let N = Bß/2(y). Suppose that
z e N and that z = z0, zx, ... , zn , zn+x = z is an e(x)-chain. We will show
that y, zx, ... , z„, y isa ¿(x)-chain, which contradicts the way that 8(x) was
chosen. Since we know that e(x) < S(x), all that must be checked is the pair
of inequalities: (a) d(f(y), zx) < 3(f(y)) and (b) d(f(zn),y) < 3(f(z„)).
Inequality (a) is true because (2) and (3) show that each of f(y) and zx is
within 3o/2 of f(z) and án < 3(f(y)). To verify (b) note first that both y and
f(zn) are within a/2 of z, which shows that f(z„) is in K. Consequently
e(/(z„)) < 8q/2, showing that f(z„) is within 8o/2 of z. Since y is also
within 8o/2 of z, we conclude that d(f(z„),y) < 3q ; as f(zn) e K this
establishes (b).

Thus there is an open cover ^ of Y such that for each U eí¿ there is
an eu(x) e ¿P such that no point of U is et/(x)-recurrent. Since Y is second
countable, ^ has a countable subcover W = {Wx, W2, ...}. Let %x denote
the functions eu(x) for the C/'s in %? that are elements of W.   D

In the following we will say that two distinct chain transitive components C
and C are distinguished by eeâ6 if either there is no e(x)-chain going from
any point of C to C or else there is none going from any point of C to C .
Our goal is to show that there is a countable subset ^ of ¿P with the property
that any pair of distinct chain transitive components of / are distinguished by
some element of §2 •

Lemma 4.2. Let ß > 0 and a compact subset K of X be given. Suppose that
J[ is a collection of chain transitive components of f satisfying

(1) f(C) nK¿0 for each Ce/.
(2) For each distinct pair C, C in ^# there is an e.e3° that distinguishes

between them and satisfies e(x) > ß for all x e K.
Then Jf is finite.
Proof. The idea is to show that the intersections of K with distinct elements of
Ji are uniformly bounded apart from each other. Suppose that C, C are in
Jf, containing the points p, p', respectively, and that f(p), f(p') are both in
K and within ß of each other. Let e(x) be the element of ¿P distinguishing C
from C , as given by condition (2). Since ß < e(f(p)) we see that {p, f(p')}
is an e(x)-chain going from C to C Similarly, {p', f(p)} is an e(x)-chain
going from C to C, and we have a contradiction to the assumption that C
and C were distinguished by e(x).   a

Corollary 4.3. There is a single element e of ¿P that satisfies e(x) = ß for all
x e K and with the property that e(x) distinguishes between any pair of distinct
chain transitive components in JÍ.
Proof. Let p(x) be the minimum of the functions given by condition (2) of
the lemma for each of the finitely many pairs of distinct elements of ./#, and
let e(x) = min{/?, ¿z(x)} .   D
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As before, write X = (jn>QKn where each Kn is compact and is contained
in the interior of Kn+X . Let <§2 be the countable subset of & that is obtained
by applying the corollary with ß = l/m and K = Kn as m and zz range over
the positive integers.

Lemma 4.4. Any pair of distinct chain transitive components can be distinguished
by an element of ^2.
Proof. Given a pair of distinct chain transitive components C and C , choose
zz large enough that both f(C) and f(C) meet Kn . Since they are distinct
there is an e e ¿P that distinguishes them. Pick m large enough that 1/zrz
is less than the minimum value of e(x) on K„ . Then the element of %2
corresponding to this choice of m and zz distinguishes C from C .   D

Now that we have Lemmas 4.1 and 4.4 we can finish the construction of the
complete Lyapunov function L. Let Z c X be a countable dense subset of
X, and let «? denote the union of the two countable subsets of ¿P given by
Lemmas 4.1 and 4.4. For each z e Z and each e e % let U(z, e) be the
set of all possible end points of e(x)-chains that begin at z ; as in the proof of
Theorem 1, each of these countably many sets is open and absorbing. List them
in some order, Ux, U2, ... ; for each n let A„ be the weak attractor determined
by Un and let h„ be the associated Lyapunov-like function. Define L by

oo

L(x) = £/zn(x)/3".
«=i

The properties (i)-(iv) defining a Lyapunov function are now verifiable: the
density of Z combined with the properties of the collection §>[ of Lemma 4.1
imply property (i), while properties (ii) and (iii) follow from Lemma 4.4. (iv)
is a consequence of the fact that each hn is either 0 or 2 on any given chain
component, which shows that L\WR+(f) is a subset of the Cantor middle-third
set. For details of the argument consult [7].

5. Appendix: proof of Lemma 2.4

The proof of Lemma 2.4 uses the fact that any metric space is paracompact
so that there is a continuous partition of unity that is subordinate to any given
open cover of the space [2, 9]. Recall that X is locally compact and the two
functions /: X —» X and e: X —► (0, oo) are continuous. Define a function
zc: X —► (0, oo) by zc(x) = sup{0 < a < l\Ba(x) is compact}. Note that if
q < zc(x) then a - d(x, y) < K(y), from which it follows that zc(x) - K(y) <
d(x, y), so zc is continuous.

Now define n: X —» (0, oo) by

z/(x) = sup{0 < a < K(x)/2\f(Ba(x)) c BF,(f(x))(f(x))}.

In general r\ is not continuous, but it is lower semicontinuous. To verify the
semicontinuity of r\ at p choose constants a, ß satisfying 0 < a < ß < n(p).
By the definition of n we know that Bß(p) is compact and that f(Bß(p)) c
Bs(f(x))(f(x)) ■ Since f(Bß(p)) is compact, there is a constant k < s(f(x)) such
that f(Bß(p)) c Bx(f(x)). Now if y is close enough to p we can conclude
all of the following: (i) Ba(y) c Bß(p) ; (ii) Bk(f(p)) C B£{f{y))(f(y)) ; and (iii)
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a < K(y)/2. It follows from (i)-(iii) that a < n(y) as long as y is sufficiently
close to p . Hence liminfy_p n(y) > n(p), and the lower semicontinuity of n
is established.

Let S? be the open cover of X by the balls BK(xy2(x). Note that each of
these balls has compact closure. By paracompactness there is a locally finite
open cover & = {F¡} refining & and a continuous partition of unity {y/¡}
subordinate to &~. Since each F¡ has compact closure, zz is bounded away
from 0 on F¡, say n(x) > 2y, > 0 on F¡. Now define 3(x) - J2 y¡Wi(x). Since
y/i(x) — 0 unless x e F¡ we see that y/¡(x) ^ 0 implies that y¡ < n(x)/2, so
that 8(x) < ^2n(x)y/j(x)/2 = n(x)/2, which by the definition of n implies
that f(Bô(x)(x)) c Be{f{x))(f(x)), as desired.
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