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Abstract: M-estimation is a widely used technique for robust statistical inference.

In this paper, we investigate the asymptotic properties of a nonconcave penalized

M-estimator in sparse, high-dimensional, linear regression models. Compared with

classic M-estimation, the nonconcave penalized M-estimation method can perform

parameter estimation and variable selection simultaneously. The proposed method

is resistant to heavy-tailed errors or outliers in the response. We show that, un-

der certain appropriate conditions, the nonconcave penalized M-estimator has the

so-called “Oracle Property”; it is able to select variables consistently, and the esti-

mators of nonzero coefficients have the same asymptotic distribution as they would

if the zero coefficients were known in advance. We obtain consistency and asymp-

totic normality of the estimators when the dimension pn of the predictors satisfies

the conditions pn log n/n → 0 and p2

n/n → 0, respectively, where n is the sample

size. Based on the idea of sure independence screening (SIS) and rank correla-

tion, a robust rank SIS (RSIS) is introduced to deal with ultra-high dimensional

data. Simulation studies were carried out to assess the performance of the proposed

method for finite-sample cases, and a dataset was analyzed for illustration.

Key words and phrases: Linear model, oracle property, rank correlation, robust

estimation, SIS, variable selection.

1. Introduction

The modern technologies employed in many scientific fields allow production

and storage of large datasets with ever-increasing sample sizes and dimensions,

and that often include superfluous variables or information. Effective variable

selection procedures are thus required to improve both the accuracy and inter-

pretability of learning techniques. Selecting too small a subset leads to mis-

specification, whereas choosing too many variables aggravates the “curse of di-

mensionality”; selecting the right subset of variables and excluding unimportant

variables when modeling high-dimensional data is of considerable importance.

In high-dimensional modeling, the classical L0 penalized variable selection

methods, AIC, BIC, CP and so on, all suffer from a heavy computational bur-

den, and the statistical properties of the estimators are difficult to analyze. To

overcome these insufficiencies, various shrinkage or L1 penalized variable selec-

tion methods, such as Bridge Regression (Frank and Friedman (1993)), LASSO
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(Tibshirani (1996)), Elastic-Net (Zou and Hastie (2005)) and Adaptive LASSO

(Zou (2006)), have been extensively investigated for linear and generalized linear

models. Fan and Li (2001) proposed a nonconcave penalized likelihood method

for variable selection in likelihood-based models, and showed that this method

has some good properties compared to other penalized methods. The noncon-

cave likelihood approach has been further extended to Cox’s model for survival

data (Fan and Li (2002)), partially linear models for longitudinal data (Fan and

Li (2004)) and varying coefficient partially linear models (Li and Liang (2008)).

These shrinkage methods are much more computationally efficient than the clas-

sical variable selection methods and the properties of the estimators for most

shrinkage methods are easier to study. It is easy to show that if the tuning pa-

rameters can be appropriately selected, then the true model can be consistently

identified. For sparse high-dimensional models, Candés and Tao (2007) proposed

the Dantzig selector, which is solution to an L1-regularization problem. They

showed that this selector has certain oracle properties in sparse high-dimensional

linear regression models. Fan and Peng (2004) investigated the properties of

nonconcave penalized estimators using the high-dimension likelihood approach.

In addition, the asymptotic properties of penalized least squares estimators for

sparse high-dimensional linear regression models have been widely investigated,

see Huang, Horowitz and Ma (2008) for Bridge Regression, Zhang and Huang

(2008) for LASSO, Zou and Zhang (2009) for Elastic-Net, Huang and Xie (2007)

for SCAD.

To avoid model misspecification and increase the robustness of the estima-

tion, a number of model-free dimension reduction methods have been considered.

Zhou and He (2008), for example, proposed a constrained dimension reduction

method based on canonical correlation and the L1 constraint. Zhong et al. (2005)

proposed a novel procedure called regularized sliced inverse regression (RSIR) to

directly identify the linear combinations and further the functional TFBS, while

avoiding estimation of the link function. Although these model-free dimension

reduction methods are not only able to reduce the model dimensions, but also to

shrink some of the coefficients of the selected linear combinations to zero, with-

out information on the model structure the estimation efficiency is somewhat

difficult to study and compare. The robust methods of some of the specified

models have been widely investigated, but robust variable/model selection has

received little attention. The seminal papers that do address this issue include

those of Ronchetti (1985) and Ronchetti and Staudte (1994) introducing robust

versions of the AIC and Mallows’ Cp selection criteria, respectively. Ronchetti,

Field, and Blanchard (1997) proposed robust model selection by cross-validation.

Ronchetti (1997) discussed the robust model selection variants of the classical

model selection criteria. Agostinelli (2002) used weighted likelihood to increase
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the robustness of model selection. Wu and Zen (1999) proposed a linear model

selection procedure based on M-estimation that includes many classical model

selection criteria as special cases. Zheng, Freidlin, and Gastwirth (2004) sug-

gested two measures based on Kullback-Leibler information for choosing a model

and demonstrated the robustness of their proposed methods. Müller and Welsh

(2005) proposed the selection of a regression model based on combining a robust

penalized criterion and a robust conditional expected prediction loss function

that is estimated using a stratified bootstrap. Khan, Van Aelst, and Zamar

(2007) suggested a robust linear model selection method based on Least Angle

Regression. Recently, Salibian-Barrera and Van Aelst (2008) proposed a robust

model selection method that uses a fast and robust bootstrap. Unfortunately,

most of the aforementioned robust model selection methods are based on classical

model selection criteria, and hence are computationally expensive. Although a

number of fast robust algorithms have been proposed, estimation properties re-

main little known, and it is thus difficult to investigate them in high-dimensional

situations.

When using a high-dimensional statistical regression model to fit data, there

are several problems that cannot be avoided. First, because of the high-dimension

nature of the model and the data, it is difficult to determine outlying observa-

tions from the data by simple techniques or criteria. High-dimensionality also

increases the likelihood of extreme covariates in the dataset. Second, as Fan

and Lv (2008) discuss, strong correlation always exists between the covariates

when the model dimensions are ultra-high. Thus, even when the model dimen-

sions are smaller than the sample size, the design matrix is close to a singular

matrix. Third, most of the theoretical results on penalized least squares in a

high-dimensional regression model setting are based on the assumption of nor-

mality or the sub-Gaussian distribution of white noise. This assumption seems

too restrictive. The white noise distribution is difficult to substantiate, and too

many superfluous variables in a model affect the estimation and the final distri-

bution of the residuals. Accordingly, the simple and direct use of penalized least

squares is not a good choice because it is not a robust estimation method, and

there is a large gap between the theoretical analysis and practical application.

The study of robust methods in a high-dimensional model setting is a nec-

essary one. Due to the robust property of M-estimation and the good properties

of the nonconcave penalty, we investigate nonconcave penalized M-estimation

for high-dimension models and show that it has the so-called “Oracle property”,

and that it retains its robustness properties. We relax the assumption concern-

ing white noise and assume only the existence of moments. Of course, there is

a cost to doing so; we cannot obtain theoretical results that support us directly

in applying the nonconcave penalized M-estimation to a case in which the model
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dimensions are ultra-high relative to the sample size. To deal with this issue,

we draw on the sure independence screening (SIS) concept presented in Fan and

Lv (2008), and on rank correlation, to propose a robust rank SIS method, the

RSIS. We first use the RSIS method to reduce the model dimensions to below

the sample size; then, nonconcave penalized M-estimation is used to obtain the

final estimation. Our proposed two-step procedure should retain some of the

robustness properties supported by our numerical studies.

The remainder of the paper is organized as follows. In Section 2, we define the

nonconcave penalized M-estimator and provide its asymptotic properties. The

RSIS method is introduced in Section 3. In Section 4, we describe the algorithm

used to compute the nonconcave penalized M-estimator and the criterion used to

choose the regularization parameter. A two-step robust procedure based on the

RSIS and penalized M-estimation is also discussed in this section to deal with

ultra high-dimension cases. In Section 5, we apply a number of simulations to

assess the finite sample performance of our penalized M-estimation method, and

to compare it with other variable selection procedures. A simulation study and

application are also presented in this section to compare the performance of the

the RSIS with that of the SIS. The proofs of the main results are relegated to

the Appendix.

2. Nonconcave Penalized M-estimation

2.1. M-estimation

Consider the linear regression model

yi = xT
i βn + ei, 1 ≤ i ≤ n, (2.1)

where βn is a pn×1 unknown regression coefficient vector, and xi =(xi1, . . . , xipn
)T

are pn × 1 known predictors. Here, the subscript is used to make it explicit that

both the covariates and the parameters may change with n. We assume that

e1, . . . , en are i.i.d. variables with common distribution function F throughout,

unless otherwise stated. Without loss of generality, we assume the data are

centered, and so the intercept is not included in the regression model.

As is well known, least squares (LS) is not a robust method, because it is

sensitive to outliers and is much less efficient if the error distribution has heavier

tails than the normal distribution. A robust method provides a useful and stable

alternative that is not sensitive to outliers. Huber (1964, 1973, 1981) introduced

M-estimation of βn, which is defined as any value of β̂n that minimizes

n
∑

i=1

ρ(yi − xT
i βn) (2.2)
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with a suitable choice of function ρ; or as any value of βn that satisfies the

estimating equation
n

∑

i=1

ψ(yi − xT
i βn)xi = 0 (2.3)

for a suitable choice of function ψ. A natural method of obtaining (2.3) is to take

the derivative of (2.2) with respect to βn when ρ is continuously differentiable, and

to equate it with the null vector. In general, ρ is a convex function. Important ex-

amples include Huber’s estimate with ρ(x) = (x21|x|≤c)/2+(c|x|−c2/2)1|x|>c, c >

0, the Lq regression estimate with ρ(x) = |x|q, 1 ≤ q ≤ 2, and the regression quan-

tiles with ρ(x) = ρα(x) = αx+ +(1−α)(−x)+, 0 < α < 1, where x+ = max(x, 0).

If q = 1 or α = 1/2, then the minimizer of (2.2) is called the least absolute

deviation (LAD).

Throughout this paper, we assume that ρ is a nonmonotonic convex func-

tion, ψ is a non-trivial nondecreasing function, and pn → ∞ as n → ∞. Read-

ers are referred to Huber (1973), Portnoy (1984, 1985), and Welsh (1989) for

proofs of consistency and asymptotic normality for a class of the M-estimators

of regression parameters under regularity conditions. The consistency of the

M-estimates in high-dimensional regression models was considered by Huber

(1973) for p2
n/n → 0, Yohai and Maronna (1979) for p2

n/n → 0, and Portnoy

(1984) for pn log pn/n → 0, and their asymptotic normality by Huber (1973)

for p3
n/n → 0, Yohai and Maronna (1979) for p

5/2
n /n → 0, Portnoy (1985) for

(pn log n)3/2/n → 0, and Mammen (1989) for p
3/2
n log n/n → 0. Welsh (1989) con-

sidered this problem under weaker conditions on functions ψ and F and stronger

conditions on the ratio pn/n. Bai and Wu (1994) further pointed out that the

condition on pn can be viewed as an integrated part of the design conditions.

He and Shao (2000) further considered the asymptotic behavior of M-estimators

with increasing dimensions for the more general parametric models.

However, these papers did not consider variable selection. To address this

gap, we investigate penalized M-estimation for high-dimensional linear models.

More specifically, we determine situations in which the nonconcave penalized

M-estimator can correctly distinguish between nonzero and zero coefficients in

sparse high-dimensional settings. We also investigate conditions under which the

estimators of the nonzero coefficients have the same asymptotic distributions that

they would have if the zero coefficients were known with certainty. Thus, in fact,

we show that the nonconcave penalized M-estimators have the so-called oracle

property in the sense discussed by Fan and Li (2001) and Fan and Peng (2004).

The asymptotic properties of these estimators are investigated with pn log n/n →
0 for consistency, and p2

n/n → 0 for asymptotic normality. Our investigation

addresses the gap between SIS (Fan and Lv (2008)) and nonconcave penalized
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least squares. Fan and Lv (2008) introduced the concept of sure screening and

proposed the SIS method to reduce ultra-high dimensions to a relatively large

scale that is smaller than or equal to the sample size for linear models. Because

this relatively large scale is normally of the order n/ log n, nonconcave penalized

M-estimation procedures can then be used to estimate the coefficients and select

the variables simultaneously.

2.2. Penalized M-estimation

Let {yi,x
T
i }, i = 1, . . . , n, be a random sample that satisfies

yi = xT
i βn + ei. (2.4)

Suppose that the pn covariates can be classified into two categories: important

covariates, whose corresponding coefficients are nonzero, and trivial ones, whose

coefficients are zero. Throughout, let the true parameter value be βn0. Let βn0

can be partitioned such that βn0 = (βT
I0, β

T
II0)

T , where βI0 is a kn × 1 vector

and βII0 is a mn × 1 vector, and kn + mn = pn. Suppose that βI0 6= 0 and

βII0 = 0, where 0 is the vector with all components zero, so kn is the number of

nonzero coefficients and mn is the number of zero coefficients. Which coefficients

are nonzero and which are zero is unknown to us, but we partition βn0 in this

way to facilitate the statement of the assumptions. Let y = (y1, . . . , yn)T , and

let x = (xij , 1 ≤ i ≤ n, 1 ≤ j ≤ pn) be the n × pn design matrix. According to

the partition of βn0, we write x = (x1,x2), where x1 and x2 are the n × kn and

n × mn matrices, respectively. Let Sn = xTx and S1n = xT
1 x1.

We estimate the unknown parameter vector βn0 by minimizing

n
∑

i=1

ρ(yi − xT
i βn) + n

pn
∑

j=1

pλ(|βnj |), (2.5)

where pn is the dimension of βn, pλ(·) is a penalty function, and λ is a regular-

ization parameter that can be chosen by a data-driven criterion such as cross-

validation (CV), generalized cross-validation (GCV) (Craven and Wahba (1979);

Tibshirani (1996)), or the BIC-type tuning parameter selector (Wang, Li, and

Tsai (2007)). In practice, we may allow different parameters to have penalty func-

tions with different regularization parameters. Various penalty functions have

been used in the variable selection literature for linear regression models. Frank

and Friedman (1993) considered the Lq penalty, pλ(|βn|) = λ|βn|q, (0 < q < 1),

which yields a “Bridge Regression”. Tibshirani (1996) proposed the LASSO,

which can be viewed as a solution to the penalized least squares with the L1

penalty pλ(|βn|) = λ|βn|. Fan and Li (2001) suggested that a good penalty func-

tion should have three properties: sparsity, unbiasedness, and continuity; more
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details on the characterization of these three properties can be found in Fan and
Li (2001) and Antoniadis and Fan (2001). These authors showed that singularity
at the origin is a necessary condition to generate sparsity for penalty functions
and that nonconvexity is required to reduce estimation bias. It is well known that
the hard penalty function cannot satisfy the continuity condition, and that the
Lq−penalty with q > 1 cannot satisfy the sparsity condition. The L1−penalty
(LASSO) possesses sparsity and continuity, but generates estimation bias.

Fan and Li (2001) showed that nonconcave penalty functions such as Lq, 0 <
q < 1, can have these three properties. Fan (1997) proposed a special noncon-
cave penalty function called the Smoothing Clipped Absolute Deviation (SCAD)
penalty function, which is defined by

p′λ(|βn|) = λ

{

I(|βn| ≤ λ) +
(aλ − |βn|)+

(a − 1)λ
I(|βn| > λ)

}

for some a > 2,

(2.6)
where the notation z+ stands for the positive part of z. The SCAD penalty is
continuously differentiable on (−∞, 0)∪(0,∞), but not differentiable at 0, and its
derivative vanishes outside [−aλ, aλ]. As a consequence, SCAD penalized regres-
sion can produce sparse solutions and unbiased estimates for large parameters.
To simplify the tuning parameter selection, Fan and Li (2001) suggested using
a = 3.7 for the SCAD penalty function, drawing on a Bayesian point of view.

The nonconcave penalized M-estimator of βn0 is obtained by minimizing the
objective function with nonconcave penalty

Qn(b; λ, a) =

n
∑

i=1

ρ(yi − xT
i b) + n

pn
∑

j=1

pλ(|bnj |). (2.7)

If ρ is convex with derivative ψ, then (2.7) is equivalent to

n
∑

i=1

ψ(yi − xT
i β̂n)xi − nP ′

λ(|β̂n|) = 0, (2.8)

where P ′
λ(|β̂n|) is a pn × 1 vector whose jth element is p′λ(|β̂nj |)sgn(β̂nj). Here,

the function sgn(x) is equal to 1 for x > 0, 0 for x = 0, and -1 for x < 0. When
pλ(·) ≡ 0, the solution of (2.7) is the M-estimate (Huber (1973)). For a given
penalty parameter λ, the nonconcave penalized M-estimator of βn0 is

β̂n ≡ β̂n(λ) = argmin
b

Qn(b; λ). (2.9)

2.3. Asymptotic properties

Here are the regularity conditions on ρ,xi, and the penalty functions that
we employ:
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(C1) ρ is a convex function on R
1 with right and left derivatives ψ+(·) and ψ−(·),

is any choice of the subgradient of ρ(·),
ψ−(t) ≤ ψ(t) ≤ ψ+(t) for all t ∈ R

1, (2.10)

and S is the set of discontinuity points of ψ.

(C2) The common distribution function F of ei satisfies F (S)=0. E[ψ(e1)] = 0,
0 < E[ψ2(e1)] = σ2 < ∞, and

G(t) ≡ E[ψ(e1 + t)] = γt + o(|t|), as t → 0, (2.11)

where γ is a positive constant. Furthermore,

lim
t→0

E[ψ(e1 + t) − ψ(e1)]
2 = 0. (2.12)

Throughout the paper, ρ1(A) ≤ · · · ≤ ρpn
(A) are the eigenvalues and tr(A)

is the trace operator of a matrix A.

(C3) There are N0 and constants b and B such that, for n ≥ N0,

0 < bn ≤ ρ1(Sn) ≤ ρpn
(Sn) ≤ Bn. (2.13)

(C4) There exists a sequence of fixed vectors {u} in R
pn , with ‖u‖ bounded, such

that
max{|xT

i u| : i = 1, . . . , n} = O(
√

log n). (2.14)

(C5) d2
n ≡ max1≤i≤n xT

1iS
−1
1n x1i, where x1i is an kn × 1 vector. When n is large

enough, there exists a constant s > 0 such that dn ≤ sn−1/2.

Conditions (C1)–(C2) are standardly it imposed in the M-estimation theory
of linear models; for examples, see Bai, Rao, and Wu (1992) and Wu (2007).
Condition (C3) is a classical condition that has been assumed in the linear model
literature. Condition (C4) can be found in Portnoy (1985). Condition (C5) is
basically the Lindeberg-Feller type condition, it is required in the proof of the
asymptotic normality of the estimators of nonzero coefficients, and can be found
in Wu (2007). With condition (C5), the diagonal elements of the hat matrix
x1S

−1
1n xT

1 are uniformly negligible. If x1i1 , . . . ,x1ikn
are linearly independent, 1 ≤

i1 ≤ · · · ≤ ikn
, and Q = (x1i1 , . . . ,x1ikn

), then Q is nonsingular, QT S−1
1n Q → 0,

and consequently S−1
1n → 0 as n → ∞. This implies that the minimum eigenvalue

of S1n diverges to ∞. It is a classical condition for weak consistency of the least
squares estimators.

Let

an = max{|p′λn
(|βn0j |)| : βn0j 6= 0}, (2.15)

bn = max{|p′′λn
(|βn0j |)| : βn0j 6= 0}, (2.16)

where we write λ as λn to emphasize that λn depends the sample size n.
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(C6) lim inf
n→∞

lim inf
θ→0+

p′λn
(θ)/λn > 0.

(C7) an = O(n−1/2).

(C8) bn → 0 as n → ∞.

(C9) There are constants C and D such that, when θ1, θ2 > Cλn, |p′′λn
(θ1) −

p′′λn
(θ2)| ≤ D|θ1 − θ2|.

The following theorem shows how the convergence rates for the nonconcave-

penalized M-estimators depend on the regularization parameter.

Theorem 1. Suppose that ρ and xi satisfy conditions (C1–C4) and the penalty

function pλn
(·) satisfies conditions (C7)–(C9). If pn log n/n → 0 as n → ∞,

then there exists a nonconcave penalized M-estimator β̂n such that ‖β̂n − βn0‖ =

OP (p
1/2
n (n−1/2 + an)).

Theorem 1 has the nonconcave penalized M-estimator of βn0 root-(n/pn)

consistent if an = O(n−1/2). For the SCAD penalty, if the nonzero coefficients

are larger than aλn, then it can be easily shown that an = 0 when n is large

enough, and hence the estimate of nonconcave penalized M-estimator βn is root-

(n/pn) consistent.

Let

bn = (p′λn
(|βn01|)sgn(βn01), . . . , p

′
λn

(|βn0kn
|)sgn(βn0kn

))T , (2.17)

Σλn
= diag{p′′λn

(|βn01|), . . . , p′′λn
(|βn0kn

|))}, (2.18)

where kn is the number of components in βI0.

Theorem 2.(Oracle property) Under conditions (C1)–(C9), if λn → 0,
√

n/pnλn

→ ∞, and p2
n/n → 0 as n → ∞, then with probability tending to 1, the root-

(n/pn) consistent nonconcave penalized M-estimator β̂n = (β̂T
I , β̂T

II)
T of (2.9)

satisfies the following.

(i) (Sparsity) β̂II = 0.

(ii) (Asymptotic normality) If there exists a σ4 such that E[ψ4(ei)] ≤ σ4 < ∞,

then

AnS
−1/2
1n {γS1n + nΣλn

}[(β̂I − βI0) + n{γS1n + nΣλn
}−1bn]

L−→ N(0, σ2G),

(2.19)

where “
L−→” stands for the convergence in distribution, and An is a q × kn

matrix such that AnAT
n → G.
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Theorem 2 implies that the nonconcave penalized M-estimators of the zero

coefficients are exactly zero with strong probability when n is large. When n is

large enough, and the nonzero-valued coefficients are larger than aλn, Σλn
= 0

and bn = 0 for the SCAD penalty. Hence, the asymptotic normality (ii) of

Theorem 2 becomes

AnS
1/2
1n (β̂I − βI0)

L−→ N(0, γ−2σ2G), (2.20)

which has the same efficiency as the M-estimator of βI0, based on the submodel

with βII0 known in advance. This has the nonconcave penalized M-estimator

as efficient as the oracle estimate even when the number of parameters diverges.

Fan and Peng (2004) considered maximum penalized likelihood estimation and

required that the number of parameters, pn, satisfy p4
n/n → 0 for consistency,

and p5
n/n → 0 for asymptotic normality. It is easy to see from Theorem 1 and

Theorem 2 that the consistency and the asymptotic normality of the nonconcave

penalized M-estimator are true as long as pn log n/n → 0 and p2
n/n → 0, respec-

tively. This improves the order in some of the literature without requiring strong

orthogonality between the yi’s, as in Portnoy (1985). It also addresses the gap

between the SIS (Fan and Lv (2008)) and nonconcave penalized methods.

3. Rank Sure Independence Screening (RSIS)

In this section, we discuss how the method proposed in Section 2 can be

applied to ultra-high dimensional data with pn much larger than n. Candés and

Tao (2007) suggested using the Dantzig selector, which is able to achieve the ideal

estimation risk up to a log(pn) factor under the uniform uncertainty condition.

However, Fan and Lv (2008) showed that this condition may easily fail, and that

the log(pn) factor becomes too large when pn is exponentially large. Moreover,

the computational cost of the Dantzig selector becomes very high when pn is

large. To overcome these difficulties, Fan and Lv (2008) proposed a two-stage

procedure. First, SIS is used as a fast, but crude, method of reducing the ultra-

high dimensionality to a relatively large scale that is still smaller than or equal to

sample size n; then, a more sophisticated technique can perform the final variable

selection and parameter estimation simultaneously. This relatively large scale is

normally of the order n/ log n.

Based on the SIS concept, let ω = (ω1, . . . , ωpn
)T be a pn-vector that is

obtained by computing

ωk =
1

n(n − 1)

n
∑

i 6=j

I(xik < xjk)I(yi < yj) −
1

4
, k = 1, . . . , pn. (3.1)
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We sort the pn magnitudes of the vector |ω| in a decreasing order and define a

submodel

M = {1 ≤ i ≤ pn : |ωi| is among the first [
cn

log n
] largest of all}, (3.2)

where c is a positive constant and [cn/ log n] < n. This is a straightforward

way of shrinking the full model, {1, . . . , pn}, to a submodel M with size dn =

[cn/ log n] < n. Similar to SIS, we can reduce the model size from ultra-high

dimensionality to a relatively large scale if the first [cn/ log n] of |ωi|, i = 1, . . . , pn

has a high probability of including all of the effective variables. We call such a

method Rank SIS (RSIS).

The SIS concept is based on correlation learning, but the Pearson correla-

tion it uses is sensitive to the outlying or influence points. Moreover, Pearson

correlation is unable to identify the nonlinear relationship between the response

variables and predictor variables. RSIS thus makes use of rank correlation rather

than Pearson correlation and we expect the proposed RSIS not only to reduce

the model size, similarly to SIS, but also to be more robust than it.

Using RSIS or SIS, model dimensions are reduced to a relatively large scale.

Lower-dimensional model selection methods, such as the SCAD, LASSO, adap-

tive Elastic-Net, and hard thresholding, can then be used to estimate the model.

We have many choices, but to obtain a robust and efficient estimation of the

model, we prefer RSIS with penalized M-estimation.

4. Practical Issues Surrounding Penalized M-estimation

Finding the estimator of βn that minimizes the objective function (2.7) poses

a number of interesting challenges because the penalized functions are nondif-

ferentiable at the origin and nonconcave with respect to βn. Fan and Li (2001)

suggest iterative, local approximation of the penalty function by a quadratic func-

tion, referring to such approximation as local quadratic approximation (LQA).

With the aid of LQA, the optimization of the penalized objective function can be

carried out using a modified Newton-Raphson algorithm. However, as pointed

out in Fan and Li (2001) and Hunter and Li (2005), the LQA algorithm shares the

drawback of backward stepwise variable selection: a covariate deleted at any step

in the LQA algorithm is necessarily excluded from the final model. To overcome

this computational difficulty, Hunter and Li (2005) proposed an MM algorithm

that optimizes a slightly perturbed version of the LQA. Although the MM algo-

rithm addresses the drawback of the LQA, the perturbation size is difficult to

determine. To overcome this weakness of the LQA algorithm, Zou and Li (2008)

proposed a unified algorithm based on local linear approximation (LLA). In the

present paper, we use both the original LQA algorithm (Fan and Li (2001)) and
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the perturbed LAQ algorithm (Hunter and Li (2005)) to compute the nonconcave

penalized M-estimators for a given λn and a. The algorithms are presented in

Subsection 4.1.

4.1. Local quadratic approximation (LQA)

The nonconcave penalty function is singular at the origin and has no con-

tinuous second-order derivative. Suppose that we assign an initial value βn that

is close to the true value βn0. If βnj is very close to 0, then we set β̂nj = 0;

otherwise, the penalty function is locally approximated by a quadratic function

using

[pλn
(|βnj |)]′ = p′λn

(|βnj |)sgn(βnj) ≈
{p′λn

(|βn0j |)
|βn0j

|
}

βnj .

In other words,

pλn
(|βnj |) ≈ pλn

(|βn0j |) +
1

2

{p′λn
(|βn0j |)
|βn0j |

}

(β2
nj − β2

n0j), for βnj ≈ βn0j . (4.1)

Then, the Newton-Raphson algorithm can be modified to find the minimum of the

nonconcave penalized M-estimation objective function (2.7). More specifically,

we take the unpenalized M-estimate to be the initial value β0
n. We then update

the estimate of βn repeatedly until convergence with

β(k+1)
n = arg min

β







n
∑

i=1

ρ(yi − xT
i βn) + n

pn
∑

j=1

p′λn
(|β(k)

nj |)
2|β(k)

nj |
β2

nj







, k = 1, 2, . . . .

(4.2)

Fan and Li (2001) suggested that to avoid numerical instability if β
(k)
nj in

(4.2) is smaller than or equal to the predefined small cutoff value ǫ0, then set

β̂nj = 0 and delete the jth component of the covariate from the iteration. There

is no criterion for such a cutoff value. In our numerical study, this value is set to

ǫ0j = τ · std(β̂nj), j = 1, . . . , pn, where τ = 0.6 and std(β̂nj) is the estimate of the

standard deviation of the nonpenalized M-estimate of βnj . The use of std(β̂nj)

is designed to remove the effect of scale, and τ = 0.6 is an empirical selection.

In our numerical study, we also tried τ as 0.1, . . . , 0.5, to update the penalized

M-estimate. The results exhibited little difference from those with τ = 0.6, but

demanded more computational time due to the additional number of iterative

steps that sometimes renders the numerical results unstable. We recommend

τ = 0.6 for practical use.

We also note that when using cutoff values to set some coefficients to zero in

every iterative step, the LQA algorithm becomes a backward stepwise algorithm
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in selecting the variables and estimating the coefficients. To avoid this draw-

back, Hunter and Li (2005) suggested optimizing a slightly perturbed version

of (4.2) with the denominator bounded away from zero. More specifically, they

recursively solved

β(k+1)
n = arg min







n
∑

i=1

ρ(yi − xT
i βn) + n

pn
∑

j=1

p′λn
(|β(k)

nj |)
2{|β(k)

nj | + τ0}
β2

nj







k = 1, 2, . . . ,

(4.3)

for a prespecified size perturbation τ0, and then performed the iteration until

the sequence of {β(k)
n } converged. Again, it is difficult to choose the size of the

perturbation in implementation. Furthermore, the size of τ0 potentially affects

the solution’s degree of sparsity and the speed of convergence. Hunter and Li

(2005) suggested using

τ0 =
ξ

2nλn
min{|βn0j | : βn0j 6= 0} (4.4)

for a given tolerance ξ and give a more detailed discussions. As in their algorithm,

we are involved in selecting a tuning parameter ξ, but do not consider Hunter

and Li’s algorithm in our comparisons.

4.2. Selection of λn

To implement the procedures described in Section 2, we need to choose the

regularization parameter λn. One can select λn by minimizing the generalized

cross validation criterion. Wang, Li, and Tsai (2007) pointed out that this crite-

rion has a nonignorable overfitting effect even as the sample size goes to infinity.

They further proposed a BIC-based tuning parameter selector that they showed

to be able to identify the true model consistently. This motivated us to select

the optimal λn by minimizing the BIC (Schwarz (1978)) information criterion

BIC(λn) = n log

(

n
∑

i=1

ρ(yi − xT
i β̂n)

)

+ DFλn
log(n). (4.5)

Here DFλn
is the generalized degrees of freedom (Fan and Li (2001)) DFλn

=

tr{x(xTx + nD(β̂n;λn))−1xT }, where D(β̂n; λn) is the diagonal matrix whose

diagonal elements are (1/2)p′λn
(|β̂nj |)/|β̂nj |, j = 1, . . . , pn.

5. Numerical Studies

5.1. Penalized M-estimation

In this subsection, we report on two simulation studies to illustrate the finite

sample properties of the nonconcave penalized M-estimator with heavy-tailed
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errors. We investigated in Table 1 two features: (i) variable selection and (ii)

prediction performance. For (i), we report in Table 1 the average numbers of the

correct and incorrect zero coefficients in the final models. For (ii), we compute

the model error ME ≡ (β̂n − βn)T E(xxT )(β̂n − βn).

Example I. We simulated covariates xi, i = 1, . . . , n from the multivariate nor-

mal distributions with mean 0 and

Cov(xij , xil) = ρ|j−l|, 1 ≤ j, l ≤ pn. (5.1)

The response variables were generated according to the model

yi = xT
i βn + σei, (5.2)

where βn = (2, 1.5, 0.8,−1.5, 0.4, 0, . . . , 0)T . Thus the first kn = 5 regression

variables were significant, but the rest were not, and the dimensionality of the

parametric component was taken to be pn = ⌊1.8n1/2⌋. Noise ei was gener-

ated from four different distributions: the standard normal, the mixture nor-

mal 0.9N(0, 1) + 0.1N(0, 9), the standard t with three degrees of freedom, and

the standard t with five degrees of freedom. Two different values, σ = 0.5

and 1.0, which represent strong and weak signal-to-noise ratios, were considered.

For comparison, three ρ functions were employed as loss functions: ρ1(t) = t2

(LS); ρ2(t) = |t| (LAD); and ρ3(t) = 0.5t2 if |t| ≤ 1.345 and ρ3(t) = 1.345|t| −
0.5(1.345)2 otherwise (Huber ρ). We abbreviate the estimators obtained by mini-

mizing these three loss functions with the SCAD penalty as the LS-SCAD, LAD-

SCAD, and Huber-SCAD estimators, respectively. Sample size n was taken to be

500 and 1,200 in this simulation, and the corresponding dimensions of parameter

vector βn were 40 and 62, respectively. In this simulation example, we applied

the BIC criterion of (4.5) to select the tuning parameters, and took the unpenal-

ized M-estimate to be the initial estimate by using the aforementioned three loss

functions, respectively. For each case, we repeated the experiment 100 times and

adopted only the SCAD as the penalty function to compare its performance with

the original LQA algorithm (4.2) and the perturbed LAQ algorithm (4.3) with

ξ = 10−8 in (4.4). The simulation results of these two algorithms were similar,

and so we report only the simulation results of the LQA algorithm here.

Table 1 reports the average number of zero coefficients for the linear model

(5.2) with the different error distributions and signal-to-noise ratios, and Figure

1 gives the box plots for these average model errors.

As can be seen from Table 1, all of the variable selection procedures were able

to correctly identify the true submodel, but the LAD-SCAD and Huber-SCAD

procedures performed significantly better than did the LS-SCAD procedure and

fit the true submodel very well. It can be seen from Figure 1 that the average
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Figure 1. Box plots of the average model errors for the ρ functions LS, LAD,
and Huber, Here without the SCAD penalty for the oracle linear model.
LS-SCAD, LAD-SCAD and H-SCAD represent the three methods with the
SCAD penalty, using the LQA algorithm for the original high-dimensional
linear model.
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Table 1. Average numbers of zero coefficients.

e ∼ N(0, 1) Nmix
a t(3) t(5)

(n, pn, σ) Method C IC C IC C IC C IC
(500,40,0.5) Truth 35.00 0.00 35.00 0.00 35.00 0.00 35.00 0.00

LS-SCAD 28.98 0.00 29.04 0.00 29.50 0.00 29.43 0.00
LAD-SCAD 31.07 0.00 31.74 0.00 32.72 0.00 32.31 0.00
Huber-SCAD 33.10 0.00 33.00 0.00 33.36 0.00 33.35 0.00

(500,40,1.0) LS-SCAD 28.86 0.00 29.34 0.00 29.44 0.01 29.43 0.00
LAD-SCAD 33.32 0.00 34.09 0.00 34.00 0.00 33.99 0.00
Huber-SCAD 32.90 0.00 33.16 0.00 32.85 0.00 33.16 0.00

(1,200,62,0.5) Truth 57.00 0.00 57.00 0.00 57.00 0.00 57.00 0.00
LS-SCAD 47.70 0.00 47.65 0.00 47.95 0.00 47.29 0.00

LAD-SCAD 51.44 0.00 52.22 0.00 53.40 0.00 52.51 0.00
Huber-SCAD 54.19 0.00 53.77 0.00 53.92 0.00 53.99 0.00

(1,200,62,1.0) LS-SCAD 47.50 0.00 47.67 0.00 47.95 0.00 47.92 0.00
LAD-SCAD 54.98 0.00 55.70 0.00 55.80 0.00 55.50 0.00
Huber-SCAD 53.88 0.00 54.02 0.00 53.85 0.00 54.02 0.00

a Nmix denotes the mixture normal distribution 0.9N(0, 1) + 0.1N(0, 9).
“C” presents the average numbers of zero coefficients correctly estimated to be zero;
“IC” presents the average numbers of nonzero coefficients erroneously set to zero.

model errors tended to be more diffuse as σ increased. The oracle estimators

performed the best. The LAD-SCAD and Huber-SCAD performed comparably

to the oracle estimators, and had smaller average model errors and were more

stable than the LS-SCAD under heavy-tailed error distributions.

For each estimator β̂I of the nonzero coefficients, estimation accuracy was

measured by the bias and the median absolute deviation divided by 0.6745

(MAD) among 100 simulations. The bias was computed by the difference be-

tween the median of the estimated coefficients based on 100 simulations and the

true value. MAD is a robust measure of variability, and a more robust estimator

than the variance or standard deviation. Table 2 presents the results for the

nonzero coefficients when the error distribution was the standard t-distribution

with three degrees of freedom. As the results for the other cases were similar, we

do not report them here. From the simulation results in Table 2, we can see that

the LAD-SCAD estimator exhibited similar performance to that of the Huber-

SCAD estimator in terms of biasedness and the median absolute deviation. In

the situation in which the data were generated from the t(3) distribution, the

LAD-SCAD and Huber-SCAD estimates had smaller biases and median absolute

deviations (MAD) relative to the LS-SCAD estimates. They performed better

and were more stable than the LS-SCAD even as σ increased and the dimen-

sion of the parameters grew with sample size n. It is worth mentioning that the
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Table 2. Bias and MAD (multiplied by 1,000) of the estimators with error e ∼ t(3).

β̂1 β̂2 β̂3 β̂4 β̂5

Method Bias MAD Bias MAD Bias MAD Bias MAD Bias MAD
n = 500, pn = 40, σ = 0.5

LS-SCAD -7.0 36.5 -4.0 48.0 -3.1 52.1 6.2 51.8 -1.0 50.5
LAD-SCAD 1.9 30.3 -2.9 42.3 1.2 31.6 3.2 40.7 -0.7 34.9
Huber-SCAD -2.3 28.9 -0.8 36.1 -2.6 34.6 1.7 38.5 -0.7 34.1

n = 500, pn = 40, σ = 1
LS-SCAD 15.9 76.5 -6.3 87.6 -6.0 97.0 -24.7 115 -8.8 88.5

LAD-SCAD 4.9 62.4 -7.6 79.3 3.5 61.2 -8.4 60.1 -1.1 72.7
Huber-SCAD -2.7 73.3 -1.2 84.0 3.4 74.5 -11.0 80.7 1.1 69.1

n = 1, 200, pn = 62, σ = 0.5
LS-SCAD 1.8 30.2 0.8 31.8 -1.5 35.9 7.0 28.2 -1.8 28.3

LAD-SCAD 1.1 24.5 1.4 27.0 2.4 25.9 1.8 22.3 1.0 24.8
Huber-SCAD 1.1 26.6 1.6 22.7 -0.2 25.4 1.2 22.5 -0.7 27.1

n = 1, 200, pn = 62, σ = 1
LS-SCAD -13.7 60.5 3.4 63.7 -7.2 71.8 13.9 56.4 -4.1 56.6

LAD-SCAD -4.0 44.8 -0.2 50.4 -3.0 52.7 4.6 45.4 -0.9 54.2
Huber-SCAD -5.3 55.9 -0.9 46.1 -3.8 52.1 4.2 46.6 -0.9 54.8

LAD-SCAD and Huber-SCAD estimators of the nonzero coefficients had trivial

biases in various situations.

Example II. For comparison with the LASSO (Tibshirani (1996)), the adaptive

Elastic-net (AEnet) (Zou and Hastie (2005); Zou and Zhang (2009)), and the

hard thresholding rule (Antoniadis (1997); and Fan and Li (2001)), we consid-

ered model (5.2) with noise levels σ = 1.5 and 3, and took the (moderate) sample

sizes n = 200 and 400 and the corresponding dimensions of the parameter vector

pn = 25 and 36, respectively. In this example, the BIC was applied to estimate

the tuning parameter for each variable selection procedure by using the corre-

sponding loss functions. To compare the performance of the methods, the mean

and standard deviation (SD) of the model errors, and the average number of zero

coefficients of 500 simulated datasets are summarized in Table 3 based on the

error distribution t(3) (the results for the other cases are similar). It is worth

mentioning that we used only the LAD with ρ(t) = |t| as the loss function for

the Oracle estimates in Table 3.

From Table 3, it can be seen that even when the noise level was high and the

sample size was small, the LAD-SCAD and Huber-SCAD performed best and

significantly reduced both model error and complexity, whereas the AEnet per-

formed better than LASSO. The other variable selection procedures also reduced

model error and model complexity. However, when the noise level increased, the

LS-SCAD and the hard thresholding rule performed the worst.
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Table 3. Model selection and fitting results based on error e ∼ t(3).

ME No. of Zeros ME No. of Zeros
Method mean(SD) C IC mean(SD) C IC

(n, pn, σ) = (200, 25, 1.5) (n, pn, σ) = (200, 25, 3)
Oracle 0.0882 (0.0839) 20.00 0.00 0.3762 (0.2426) 20.00 0.00

LS-SCAD 0.3785 (0.2838) 16.90 0.04 2.1495 (1.0999) 16.92 0.13
LAD-SCAD 0.2307 (0.1463) 19.79 0.07 0.9975 (0.6298) 19.99 0.30
Huber-SCAD 0.2027 (0.1163) 18.71 0.03 0.9834 (0.5318) 18.67 0.13

LASSO 0.2690 (0.1343) 18.34 0.04 1.3451 (0.5829) 19.68 0.19
AEnet 0.2402 (0.1082) 18.82 0.04 1.2570 (0.4505) 19.33 0.13
Hard 0.2449 (0.1708) 19.11 0.04 1.6119 (1.0691) 19.10 0.12

(n, pn, σ) = (400, 36, 1.5) (n, pn, σ) = (400, 36, 3)
Oracle 0.0436 (0.0280) 31.00 0.00 0.1941 (0.1354) 31.00 0.00

LS-SCAD 0.2164 (0.1435) 26.00 0.01 0.8612 (0.4823) 26.01 0.06
LAD-SCAD 0.0954 (0.0576) 30.68 0.02 0.5502 (0.3488) 31.00 0.20
Huber-SCAD 0.0982 (0.0512) 28.87 0.00 0.4448 (0.2280) 29.14 0.06

LASSO 0.1469 (0.0677) 28.62 0.00 0.7564 (0.3311) 30.60 0.13
AEnet 0.1329 (0.0631) 28.56 0.00 0.5401 (0.3993) 29.42 0.10
Hard 0.1370 (0.0934) 29.47 0.01 0.9396 (0.5142) 29.69 0.07

5.2. Ultra-high dimensional case

To examine the performance of the proposed method in the ultra-high di-

mensional case, we first applied RSIS and SIS to reduce the dimensions down to

the order of n/ log n, and then fit the data by using the procedure proposed in

Section 2 and compared it with existing approaches. For comparison, the Dantzig

selector procedure proposed by Candés and Tao (2007) was used in the follow-

ing example. The Matlab codes for the algorithm are available at the website

http://www.acm.caltech.edu/l1magic/.

In this simulation study, the model under study was similar to that in Fan

and Lv (2008): Y = xT βn + 1.5e. Here, noise e was drawn from the standard

normal and the standard normal with 10% outliers drawn from the standard

Cauchy. Covariate x was generated from the independent standard normal. We

considered (n, pn) = (200, 1,000) based on 100 datasets, where the number of

nonzero coefficients was 8. Each nonzero coefficient was chosen randomly, and

generated as (−1)U (4 log n/
√

n+|Z|/4) with Z ∼ N(0, 1), where U was Bernoulli

with parameter 0.5. We first used both RSIS and SIS to reduce the dimensionality

from 1,000 to dn = [5n/ log n] = 188. For each method, we report the median

of the selected model sizes (SMS), the median of the standard deviation (SD) of

model errors (ME), and the median of the estimation errors ‖β̂n−βn‖ in L2-norm

(EE), see Table 4.

From Table 4, we see the following.

http://www.acm.caltech.edu/l1magic/
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Table 4. Medians of the selected model size (SMS) and the estimation errors
(EE) in L2-norm, and the median and standard deviation (SD) of the model
errors (ME).

e ∼ N(0, 1) N(0, 1) with 10% outliers
ME ME

Method SMS EE median(SD) SMS EE median(SD)
RSIS+

LS-SCAD 17.5 0.4762 0.2206 (0.3510) 19 1.7747 1.0114 (0.9151)
LAD-SCAD 16 0.4401 0.1836 (0.4352) 13 0.4915 0.2464 (0.8663)

LASSO 45 0.8206 0.6244 (0.4020) 53 1.3505 1.2604 (1.0909)
AEnet 18 0.4354 0.3647 (0.3634) 23 1.0729 1.0006 (0.7070)
Hard 53 1.2118 0.9215 (0.5548) 59 2.7174 2.1585 (4.0463)

SIS+
LS-SCAD 21 0.4594 0.4078 (0.3896) 33 1.4382 1.5267 (1.1197)

LAD-SCAD 16 0.4078 0.1977 (0.3491) 17 0.5490 0.3270 (0.9427)
LASSO 44 0.8289 0.6103 (0.5663) 49.5 1.2593 1.2730 (1.1435)
AEnet 12 0.4830 0.4176 (0.2264) 30 1.1625 1.0327 (1.0453)
Hard 54 1.2362 0.9105 (0.5182) 116.5 5.7588 3.4480 (-)

Dantzig 103 3.9532 2.2357 (0.2147) 103 4.3499 3.2613 (-)

(1) When noise e was drawn from the standard normal, the LAD-SCAD, LS-
SCAD, and AEnet based on RSIS and SIS dimensionality reduction out-
performed the other variable selection procedures in terms of the selected
model sizes, model errors, and estimation errors. The LASSO and hard
thresholding rule performed much worse, with larger models and estima-
tion errors. This is not surprising, because the LASSO is not unbiased
and the hard thresholding penalty function does not satisfy the continuity
condition. The AEnet performed significantly better than the LASSO. The
Dantzig selector failed to generate a sparse model and had larger estimation
errors.

(2) When the data were contaminated with 10% outliers, the LAD-SCAD
method was much more stable and performed much better than did the
other variable selection procedures. However, the LS-SCAD performed
worse than did the AEnet. The hard thresholding rule and the Dantzig
selector had very large standard deviations of model errors.

(3) RSIS outperformed SIS, especially for data with outliers.

Generally speaking, the LAD-SCAD selected a smaller number of important
variables and obtained more accurate models than did the other procedures, in
view of the estimation errors and model errors. Our proposed methods were not
sensitive to outliers or error distributions with heavier tails, and can be considered
as robust variable selection and parameter estimation procedures.
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Table 5. Results for the ovarian cancer data.

RSIS+ SCAD* SCAD LASSO AEnet Hard
Number of selected variables 14 18 22 16 33

Test error 2/113 3/113 3/113 2/113 10/113
SIS+ SCAD* SCAD LASSO AEnet Hard

Number of selected variables 18 22 28 22 35
Test error 2/113 3/113 4/113 3/113 11/113

5.3. A real data example: Ovarian cancer data

The ovarian dataset 8-7-02 was provided by the National Cancer Institute

(NCI) and is available at http://home.ccr.cancer.gov/ncifdaproteomics/

ppatterns.asp. Wu et al. (2003) investigated the classification of ovarian can-

cer by using several statistical methods, and Yu et al. (2005) proposed a novel

method for dimensionality reduction to analyze raw ovarian cancer MS data. The

dataset includes 15,154 features and a total of 253 spectra samples: 162 ovarian

cancer samples and 91 control samples. We randomly divided this dataset into a

training sample with 140 cases (89 ovarian cancer samples and 51 control sam-

ples) and a test sample of 113 cases (73 ovarian cancer samples and 40 control

samples). Using such a dataset for cancer classification is challenging because

the data are of a very high dimension and the sample size is relatively small. Of

the large number of features, only a small portion may benefit the correct classi-

fication of cancers, with the remainder having little impact. Even worse, some of

the features may act as “noise” and undermine pattern recognition. Therefore,

feature selection becomes crucial here. By removing features that are irrelevant,

prediction accuracy can usually be improved.

The data can be written as S = {(xT
i , yi)| xi ∈ R

p, yi = 0, 1, i = 1, 2, . . . , n},
where xi is an intensity vector and yi denotes the sample cancer status (0 for

control, 1 for cancer). The logistic regression model with binary response was

used to fit these data. Here, we first applied RSIS and SIS to reduce the dimen-

sionality from p = 15, 154 to dn = [4n/ log n] = 113, with n = 140 the training

sample size chosen, and then employed the lower-dimensional model selection

methods, the SCAD, LASSO, AEnet, and hard thresholding, to obtain a family

of models indexed by regularization parameter λ. The tuning parameter λ was

chosen by the BIC of (4.5). In addition, we used an L1 regression for the SCAD

penalty, denoting the method by SCAD* in Table 5. For each method, we fit a

model with the training data, and then used it to predict the test data outcomes.

The dataset was standardized to zero mean and unit variance across genes, to

ensure that different features were comparable.

From Table 5, we can see that RSIS plus SCAD* selected 14 important

features and achieved two test errors, whereas SIS plus SCAD* obtained 18

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
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important features and made two test errors. The AEnet obtained fewer variables

and performed more stably than did the LASSO. Table 5 suggests that the most

parsimonious model was obtained by RSIS plus SCAD*.

6. Concluding Remarks

We have investigated nonconcave penalized M-estimation for relatively high

dimensional models and shown that this type of estimation has the so-called

“Oracle property.” In our numerical studies, nonconcave penalized M-estimation

lost little efficiency in comparison with existing penalized least squares methods,

and this type of estimation may be more robust than these methods. If outlying

or influential observations cannot be cleaned easily, or when it is difficult to

determine if the white noise in the model follows a heavy tail distribution, we

recommend nonconcave penalized M-estimation.

To handle ultra-high dimension cases, we propose a Rank SIS (RSIS) to first

reduce the model size to a relatively large scale, then employ the nonconcave

penalized M-estimation to obtain the final model estimation. The RSIS is based

on rank correlation and SIS. Compared to SIS, based on Pearson correlation,

RSIS inherits the robustness property of rank correlation, as is supported in our

numerical studies. Under situations that favor a combination of SIS and the

LS-SCAD, our proposed RSIS+LAD based SCAD remains comparable, and is

sometimes even better. However, as Fan and Lv (2008) point out, unpredictable

situations occur more often with ultra-high dimensional data. Thus, it is difficult

to say whether the robust methods or such classical methods as least squares are

more efficient and reliable in these situations. The question deserves further

study, but is beyond the scope of the current paper.
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Appendix

We provide proofs of the results stated in Subsection 2.3.

Proof of Theorem 1. Let αn =
√

pn(n−1/2 + an) and ‖u‖ = C, where C is

a sufficiently large constant. Our aim is to show that for any given ǫ there is a

large constant C such that, for a large n, we have

P

{

inf
‖u‖=C

Qn(βn0 + αnu) > Qn(βn0)

}

≥ 1 − ǫ. (A.1)

This implies with probability of at least 1− ǫ that there exists a local minimizer

in the ball {βn0 + αnu : ‖u‖ ≤ C}. Hence, there exists a local minimizer such

that ‖β̂n − βn0‖ = OP (αn).

Using pλn
(0) = 0, we have

Dn(u) =̂ Qn(βn0 + αnu) − Qn(βn0)

≥
n

∑

i=1

ρ(yi − xT
i (βn0 + αnu)) −

n
∑

i=1

ρ(yi − xT
i βn0)

+n

kn
∑

j=1

{pλn
(|βn0j + αnuj |; a) − pλn

(|βn0j |; a)}

=̂ I + II, (A.2)

where kn is the number of components in βI0, and

II =

kn
∑

j=1

[nαnp′λn
(|βn0j |)sgn(βn0j)uj +

1

2
nα2

np′′λn
(|βn0j |)u2

j{1 + o(1)}]

≤
kn
∑

j=1

[|nαnp′λn
(|βn0j |)sgn(βn0j)uj | +

1

2
nα2

np′′λn
(|βn0j |)u2

j{1 + o(1)}]

≤
√

knnαnan‖u‖ + max
1≤j≤kn

p′′λn
(|βn0j |)nα2

n‖u‖2

≤ nα2
n‖u‖ + nbnα2

n‖u‖2.

Next, we consider I.

I =
n

∑

i=1

ρ(yi − xT
i (βn0 + αnu)) −

n
∑

i=1

ρ(yi − xT
i βn0)

=

n
∑

i=1

∫ −αnx
T

i
u

0
[ψ(ei + t) − ψ(ei)]dt − αn

n
∑

i=1

ψ(ei)x
T
i u

=̂ I1 + I2. (A.3)
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Because |I2| ≤ αn‖u‖‖
∑n

i=1 ψ(ei)xi‖ and, since it is easy to check that

E

∥

∥

∥

∥

∥

n
∑

i=1

ψ(ei)xi

∥

∥

∥

∥

∥

2

= E





pn
∑

j=1

n
∑

i=1

n
∑

l=1

xijxljψ(ei)ψ(el)





=

pn
∑

j=1

n
∑

i=1

x2
ijEψ2(ei) ≤ σ2npn, (A.4)

we have |I2| ≤ OP (αn
√

npn)‖u‖ = OP (α2
nn)‖u‖.

Invoking conditions (C1) and (C2), for I1 we have

E(I1) =

n
∑

i=1

∫ −αnxT

i
u

0
G(t)dt

=

n
∑

i=1

∫ −αnxT

i
u

0
{γt + o(|t|)}dt

=
1

2
α2

nγuT Snu + oP (1)
1

2
nα2

n‖u‖2. (A.5)

Because pn log n/n → 0 and
√

pn log nan → 0 as n → ∞, with condition (C4) we

have max
1≤i≤n

|αnxT
i u| → 0. With the Schwarz inequality and condition (C2), it is

not difficult to show that

Var(I1) ≤
n

∑

i=1

E

{

∫ −αnx
T

i
u

0
[ψ(ei + t) − ψ(ei)]dt

}2

≤
n

∑

i=1

|αnx
T
i u| ·

∣

∣

∣

∣

∣

∫ −αnx
T

i
u

0
E[ψ(ei + t) − ψ(ei)]

2dt

∣

∣

∣

∣

∣

= o(1) ·
n

∑

i=1

(αnx
T
i u)2 → op(pn). (A.6)

From (A.5) and (A.6), I1 dominates all of the items uniformly in ‖u‖ = C when

a sufficiently large C is chosen. As I1 is positive, this completes the proof of

Theorem 1.

Lemma 1. Under the conditions of Theorem 1, if λn → 0 and
√

n/pnλn → ∞
as n → ∞, then the nonconcave penalized M-estimator β̂n = (β̂T

I , β̂T
II)

T satisfies

β̂T
II = 0 with probability tending to 1.

Proof. From Theorem 1 for a sufficiently large C, β̂n lies in the ball {βn0 +αnu :

‖u‖ ≤ C} with probability converging to 1, where αn =
√

pn(n−1/2+an). Taking
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the first derivative of Qn(βn) at any differentiable point βn = (βn1, . . . , βnpn
)T

with respect to βnj , j = kn + 1, . . . , pn, we have

∂Qn(βn)

∂βnj
= −

n
∑

i=1

ψ(yi − xT
i βn)xij + np′λn

(|βnj |)sgn(βnj)

= −
n

∑

i=1

ψ(ei − xT
i (βn − βn0))xij + np′λn

(|βnj |)sgn(βnj). (A.7)

For any u ∈ R
pn , let

Φn(u) =
n

∑

i=1

ψ(ei − αnx
T
i u)xi. (A.8)

Note that E(Φn(0)) = 0 and Var(Φn(0)) = σ2Sn. As max
1≤i≤n

xT
i S−1

n xi → 0, the

Lindeberg Theorem yields Φn(0)
L−→ N(0, σ2Sn). Note that max

1≤i≤n
|αnxT

i u| → 0

and, from the argument of Lemma 3.4 in Bai and Wu (1994), one has

sup
‖u‖≤C

|Φn(u) − Φn(0) + γαnSnu| = oP (1). (A.9)

Invoking Theorem 1, for any βn = (βT
I , βT

II)
T that satisfies βI−βI0 = OP (

√

pn/n)

and |βII − βII0| ≤ ǫn = C(
√

pn/n),

n
∑

i=1

ψ(ei − xT
i (βn − βn0))xi −

n
∑

i=1

ψ(ei)xi + γSn(βn − βn0) = oP (1). (A.10)

From (A.4), (A.10), and condition (C3), we have

n
∑

i=1

ψ(yi − xT
i βn)xi = OP (

√
npn). (A.11)

Using
√

pn/n/λn → 0 and (C6),

∂Qn(βn)

∂βnj
= nλn

{

−OP

(

√

pn/n

λn

)

+
p′λn

(|βnj |)
λn

sgn(βnj)

}

. (A.12)

Obviously the sign of βnj determines the sign of ∂Qn(βn)/∂βnj . Hence, (A.12)

implies that
∂Qn(βn)

∂βnj
=

{

> 0, for 0 < βnj < ǫn

< 0, for −ǫn < βnj < 0,

where j = kn + 1, . . . , pn. This completes the proof of Lemma 1.
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Proof of Theorem 2. Sparsity (i) follows from Lemma 1. Thus we need only

prove (ii). As shown in Theorem 1, β̂n is root-(n/pn) consistent. By Lemma 1,

each component of β̂I stays away from zero for a sufficiently large sample size

n. At the same time, β̂II = 0mn
with probability tending to 1. Thus, with

probability tending to 1, the partial derivatives exist for the first kn components.

That is, β̂I satisfies

−
n

∑

i=1

x1iψ(yi − xT
1iβ̂I) + nP ′

λn
(|β̂I |) = 0, (A.13)

where P ′
λn

(|β̂I |) is a kn × 1 vector whose jth element is p′λn
(|β̂nj |)sgn(β̂nj). Ap-

plying a Taylor expansion to (A.13), we have

{γS1n + nΣλn
}(β̂I − βI0) + nbn=̂w1 − w2 +

1

2
w3, (A.14)

where w1 =
∑n

i=1 ψ(ei)x1i, w2 =
∑n

i=1(ψ
′(ei) − γ)x1ix

T
1i(β̂I − βI0), and w3 =

∑n
i=1 ψ′′(ei−xT

1iβ
∗
n)[xT

1i(β̂I−βI0)]
2x1i. Here, β∗

n is a vector between 0 and β̂I−βI0.

Multiply the two sides of (A.14) by AnS
−1/2
1n to obtain

AnS
−1/2
1n {γS1n + nΣλn

}[(β̂I − βI0) + n{γS1n + nΣλn
}−1bn]=̂W1 − W2 +

1

2
W3,

(A.15)

where W1 = AnS
−1/2
1n w1,W2 = AnS

−1/2
1n w2, and W3 = AnS

−1/2
1n w3. Hence,

to prove Theorem 2, it suffices to show that W1 satisfies the conditions of the

Lindeberg-Feller Central Limit Theorem and Wi = oP (1) (i = 2, 3). Invoking

Theorem 1 and Lemma 3 of Mammen (1989), (C3), and the Cauchy-Schwarz

inequality, we have

|W2| ≤ ρ1/2
max(AnAT

n )ρ
−1/2
1 (S1n)oP (1)‖β̂I − βI0‖ = oP

(√
pn

n

)

= oP (1). (A.16)

Using ‖W3‖2 = tr(W3W
T
3 ), (C4), and pn log n/n → 0, we have

E‖W3‖2 ≤ (
B

b
)E(ψ′′(ei))

2 max
1≤i≤n

|xT
1i(β̂I − βI0)|4 = OP

(

p2
n log2 n

n2

)

= oP (1).

(A.17)

From (A.15)–(A.17), we obtain

AnS
−1/2
1n {γS1n+nΣλn

}[(β̂I−βI0)+n{γS1n+nΣλn
}−1bn] = W1+oP (1). (A.18)

Next, we verify that the conditions of the Lindeberg-Feller Central Limit The-

orem are satisfied by W1. Let ωni = AnS
−1/2
1n ψ(ei)x1i, i = 1, . . . , n. Note first



416 GAORONG LI, HENG PENG AND LIXING ZHU

that E(ωni) = 0 and

Var

(

n
∑

i=1

ωni

)

= σ2AnS−1
1n

n
∑

i=1

x1ix
T
1iA

T
n → σ2G (A.19)

as AnAT
n → G. For any ε > 0,

n
∑

i=1

E[‖ωni‖21{‖ωni‖ > ε}] = nE‖ωni‖21{‖ωni‖ > ε}

≤ n{E‖ωni‖4}1/2{P (‖ωni‖ > ε)}1/2. (A.20)

By (C5) and AnAT
n = G, we have

P (‖ωni‖ > ε) ≤ E‖ωni‖2

ε2
≤ σ2ρmax(AnAT

n )d2
n

ε2
= O(n−1) (A.21)

and, similar to the proof of Theorem 6 in Huang and Xie (2007), we have

E{‖ωni‖4} = E[ωT
niωni]

2

≤ σ4ρ
2
max(AnAT

n )ρ−2
1 (S1n)E

[

kn
∑

j=1

x2
1ij

]2

= O

(

k2
n

n2

)

, (A.22)

where x1ij is the jth component of x1i. Then by (A.20)–(A.22), we have

n
∑

i=1

E[‖ωni‖21{‖ωni‖ > ε}] = O

(

n
pn

n

1√
n

)

= o(1). (A.23)

From the foregoing argument, and invoking the Lindeberg-Feller Central Limit

Theorem, we complete the proof of (ii).
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