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Modélisation Mathématique et Analyse Numérique

NONCONFORMING GALERKIN METHODS BASED ON QUADRILATERAL
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Abstract. Low-order nonconforming Galerkin methods will be analyzed for second-order elliptic
equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rect-
angular elements will be considered in two and three dimensions. The simplicial elements will be based
on P1, as for conforming elements; however, it is necessary to introduce new elements in the rectangular
case. Optimal order error estimates are demonstrated in all cases with respect to a broken norm in
H1(Ω) and in the Neumann and Robin cases in L2(Ω).
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1. Introduction

In the first part (Sect. 2) of this paper, low-order nonconforming Galerkin methods will be defined and
analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions.
The object is to introduce a new nonconforming element over rectangles or quadrilaterals in two dimensions and
rectangles in three dimensions. Simplicial elements based on P1 will be analyzed first, and that analysis will be
used to motivate the choice of the rectangular elements. Optimal order error estimates are demonstrated in all
cases with respect to a broken norm in H1(Ω) and in the Neumann and Robin cases in L2(Ω). Since the Robin
condition leads to a somewhat more complicated analysis, this case will be presented in detail.

Rannacher and Turek [11], in the setting of the Stokes problem, analyzed two forms of nonconforming
elements based on simply rotating the usual bilinear element to employ Span {1, x, y, x2 − y2} as the local
basis. On rectangles, they construct a very clever argument that uses a cancellation property on each rectangle,
plus a serious application of an inverse property, to show optimal order approximation of the solution of the
Stokes problem; however, if the usual definition of the global nonconforming space by requiring continuity at
interfacial midpoints is adopted, there is a loss of optimality for truly quadrilateral partitions of the domain.
(Their argument covers higher dimensions, and an obvious simplification of it covers the second order elliptic
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problem.) We shall offer several modifications to the rotated bilinear local basis and avoid this loss, while
reducing the analysis to the exact analogue of the classical analysis of the simplicial nonconforming procedure,
as given in [5, 8, 12] and textbooks such as [3, 4, 13] for second order elliptic problems, the Stokes problem, and
plate bending. There is no essential difference in either programming effort or in computer run time between
our two- or three-dimensional elements and the rotated bilinear or trilinear element.

The Robin boundary problem is stated in Section 2.1 and the corresponding nonconforming Galerkin problem
described in Section 2.2 for a simplicial partition of the domain; this method is analyzed in the following two
sections. A form of Strang’s Second Lemma is employed in Section 2.3 to give the well-known proof of the
convergence of the Galerkin approximation in an energy norm at an optimal rate; this short argument is
repeated here to illustrate the rôle of an orthogonality condition that will motivate our selection of a basis for
nonconforming methods on rectangular elements. The duality argument applied in Section 2.4 to obtain an
optimal rate for convergence in L2(Ω) again demonstrates the value of this same orthogonality. As a result of
the use of a quadrature to impose the boundary condition, additional regularity on the boundary is required
over that which would be needed if the boundary condition were imposed exactly.

Rectangular elements are treated in Section 2.5, along with an extension in the two-dimensional case to
quadrilaterals. The local spaces, which as stated above differ from the local spaces in conforming procedures,
are described; as stated above, the related convergence analysis is reduced to that for the simplicial case. In
Section 2.6 the implementation of these methods by means of local interpolation of the coefficients in the
differential equation is discussed. Then, in the next two sections, Section 2.7 and Section 2.8, the simpler
problems when either Neumann or Dirichlet boundary conditions are prescribed are treated briefly. The error
estimates for the Neumann problem are again of optimal order in both norms, but the L2 estimate is suboptimal
in the Dirichlet case as a result of an inability to enter the Dirichlet data into the finite element method with
sufficient accuracy. Some specific, technical estimates related to the quadratures used in approximating the
Robin boundary condition are derived at the end of this part in Section 2.9.

In the second part of the paper (Sect. 3), a domain decomposition iterative procedure based on the use of
Robin transmission conditions to pass information from a subdomain to its neighbors will be introduced for these
methods. Quite analogous iterative procedures for conforming methods for second order elliptic problems were
introduced first by Lions [9,10] and then applied to the more difficult Helmholtz problem by Després [6]; later [7],
a more precise convergence argument was established for the second order elliptic problem as approximated
by mixed finite element methods. We shall analyze the convergence of the iteration for the nonconforming
Galerkin method based on rectangular elements, using arguments related to those of [7]. Both two-dimensional
and three-dimensional problems are discussed. The analysis would apply equally to nonconforming methods
based on P1-elements over simplices.

The two-dimensional case of the finite element method is hybridized in Section 3.1, and the domain decom-
position procedure is defined in Section 3.2. A simple, but imprecise, convergence analysis for the iteration is
also presented in Section 3.2. Estimates of the spectral radius of the iteration operator are derived in the next
two sections under different hypotheses. In Section 3.5, the three-dimensional problem is treated quite briefly.
Some technical lemmas needed in this part of the analysis are found in the last section.

2. Formulation and convergence analysis

2.1. The elliptic problem with Robin boundary conditions

Let us consider the second order elliptic boundary problem given by

−∇ · (a∇u) + cu = f, x ∈ Ω, (2.1a)

a
∂u

∂ν
+ du = g, x ∈ ∂Ω, (2.1b)



NONCONFORMING GALERKIN METHODS 749

where
• Ω = ∪Jj=1Ωj ⊂ Rn, n = 2 or 3; Ωj simplicial and the partition quasiregular; diam (Ωj) ≤ h.
• The coefficients a, c, and d are smooth and 0 < a0 ≤ a(x) ≤ a1, 0 ≤ c(x) ≤ c1, 0 < d0 ≤ d(x) ≤ d1.

The weak form of (2.1) that we consider is given by seeking u ∈ H1(Ω) such that

a(u, v) = F (v), v ∈ H1(Ω), (2.2)

where

a(u, v) = (a∇u,∇v) + (cu, v) + 〈du, v〉, (2.3a)
F (v) = (f, v) + 〈g, v〉; (2.3b)

(·, ·) and 〈·, ·〉 denote the L2(Ω) and L2(∂Ω) inner products, respectively.

2.2. The simplicial nonconforming Galerkin method

Let us turn to the approximation of the solution of (2.3) through a nonconforming Galerkin method.
Let

Γj = ∂Ω ∩ ∂Ωj, Γjk = Γkj = ∂Ωj ∩ ∂Ωk,

and denote the centers of Γj and Γjk by ξj and ξjk, respectively. Let P`(E) denote the class of polynomials of
degree ` on the set E, and set

NChj = P1(Ωj), n = 2 or 3.

Let

NCh =
{
v | vj = v|Ωj ∈ NChj , j = 1, . . . , J ; vj(ξjk) = vk(ξjk),∀{j, k}

}
·

For convenience in the analysis below, let

Λh =
{
λ |λjk = tr Γjk (λ |Ωj ) ∈ P0(Γjk); λjk + λkj = 0; λj = tr Γj (λ |Ωj ) ∈ P0(Γj)

}
·

Define projections Π and P0, by

Π : H2(Ω)→ NCh : (v −Πv)(ξ) = 0, ξ = ξjk or ξj ;

P0 : H2(Ω)→ Λh :
〈
a
∂vj
∂νj
− P0vj , z

〉
Γ

= 0, z ∈ P0(Γ), Γ = Γjk or Γj.

Since Π reproduces linear functions on elements and P0 reproduces constants on faces, it follows from standard
polynomial approximation results that

‖v −Πv‖+ h

∑
j

‖v −Πv‖21,j

 1
2

+ h2

∑
j

‖v −Πv‖22,j

 1
2

+ h
1
2

∑
j

|v −Πv|2j

 1
2

+ h
3
2

∑
j

∣∣∣∣ ∂∂νj (v −Πv)
∣∣∣∣2
j

 1
2

+ h
3
2

∑
j

∣∣∣∣a∂vj∂νj
− P0v

∣∣∣∣2
j

 1
2

≤ C‖v‖2h2, v ∈ H2(Ω), (2.4)



750 J. DOUGLAS JR. ET AL.

where ‖z‖2m,j = ‖z‖2Hm(Ωj)
, |z|2m,j =

∑
k ‖z‖2Hm(Γjk), with Γj replacing Γjk for boundary faces.

The integral 〈·, ·〉 will be approximated as 〈〈·, ·〉〉 by means of quadrature rules, which will be discussed in
detail in Section 2.9.

Let (·, ·)j = (·, ·)Ωj , and set

ah(z, w) =
∑
j

(a∇z,∇w)j + (cz, w) + 〈〈dz, w〉〉,

Fh(z) = (f, z) + 〈〈g, z〉〉.

Then, the nonconforming Galerkin approximation of (2.2) is defined as the solution uh ∈ NCh of the equations

ah(uh, v) = Fh(v), v ∈ NCh. (2.5)

The uniqueness of uh is trivial; if f and g vanish, the boundary term, at least for any quadrature method
admitted in Section 2.9, forces uh(ξj) to vanish, the (a∇uh,∇v)-term insures that uh is constant on each
Ωj , and uh ∈ NCh requires continuity at the ξjk-points, so that uh vanishes. Existence follows from finite
dimensionality.

2.3. The second Strang lemma and the energy error estimate

Strang [4, 12, 13] provided the following lemma to characterize the error for nonconforming methods in the
(broken) energy norm

‖z‖1,h = ah(z, z)
1
2 .

Lemma 2.1. If uh ∈ NCh is the solution of (2.5) and u ∈ H1(Ω) the solution of (2.2), then

‖u− uh‖1,h ≤ C
{

inf
v∈NCh

‖u− v‖1,h + sup
w∈NCh

|ah(u,w)− Fh(w)|
‖w‖1,h

}
·

Proof (as given in [4]). For zh ∈ NCh,

‖uh − zh‖21,h = ah(u− zh, uh − zh) + ah(uh − u, uh − zh)

= ah(u− zh, uh − zh) + [Fh(uh − zh)− ah(u, uh − zh)]
≤ ‖u− zh‖1,h‖uh − zh‖1,h + |ah(u, uh − zh)− Fh(uh − zh)|,

and the lemma follows from this inequality and the triangle inequality.
Let us apply the lemma to the simplicial nonconforming method. First, (2.4) implies that

inf
v∈NCh

‖u− v‖1,h ≤ C‖u‖2h.

Next, let w ∈ NCh. Denote by E(G,w), w ∈ NCh, the boundary quadrature error

E(G,w) =
∑
j

{
〈G,w〉Γj − 〈〈G,w〉〉Γj

}
·

Then, a short calculation shows that

ah(u,w) − Fh(w) =
∑
j

〈
a
∂uj
∂νj

, w

〉
∂Ωj\Γj

+E(g − du,w). (2.6)
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The following orthogonalities are useful:

〈P0uj, wj〉Γjk + 〈P0uk, wk〉Γkj = 〈P0uj , wj − wk〉Γjk = 0, w ∈ NCh, (2.7a)〈
a
∂uj
∂νj
− P0uj , 1

〉
Γ

= 0, Γ = Γj or Γjk. (2.7b)

Thus, it follows that, for mj ∈ P0(Ωj),∑
j

〈
a
∂uj
∂νj

, w

〉
∂Ωj\Γj

=
∑
j

〈
a
∂uj
∂νj
− P0uj , wj −mj

〉
∂Ωj\Γj

,

so that

ah(u,w)− Fh(w) =
∑
j

〈
a
∂uj
∂νj
− P0uj, wj −mj

〉
∂Ωj\Γj

+E(g − du,w). (2.8)

By (2.4), a standard trace theorem, and approximation of wj locally by a properly chosen constant (its average
over Ωj), ∣∣∣∣∣∣

∑
j

〈
a
∂uj
∂νj
− P0uj , wj −mj

〉
∂Ωj

∣∣∣∣∣∣ ≤ C‖u‖2h 1
2 ·

∑
j

‖w −mj‖j‖∇(w −mj)‖j

 1
2

≤ C‖u‖2

∑
j

‖∇wj‖2j

 1
2

h ≤ C‖u‖2‖w‖1,hh.

(2.9)

Two quadrature rules are discussed in Section 2.9: the midpoint rule, which is first-order correct, and a second-
order correct rule, the two-point Gauss rule for n = 2 and a triangle rule for n = 3. If the subscript ` is used
to indicate the order of the rule, it is shown [see (2.24, 2.26, 2.27)] that

|E`(g − du,w)| ≤ C(|g|1,∂Ω + |u|1,∂Ω)|w|∂Ωh, w ∈ NCh, ` = 1 or 2, (2.10a)

|E2(g − du,w)| ≤ C(|g|2,∂Ω + |u|2,∂Ω)|w|∂Ωh
2, w ∈ NCh. (2.10b)

For the midpoint rule, it is easy to see that∫
Γj

w2 ds ≤ Kh(a∇w,∇w)Ωj

when w(ξj) = 0; for the second-order rules, the boundary quadrature of the square of an element in P1(Ωj) is
exact. Thus, |w|∂Ω ≤ C‖w‖1,h, so that combining (2.9) and (2.10a) with Strang’s lemma gives us the following
energy error estimate.

Theorem 2.1. Let u and uh be the solutions of (2.2) and (2.5), respectively. Then, the error satisfies the
estimate

‖u− uh‖1,h ≤ C(‖u‖2 + |g|1,∂Ω + |u|1,∂Ω)h. (2.11)

The boundary norms can be omitted if exact quadrature is employed on the boundary integrals in (2.5), and only
minimal regularity is then required of the solution.
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The estimate (2.11) is optimal with respect to rate, but not with respect to regularity of the solution u
of (2.2). The |u|1,∂Ω-term can be omitted if problem (2.1) is H2-regular. Also, all boundary norms can be
considered to be broken over the collection of boundary faces Γj.

The bound (2.10b) will be useful in the next section, where an L2 error estimate will be derived.
The critical part of the analysis above is the application of the orthogonalities given in (2.7); these two

properties for the piecewise linear nonconforming elements will also be critical in the duality argument in the
next section and are fundamental in defining nonconforming elements over rectangles. They were used in energy
norm estimates earlier; see [3,4], for example. Céa, in an unpublished manuscript dating to 1976, discussed the
rôle of such orthogonalities in nonconforming methods in general.

2.4. Duality and the L2 error estimate

The duality argument introduced by Aubin and Nitsche (see [2–4]) can be applied to the nonconforming
method to deduce an L2(Ω) error estimate; see, e.g., [5, 11]. In order to do so, we require that the differential
problem (2.1) be H2-regular; as will appear in the development below, it will also be necessary to assume
additional regularity of the boundary data and for the trace of the solution there. It will become clear that an
optimal rate of convergence will result if a quadrature rule that is exact for polynomials on a face of degree at
least two is used on the boundary integrals and that a nonoptimal rate would result from the midpoint rule,
which was seen to be adequate to obtain an optimal rate in the energy norm.

Let

η = Πu− uh,

and let ψ ∈ H2(Ω) be the solution of

Lψ = −∇ · (a∇ψ) + cψ = η, x ∈ Ω,

a
∂ψ

∂ν
+ dψ = 0, x ∈ ∂Ω;

thus, ‖ψ‖2 ≤ C‖η‖. Note that, by (2.4), ‖η‖1,h satisfies an inequality of the same form, (2.11), as u− uh.
Then, since η ∈ NCh,

‖η‖2 = (Lψ, η) = ah(ψ, η) +E(dψ, η)−
∑
j

〈
a
∂ψj
∂νj

, ηj

〉
∂Ωj\Γj

= ah(ψ, η) +E(dψ, η)−
∑
j

〈
a
∂ψj
∂νj
− P0ψj , ηj − qj

〉
∂Ωj\Γj

,

whenever qj ∈ P0(Ωj). Next, for v ∈ NCh,

ah(η, v) = ah(u, v)− ah(uh, v)− ah(u−Πu, v)

= E(g − du, v) +
∑
j

〈
a
∂uj
∂νj
− P0uj , vj

〉
∂Ωj\Γj

− ah(u−Πu, v).

Since ψj = ψ |Γjk= ψk, 〈
a
∂uj
∂νj
− P0uj , ψj

〉
Γjk

+
〈
a
∂uk
∂νk
− P0uk, ψk

〉
Γkj

= 0
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and

‖η‖2 = ah(η, ψ − v)− ah(u−Πu, v) +E(dψ, η) −E(du− g, v) (2.12)

−
∑
j

〈
a
∂ψj
∂νj
− P0ψj , ηj − qj

〉
∂Ωj\Γj

+
∑
j

〈
a
∂uj
∂νj
− P0uj, vj − ψj

〉
∂Ωj\Γj

.

Let

‖v‖2,h =
(∑

j

‖v‖22,Ωj
) 1

2

.

Then, there exists v ∈ NCh such that

‖ψ − v‖+ h‖ψ − v‖1,h + h2‖v‖2,h ≤ C‖ψ‖2h2 ≤ C‖η‖h2.

Now, let us bound each of the terms on the right-hand side of (2.12). First,

|ah(η, ψ − v)| ≤ C‖η‖1,h‖η‖h.

As in the previous section, it follows that, for properly chosen q,∣∣∣∣∑
j

〈
a
∂ψj
∂νj
− P0ψj , ηj − qj

〉
∂Ωj\Γj

∣∣∣∣ ≤ C‖η‖ ‖η‖1,hh
and ∣∣∣∣∑

j

〈
a
∂uj
∂νj
− P0uj , vj − ψj

〉
∂Ωj\Γj

∣∣∣∣ ≤ C‖u‖2‖η‖h2.

Before looking at the boundary integral terms, let us consider ah(u−Πu, v):

ah(u−Πu, v) =
∑
j

(u−Πu, Lv)j +
∑
j

〈
u−Πu, a

∂v

∂νj

〉
∂Ωj

+
∑
j

〈〈u−Πu, dv〉〉Γj

=
∑
j

(u−Πu, Lv)j −
∑
j

〈
u−Πu,

(
a
∂

∂νj
+ d

)
(ψ − v)

〉
Γj

−E(u−Πu, v) +
∑
j

〈
u−Πu, a

∂vj
∂νj

〉
∂Ωj\Γj

,

since a∂ψ/∂ν + dψ = 0 on ∂Ω. First,∣∣∣∣∣∣
∑
j

(u−Πu, Lv)j

∣∣∣∣∣∣ ≤ C‖u‖2h2‖v‖2,h ≤ C‖u‖2‖η‖h2.

Next, ∣∣∣∣∣∣
∑
j

〈
u− Πu,

(
a
∂

∂ν
+ d

)
(ψ − v)

〉
Γj

∣∣∣∣∣∣ ≤ C|u−Πu|∂Ω‖ψ − v‖
1
2
1,h‖ψ − v‖

1
2
2,h

≤ C‖u‖2‖η‖h2.
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Since, by (2.24, 2.27, 2.26),

|E`(u−Πu, dv)| ≤
{
C|u−Πu|1,∂Ω|v|∂Ωh, ` = 1 or 2,

C|u−Πu|2,∂Ω|v|∂Ωh
2, ` = 2,

then

|E`(u−Πu, dv)| ≤
{
C‖u‖2‖η‖h

3
2 , ` = 1 or 2,

C|u|2,∂Ω‖η‖h2, ` = 2.

Now, note that

〈uj −Πuj , P0ψj〉Γjk + 〈uk −Πuk, P0ψk〉Γkj = −〈Πuj −Πuk, P0ψj〉Γjk = 0,

since (Πuj−Πuk) ⊥ 1 on Γjk, as it is a linear function vanishing at ξjk for simplicial elements; this orthogonality
will be imposed in defining the basis over rectangular elements. Thus,

∑
j

〈
u−Πu, a

∂vj
∂νj

〉
∂Ωj\Γj

=
∑
j

〈
u−Πu, a

∂(v − ψ)j
∂νj

〉
∂Ωj\Γj

+
∑
j

〈
u−Πu, a

∂ψj
∂νj
− P0ψj

〉
∂Ωj\Γj

,

and ∣∣∣∣∣∣
∑
j

〈
u−Πu, a

∂vj
∂νj

〉
∂Ωj\Γj

∣∣∣∣∣∣ ≤ C|u−Πu|∂Ω

(
‖ψ − v‖

1
2
1,h‖ψ‖

1
2
2 + ‖ψ‖2h

1
2

)
≤ C‖u‖2‖η‖h2.

We have E(dψ, η) and E(du− g, v) left to bound:

|E`(dψ, η)| ≤ C|ψ|1,∂Ω|η|∂Ωh ≤ C‖η‖1,h‖η‖h, ` = 1 or 2.

Finally,

|E`(du− g, v)| ≤
{
C(|u|1,∂Ω + |g|1,∂Ω)|v|∂Ωh, ` = 1 or 2,

C(|u|2,∂Ω + |g|2,∂Ω)|v|∂Ωh
2, ` = 2.

Thus,

|E`(du− g, v)| ≤
{
C(‖u‖2 + |g|1,∂Ω)‖η‖h, ` = 1 or 2,

C(|u|2,∂Ω + |g|2,∂Ω)‖η‖h2, ` = 2.

Combining this collection of bounds gives the estimate

‖η‖ ≤ C
{
‖η‖1,hh+ ‖u‖2h2 + ε`

}
, (2.13)

where

ε` ≤
{

(‖u‖2 + |g|1,∂Ω)h, ` = 1,

(|u|2,∂Ω + |g|2,∂Ω)h2, ` = 2;
(2.14)
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the ε`-term is missing in (2.13) if exact quadrature is used on the boundary integrals. Since ‖u−Πu‖ ≤ C‖u‖2h2,
we have shown that

‖u− uh‖ ≤ C
{

(‖u‖2 + |g|1,∂Ω)h2 + ε`
}
· (2.15)

In both (2.14) and (2.15), the boundary norms can be interpreted as broken over the boundary partition.
The bounds for ε` given in (2.14) appear to imply that the application of the midpoint quadrature rule, while

leading to an optimal order convergence rate in the energy norm, gives an O(h) convergence rate in L2; i.e.,
no improvement over the energy rate. However, applying the quadrature rules associated with ` = 2 gives the
optimal O(h2) rate on L2, provided that the solution has the regularity demanded in (2.15). We state the main
result regarding L2-convergence in the following theorem.

Theorem 2.2. Let the Robin boundary problem (2.1) be H2(Ω)-regular, and let u denote its solution. If uh is
the solution of (2.5) and if a second-order correct quadrature method is used in the evaluation 〈〈·, ·〉〉 of boundary
integrals, then

‖u− uh‖ ≤ C (‖u‖2 + |u|2,∂Ω + |g|2,∂Ω)h2.

The boundary norm terms can be omitted if exact quadrature is applied on ∂Ω.

2.5. Rectangular nonconforming methods

Consider the two-dimensional case first, and take as reference element the square R̂ = [−1, 1]2. The usual
bilinear basis for conforming Galerkin procedures over rectangular elements is based on Span {1, x, y, xy} on
the reference element. In the nonconforming method, we wish to impose continuity at the midpoints of the
faces just as for simplicial nonconforming methods and to use values at these points as the degrees of freedom;
however, interpolation at these nodes fails. The first thought is to rotate the basis through 45 degrees; i.e., try
a basis built on R = Span {1, x, y, x2−y2}. Now, unique interpolation is valid over the desired nodes. However,
a look back at the convergence proofs for the simplicial nonconforming method shows that a critical role in
defining the projection P0 (and in the proof) was played by the property

〈1, wj − wk〉Γjk = 0, w ∈ NCh. (2.16)

Since

R |{y=1}= Span {1, x, x2},

restricting a function in R |{y=1} to vanish at x = 0 leaves Span {x, x2}, so that (2.16) fails. This failure is
easily remedied by modifying x2 to x2 − 5

3x
4, which is orthogonal to linear functions. This function does not

vanish at the Gauss points ±1/
√

3, a property that will be useful in order to apply two-point Gauss quadrature
on the boundary Γ so that an optimal order error estimate in L2(Ω) can be derived for either Neumann or
Robin boundary conditions. Now, the function x2− 25

6 x
4 + 7

2x
6 both is orthogonal to linear functions on [−1, 1]

and vanishes at the Gauss points. So, let

θ`(x) =

{
x2 − 5

3x
4, ` = 1,

x2 − 25
6 x

4 + 7
2x

6, ` = 2,
(2.17)

and define two reference bases by

Q` = Span {1, x, y, θ`(x)− θ`(y)} , ` = 1, 2. (2.18)
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It is easy to see that unique interpolation over the nodes is retained for either basis; also, we now have the
orthogonality property (2.16) and θ2(x) vanishes for x = ±1/

√
3. A nodal basis is easily found; the basis

function corresponding to the node (1, 0) is given by

w
(`)
1,0 =

1
4

+
1
2
x+

θ`(x)− θ`(y)
4θ`(1)

, ` = 1, 2. (2.19)

An extension to quadrilateral elements is immediate. If Q is a quadrilateral, there is a unique (up to rotation
in the order of the vertices) bilinear map F : R̂→ Q and F is affine on the edges of R̂. Thus, if

Q`(Q) = {v : v = v̂ ◦ F−1, v̂ ∈ Q`(R̂)}, ` = 1, 2,

then the orthogonality property (2.16) remains valid for ` = 1 or 2 and the desired vanishing at Gauss points
holds for ` = 2. Moreover, the two affine maps induced on a common edge between adjacent quadrilateral
elements coincide, so that requiring continuity at midpoints of edges is consistent with the mappings. If shape
quasiregularity is enforced on a partition into quadrilaterals, then the approximation properties (2.4) also remain
valid.

The properties listed above will allow us to observe that the entire convergence argument for the simplicial
case remains valid. We delay stating the results until after deriving a useful three-dimensional basis.

When n = 3, the minimum dimension of Q` is six, and the choices

Q` = Span {1, x, y, z, θ`(x) − θ`(y), θ`(x)− θ`(z)} (2.20)
= Span {1, x, y, z, θ`(y)− θ`(z), θ`(y)− θ`(x)}
= Span {1, x, y, z, θ`(z)− θ`(x), θ`(z)− θ`(y)} , ` = 1, 2,

have that dimension; moreover, Q` is invariant under both reflection and permutation of the coordinates. It
also has the critical orthogonality property (2.16). The nodal basis element associated with the node (1, 0, 0) is
given by

w
(`)
1,0,0 =

1
6

+
1
2
x− 1

6θ`(1)
(2θ`(x) − θ`(y)− θ`(z)) , ` = 1, 2;

the other five nodal basis functions can be obtained by reflection and permutation. Thus, this choice for a local
basis is completely acceptable for ` = 1 or 2.

Two other acceptable choices are given by

Q` = Span {1, x, y, z, θ`(x), θ`(y), θ`(z)} , ` = 1, 2, (2.21)

= Span
{

1
2
x± θ`(x)

2θ`(1)
,

1
2
y ± θ`(y)

2θ`(1)
,

1
2
z ± θ`(z)

2θ`(1)
, 1− 1

θ`(1)
(θ`(x) + θ`(y) + θ`(z))

}
·

The seven degrees of freedom associated with (2.21) are the values at the centers of the faces and at the center
of the element; for computational purposes, the basis element associated to the origin is a bubble function (as
shown above) and can be eliminated without serious cost over what would be required with the corresponding
basis consisting of six functions.

Either of these elements can be extended to parallelepipeds trivially by means of a trilinear map; unfortu-
nately, it can also be shown that the desired orthogonalities are lost on a flat, quadrilateral face that is not a
parallelogram.

As a consequence of the requirement of the orthogonality (2.16) and the analyses of the boundary quadrature
procedures given in Section 2.9, the analyses in Section 2.3 and Section 2.4 of the error u− uh apply without
modification in the broken H1-norm for ` = 1 and 2 and in L2(Ω) for ` = 2. Thus, Theorems 2.1 and 2.2
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are valid for our nonconforming Galerkin method over rectangular elements. Also, an inspection of the proofs
shows that these theorems hold when simplicial and rectangular elements are mixed in the partition of Ω.

2.6. Interpolation of coefficients

The implementation of the finite element procedure depends on approximating the integrals in ah; this can
be done either through the use of quadrature formulae on individual elements or by interpolating the coefficients
a, c, and d and then computing exact quadratures. The second of these procedures will be discussed in this
section.

We shall consider the perturbation of the approximate solution caused by perturbing the coefficients a(x)
and c(x), since quadrature has already been applied on the boundary ∂Ω and its effect on the approximation
error has been taken into account. Let the perturbed (interpolated) coefficients be denoted by a(x) and c(x),
and set

ah(z, w) =
∑
j

(a∇z,∇w)j + (cz, w) + 〈〈dz, w〉〉.

Two cases cover most of the occurrences of (2.1): c(x) ≡ 0 and

0 < c0 ≤ c(x) ≤ c1.

If c ≡ 0, the obvious choice of c is also zero. Assume that a and c are chosen so as to satisfy the same bounds
as a and c; i.e., let a0 ≤ a(x) ≤ a1 and, if c0 > 0, c0 ≤ c(x) ≤ c1.

Let uh ∈ NCh be the solution of

ah(uh, v) = Fh(v) = (f, v) + 〈〈g, v〉〉, v ∈ NCh.

If

eh = uh − uh,

then

ah(eh, v) = ah(uh, v)− ah(uh, v) + (ah − ah)(uh, v)

=
∑
j

((a− a)∇uh,∇v)j + ((c− c)uh, v) , v ∈ NCh.

For the high-order term in ah, consider the simplicial nonconforming method first. Then, for any v ∈ NCh, ∇v
is constant on any element Ωj ; consequently, taking

a(x) =
1
|Ωj |

∫
Ωj

a(y) dy, x ∈ Ωj ,

has no effect on the a-integral and, so, does not alter the approximate solution; this, of course, is the same in
the conforming Galerkin procedure over simplices. Next, let us find an interpolation of a(x) in the rectangular
case which will not affect the approximate solution. We will look at the two-dimensional case when ` = 1; the
{` = 2}-case and the three-dimensional cases can be treated analogously. For w and z in NCh on [−1, 1]2,

∂w

∂x

∂z

∂x
∈ Span

{
1, x− 10

3
x3,

(
x− 10

3
x3

)2
}
·
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Thus, to define a |Ωj , carry a |Ωj to the reference square, take a in the form

a(x, y) =
1
|Ωj |

∫
Ωj

a(α) dα +Ax+B

(
x2 − 2

3

)
+ Cy +D

(
y2 − 2

3

)
,

and orthogonalize a− a against

Span

{
1, x− 10

3
x3, y − 10

3
y3,

(
x− 10

3
x3

)2

,

(
y − 10

3
y3

)2
}

;

then, return this projection to Ωj as a on Ωj . Again, there is no induced modification in the approximate
solution. If, in addition, c ≡ 0, uh = uh.

If c 6≡ 0, projection of c into P2(Ωj), j = 1, . . . , J , gives c for which the solution remains unchanged for a
simplicial partition of Ω. For a rectangular element, it seems impractical to project c onto the 8-dimensional
space Q` ⊗Q`, but projecting c into P1(Ωj) will give a bound of the form

‖uh − uh‖1,h + ‖uh − uh‖ ≤ C‖uh‖1,hh2 ≤ C‖u‖1h2. (2.22)

The bound (2.22) applies in all cases.

2.7. Neumann boundary conditions

The Neumann problem is obtained from the Robin problem by setting the coefficient d equal to zero. If
c(x) ≥ c0 > 0, then the analysis for the Robin case applies with the only change being the elimination of the
norm of u on ∂Ω in the error bounds in Theorems 2.1 and 2.2. If c ≡ 0, then the consistency condition

(f, 1) + 〈g, 1〉 = 0

translates to

(f, 1) + 〈〈g, 1〉〉 = 0

for the Galerkin procedure. This can force a trivial shift by the addition of a small, O(h3), constant in
the boundary data function g when one of the ` = 2 quadrature formulae discussed above is applied in the
discretization of the boundary condition; otherwise, the error bounds remain valid.

2.8. Dirichlet boundary conditions

Let us consider briefly the application of the analogous nonconforming Galerkin methods to the Dirichlet
problem

Lu = −∇ · (a∇u) + cu = f, x ∈ Ω,
u = g, x ∈ ∂Ω.

Redefine ah to be

ah(z, w) =
∑
j

(a∇z,∇w)j + (cz, w),
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and seek uh ∈ NCh (here, for rectangular elements, there is no advantage in using the {` = 2}-basis in place of
the {` = 1}-basis) such that

ah(uh, v) = (f, v), v ∈ NCh0 = {z ∈ NCh | z(ξj) = 0, ∀ midpoints ξj ∈ Γj},
uh(ξj) = g(ξj).

A simple calculation shows that

ah(u, v) = (f, v) +
∑
j

〈
a
∂u

∂νj
, vj

〉
∂Ωj

, v ∈ NCh0 .

Since vj ⊥ 1 on Γj for v ∈ NCh0 , the analysis in Section 2.3 can be repeated to give

ah(u, v) = (f, v) +
∑
j

〈
a
∂u

∂νj
− P0uj, vj −mj

〉
∂Ωj

, v ∈ NCh0 ,

where mj ∈ P0(∂Ωj). Thus,

|ah(u, v)− (f, v)| ≤ K‖u‖2h
1
2

∑
j

‖vj −mj‖j‖∇(vj −mj)‖j

 1
2

≤ K‖u‖2‖v‖1,hh,

and it follows that the optimal order energy error estimate

‖u− uh‖1,h ≤ C‖u‖2h (2.23)

holds under minimal regularity.
Let Πu ∈ NCh be defined as before and set

η = Πu− uh ∈ NCh0 .

Now, let us indicate the duality argument that leads to an L2 error bound. Shift the auxiliary problem to

Lψ = −∇ · (a∇ψ) + cψ = η, x ∈ Ω,
ψ = 0, x ∈ ∂Ω.

The analogue of (2.12) is given by

‖η‖2 = ah(η, ψ − v)−
∑
j

〈
a
∂ψ

∂νj
− P0ψj , ηj − rj

〉
∂Ωj

−
∑
j

〈
a
∂u

∂νj
− P0uj , vj − ψj

〉
∂Ωj

+ ah(u−Πu, v),

v ∈ NCh0 ,

where rj ∈ P0(Ωj). The remainder of the argument parallels that given in Section 2.4 and will not be repeated,
except to note that the boundary term

∑〈
u−Πu, a

∂ψ

∂νj

〉
Γj

,
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which does not appear in the Robin argument, can be bounded as follows:∣∣∣∣∣∑
〈
u−Πu, a

∂ψ

∂νj

〉
Γj

∣∣∣∣∣ ≤ C|u−Πu|∂Ω‖η‖ ≤ C‖u‖2‖η‖h
3
2 .

As a consequence of this term, the error cannot be bounded in L2(Ω) by O(h2) and it is necessary to settle for
the bound

‖u− uh‖ ≤ C‖u‖2h
3
2 .

In contrast with the L2 error estimate for either Neumann or Robin boundary conditions, we are left with a
suboptimal convergence rate. In the other two cases, the boundary information, data in both cases plus the
solution in the Robin case, enter through integrals on the boundary. Consequently, there is control over the
discretization accuracy associated with the boundary condition in these cases, while the Dirichlet data must be
represented by a single parameter per boundary face. We could have imposed the average value in place of the
midpoint value; however, this merely shifts terms for losing h

1
2 . We were able to insure an optimal rate for the

other cases by applying a quadrature rule of greater accuracy than a single parameter rule.

2.9. Some quadrature lemmata

Some technical lemmata related to the approximation of the boundary condition as a result of the application
of quadrature formulae will be collected in this section. We wish to estimate

E(g, w) = 〈g, w〉 − 〈〈g, w〉〉 =
∑
j

{
〈g, w〉Γj − 〈〈g, w〉〉Γj

}
, w ∈ NCh,

where g will be assumed to be in Hs(∂Ω) for s = 1 or 2. The midpoint rule will be treated on both simplicial
and rectangular elements simultaneously, but it will be convenient to consider the simplicial and rectangular
cases separately for higher order quadratures.

Let Γ be a face of a boundary element, simplicial or rectangular with n = 2 or 3, and let ξ be its midpoint.
The midpoint rule is given, as always, by

〈〈g, w〉〉Γ = (gw)(ξ)|Γ|.

For the restriction to any boundary face Γ of any of the bases discussed for a nonconforming Galerkin method,

〈1, w〉Γ = w(ξ)|Γ| = 〈〈1, w〉〉Γ, w ∈ NCh,

so that

E1(Γ; g, w) = 〈g, w〉Γ − 〈〈g, w〉〉Γ = 〈g − g(ξ), w〉Γ

and

|E1(Γ; g, w)| ≤ |g − g(ξ)|Γ|w|Γ ≤ C|g|1,Γ|w|Γh;

here, the subscript 1 indicates that the first-order, midpoint quadrature rule has been applied. Hence,

|E1(g, w)| ≤ C|g|1,∂Ω|w|∂Ωh, w ∈ NCh. (2.24)
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Next, let Γ be the boundary face of a simplicial element. If n = 2, apply two-point Gaussian quadrature on Γ.
Let I1g be the linear interpolant of g over the Gauss points. Since this rule is exact on P3(Γ) and w ∈ P1(Γ),

E2(Γ; g, w) = 〈g − I1g, w〉Γ, (2.25)

so that

|E2(g, w)| ≤ C|g|2,∂Ω|w|∂Ωh
2, w ∈ NCh. (2.26)

If n = 3 and Γ is a boundary triangle, let ζi, i = 1, 2, 3, be the midpoints of the edges of Γ and set

〈g, w〉Γ =
3∑
i=1

(gw)(ζi)
|Γ|
3
·

This quadrature rule (p. 183 of [4]) is exact on polynomials of degree 2; consequently, if I2g denotes linear
interpolation over the three quadrature points,

E2(Γ; g, w) = 〈g − I2g, w〉Γ, w ∈ NCh,

and (2.26) holds again.
Now, turn to rectangular elements, where we will consider only product quadrature rules. It suffices to

consider Γ = [−1, 1]2 as the top face of a cube; the two-dimensional case follows similarly. Then, for either of
the two choices of Q2 (note that Q1 is treated above and is excluded here) offered in Section 2.5,

R = Q2 |Γ= Span
{

1, x, y, x2 − 25
6
x4 +

7
2
x6, y2 − 25

6
y4 +

7
2
y6

}
·

Apply 2 × 2 Gauss quadrature on Γ; it is exact on P3 ⊗ P3, which does not automatically allow us to reduce
E2(Γ; g, w) to a form 〈g−Ig, w〉Γ for some simple interpolation of g. However, let I3 denote bilinear interpolation
over the four Gauss points as nodes. Let, for w ∈ NCh,

w = w1 + w2, w1 ∈ Span {1, x, y}, w2 ∈ Span
{
x2 − 25

6
x4 +

7
2
x6, y2 − 25

6
y4 +

7
2
y6

}
·

Then,

〈I3g, w〉Γ − 〈〈I3g, w〉〉Γ = 〈I3g, w2〉Γ − 〈〈I3g, w2〉〉Γ = 0,

since I3g ⊥ w2 and w2 vanishes at the Gauss points. Thus,

E2(Γ; g, w) = 〈g − I3g, w〉Γ

and |g − I3g|Γ ≤ Ch2|g|2,Γ, so that (2.26) follows for the application of the 2 × 2 Gauss rule by scaling Γ to
size h.

Of course, it is also true that

|E2(g, w)| ≤ C|g|1,∂Ω|w|∂Ωh, w ∈ NCh, (2.27)

for any of the higher order rules mentioned.
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3. A domain decomposition iterative procedure

3.1. The hybridized nonconforming finite element method

We shall discuss a domain decomposition iterative procedure for the rectangular nonconforming method
in this part of the paper. Occasional trivial modifications in the presentation suffice to cover the simplicial
case. We shall treat only decomposition into individual elements here; as in earlier work [6, 7] utilizing Robin
transmission conditions, we begin by hybridizing [1] the finite element method.

First note that ∂v/∂νjk is constant on Γjk for any v ∈ Q(Ωj). Thus, it is reasonable to define a hybridiza-
tion of (2.5) by associating a space of Lagrange multipliers λ̃h ∈ Λh associated with −a(ξjk)∂p/∂νjk on Γjk.
Also, localize the nonconforming Galerkin space NCh by removing the midpoint continuity constraints on the
interfaces between elements:

NCh−1 = {ṽ ∈ L2(Ω) : ṽ |Ωj∈ Q(Ωj)}·

The hybridized procedure corresponding to (2.5) is defined in the following fashion: find (p̃h, λ̃h) ∈ NCh−1 ×Λh

such that ∑
j

(a∇p̃h,∇v)j + (cp̃h, v) +
∑
j

〈〈λ̃h, v〉〉∂Ωj + 〈〈dp̃h, v〉〉 = (f, v) + 〈〈g, v〉〉, v ∈ NCh−1, (3.1a)

∑
j

〈〈θ, p̃h〉〉∂Ωj = 0, θ ∈ Λh; (3.1b)

in the above equations, we have implicitly set the Lagrange multiplier λ̃ to zero on boundary faces to shorten
notation and below we consider any element of Λh to vanish on Γ. Assume that the two-point Gauss rule has
been applied to the integral over ∂Ω.

The following lemma is immediate.

Lemma 3.1. If p̃h ∈ NCh−1, then p̃h ∈ NCh if and only if∑
j

〈〈θ, p̃h〉〉∂Ωj = 0, θ ∈ Λh. (3.2)

Let us demonstrate the uniqueness (and, consequently, existence) of the solution of (3.1). Set f = g = 0 and
note that the choice θ = λ̃h in (3.1b) yields ∑

j

〈〈λ̃h, p̃h〉〉∂Ωj = 0.

Then, choose v = p̃h in (3.1a) and use the above equation to obtain∑
j

(a∇p̃h,∇p̃h)j + (cp̃h, p̃h) + 〈〈dp̃h, p̃h〉〉 = 0. (3.3)

Since c ≥ 0 and d > 0, ∑
j

(a∇p̃h,∇p̃h)j = 0 and p̃h(ξ`j) = 0 if ξ`j ∈ Γ; (3.4)

ξ`j , ` = 1, 2, are the two Gauss points on an edge Γj = ∂Ωj ∩ Γ for a boundary element Ωj . The first of these
relations implies that p̃h is constant on each Ωj . (If dim(Ω) = 3, there are four Gauss points, at all of which p̃h

vanishes.)
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We wish to show that p̃h ≡ 0 in Ω. If Ωj has a face contained in Γ, then it follows from (3.4) that p̃h vanishes
on Ωj . Then, we can choose the test function v in (3.1a) to be supported on Ωj and to vanish at all but one of
the nodal points on Ωj ; in this manner, we see that the Lagrange multiplier λ̃h vanishes on Γjk if Ωk is adjacent
to Ωj . Note that the continuity of p̃h at the midpoint of Γjk implies that the same argument shows that p̃h and
λ̃h vanish on Ωk. Since any element is connected to a boundary element in a finite number of steps, uniqueness
is established. Thus, if we combine the above with Lemma 3.1, we have demonstrated the following theorem.

Theorem 3.1. Problem (3.1) has a unique solution. Moreover, p̃h is a solution of (2.5) and the error estimates
derived in Section 2 hold.

3.2. The domain decomposition procedure

Consider decomposing the solution of (2.1) into the solution of the local problems

−∇ · (a(x)∇pj) + c(x)pj = f, x ∈ Ωj , (3.5a)

a(x)
∂pj
∂νj

+ d(x)pj = g, x ∈ Γj , (3.5b)

subject to the natural consistency conditions

a
∂pj
∂νjk

+ a
∂pk
∂νkj

= 0, on Γjk, (3.6a)

pj = pk, on Γjk, (3.6b)

where νjk denotes the unit outward normal to Γjk directed toward Ωk. Instead of requiring (3.6), we will impose
the equivalent Robin transmission conditions

a
∂pj
∂νjk

+ βpj = −a ∂pk
∂νkj

+ βpk, Γjk ⊂ ∂Ωj, (3.7a)

a
∂pk
∂νkj

+ βpk = −a ∂pj
∂νjk

+ βpj , Γkj ⊂ ∂Ωk, (3.7b)

with β being a positive constant. Using (3.7), we can state a weak formulation of (3.5) as follows: Find
pj ∈ H1(Ωj) such that

(a∇pj ,∇v)j + (cpj , v)j +
∑
k

〈
a
∂pk
∂νkj

+ β(pj − pk), v
〉

Γjk

+ 〈dpj , v〉Γj = (f, v)j + 〈g, v〉Γj , v ∈ H1(Ωj). (3.8)

We localize the calculations by defining an iterative procedure at the differential level as follows: given p0
j ∈

H1(Ωj), j = 1, . . . , J , find pnj as the solution of

(a∇pnj ,∇v)j + (cpnj , v)j +
∑
k

〈βpnj , v〉Γjk + 〈dpnj , v〉Γj =

−
∑
k

〈
a
∂pn−1

k

∂νkj
− βpn−1

k , v

〉
Γjk

+ (f, v)j + 〈g, v〉Γj , v ∈ H1(Ωj). (3.9)

Next, we will define a discretized version of (3.9). For that purpose, let Ih denote the set of all internal interfaces
Γjk and introduce a new set Λh∗ of Lagrange multipliers λhjk associated with the flux −a∂pj/∂νj on Γjk (i.e.,
λ ∼ −a∂pj/∂νj) as follows:

Λh∗ =
{
λh : λh |Γjk= λjk ∈ P0(Γjk) ≡ Λjk, Γjk ∈ Ih

}
·
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Here, we wish to distinguish between Λjk and Λkj ; we define two Lagrange multipliers on the point set Γjk = Γkj
independently and do not impose the constraint λjk + λkj = 0. Also, let

NChj = NCh−1 |Ωj= Q1(Ωj).

The domain-decomposition iterative procedure for the hybridized, nonconforming Galerkin method is defined
in the following manner. Let

(ph,0j , λh,0jk ) ∈ NChj × Λjk

be given for all j and k. Then, compute (ph,nj , λh,njk ) ∈ NChj × Λjk as the solution of the equations

(a∇ph,nj ,∇v)j + (cph,nj , v)j +
∑
k

〈〈βph,nj , v〉〉Γjk + 〈〈dph,nj , v〉〉Γj =∑
k

〈〈λn−1
kj + βph,n−1

k , v〉〉Γjk + (f, v)j + 〈〈g, v〉〉Γj , v ∈ NChj , (3.10a)

λh,njk = −λh,n−1
kj + β

(
ph,nj (ξjk)− ph,n−1

k (ξjk)
)
. (3.10b)

In the sections to follow, we will show the convergence of (ph,nj , λh,njk ) to (p̃hj , λ̃
h
jk), where p̃hj = p̃h |Ωj and

λ̃hjk = λ̃h |Γjk , first without assuming c0 to be positive and then, with a better rate, when c0 > 0. Let us do
some preliminaries here before turning to the proofs.

Substituting (3.10b) into (3.10a) leads to the equation

(a∇ph,nj ,∇v)j + (cph,nj , v)j +
∑
k

〈〈λh,njk , v〉〉Γjk + 〈〈dph,nj , v〉〉Γj = (f, v)j + 〈〈g, v〉〉Γj , v ∈ NChj . (3.11)

Then, note that p̃hj satisfies the local equation

(a∇p̃hj ,∇v)j + (cp̃hj , v)j +
∑
k

〈〈λ̃hjk , v〉〉Γjk + 〈〈dp̃hj , v〉〉Γj = (f, v)j + 〈〈g, v〉〉Γj , v ∈ NChj . (3.12)

Also, since λ̃hjk = −λ̃hkj , (3.1b) is equivalent to

λ̃hjk = −λ̃hkj + β
(
p̃hj (ξjk)− p̃hk(ξjk)

)
. (3.13)

Set

enj = ph,nj − p̃hj , µnjk = λh,njk − λ̃hjk.

Then, (3.10b–3.13) imply the error equations

(a∇enj ,∇v)j + (cenj , v)j +
∑
k

〈〈µnjk, v〉〉Γjk + 〈〈denj , v〉〉Γj = 0, v ∈ NChj , (3.14a)

µnjk = −µn−1
kj + β

(
enj (ξjk)− en−1

k (ξkj)
)
. (3.14b)

The choice v = enj in (3.14a) gives

(a∇enj ,∇enj )j + (cenj , e
n
j )j +

∑
k

〈〈µnjk , enj 〉〉Γjk + 〈〈denj , enj 〉〉Γj = 0,
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which leads to the useful relations∑
k

|µnjk ∓ βenj (ξjk)|20,Γjk =
∑
k

(
|µnjk|20,Γjk + |β|2|enj (ξjk)|20,Γjk

)
∓ 2β

∑
k

〈〈µnjk, enj 〉〉Γjk

=
∑
k

(
|µnjk|20,Γjk + β2|enj (ξjk)|20,Γjk

)
± 2β

{
(a∇enj ,∇enj )j + (cenj , e

n
j )j + 〈〈denj , enj 〉〉Γj

}
·

(3.15)

Following Lions [9, 10] and Després [6], set

R ≡ R(e, µ) =
∑

Γjk∈Ih
|µjk − βej(ξjk)|20,Γjk . (3.16)

Then, from (3.14b) and (3.15) we see that

Rn =
∑

Γjk∈Ih
|µnjk − βenj (ξjk)|20,Γjk =

∑
Γjk∈Ih

|µn−1
kj + βen−1

k (ξjk)|20,Γjk (3.17)

= Rn−1 − 4β
∑
j

{
(a∇en−1

j ,∇en−1
j )j + (cen−1

j , en−1
j )j + 〈〈den−1

j , en−1
j 〉〉Γj

}
·

Since Rn is a decreasing sequence of nonnegative numbers,

∞∑
n=1

∑
j

{
(a∇enj ,∇enj )j + (cenj , e

n
j )j + 〈〈denj , enj 〉〉Γj

}
<∞, (3.18)

and a rather weak convergence theorem can be proved for the iteration. We shall, instead, discuss the spectral
radius of the iteration operator.

3.3. The convergence of the iteration when c0 = 0

Let Tf,g : NCh−1×Λh →NCh−1×Λh be the affine map such that for any (u, θ) ∈ NCh−1×Λh, (p, λ) ≡ Tf,g(u, θ)
is the solution, for all j, of

(a∇pj ,∇v)j + (cpj , v)j +
∑
k

〈〈βpj , v〉〉Γjk + 〈〈dpj , v〉〉Γj =∑
k

〈〈θkj + βuk, v〉〉Γjk + (f, v)j + 〈〈g, v〉〉Γj , v ∈ NChj , (3.19)

λjk = −θkj + β (pj(ξjk)− uk(ξjk)) . (3.20)

Lemma 3.2. The pair (p, λ) ∈ NCh−1 × Λh is a solution of (3.12, 3.13) if and only if it is a fixed point of the
operator Tf,g. If (p, λ) is a fixed point of Tf,g, then pj(ξjk) = pk(ξkj) and λjk = −λkj for all Γjk ∈ Ih, so that
p ∈ NCh and is the solution of (2.5).

Proof. Let (p, λ) be a fixed point of Tf,g. Then, substituting (3.20) into (3.19) gives

(a∇pj ,∇v)j + (cpj , v)j +
∑
k

〈〈λjk , v〉〉Γjk + 〈〈dpj , v〉〉Γj = (f, v)j + 〈〈g, v〉〉Γj , (3.21)
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so that (p, λ) satisfies (3.12). Also, from (3.20),

λjk = −λkj + β (pj(ξjk)− pk(ξjk)) ,

so that (3.13) is satisfied. Since it also follows from (3.20) that λkj = −λjk + β (pk(ξjk)− pj(ξjk)), it is clear
that

pj(ξjk) = pk(ξjk) and λjk = −λkj .

Thus, we have shown that any fixed point of Tf,g is a solution of (3.12, 3.13) and that λjk = −λkj for all
Γjk ∈ Ih. It is obvious that any solution of (3.12, 3.13) is a fixed point of Tf,g. This completes the proof.

Since Tf,g(u, θ) can be decomposed as the sum of T0,0(u, θ) and Tf,g(0, 0), (u, θ) is a fixed point of Tf,g if and
only if

(u, θ) = Tf,g(u, θ) = T0,0(u, θ) + Tf,g(0, 0).

Thus, a fixed point (u, θ) of Tf,g is a solution of the equation

(I − T0,0)(u, θ) = Tf,g(0, 0).

Our object is to show that the spectral radius ρ(T0,0) of T0,0 is strictly smaller than one, thereby ensuring the
convergence of the iterative procedure (3.10) at a linear rate.

Lemma 3.3. ρ(T0,0) < 1.

Proof. Let γ be an eigenvalue of T0,0 and let (p, λ) be an associated eigenvector, so that

T0,0(p, λ) = γ(p, λ). (3.22)

It follows from (3.16) that

R(T0,0(p, λ)) = |γ|2R(p, λ), (3.23)

and, by (3.17),

R(T0,0(p, λ)) = R(p, λ)− 4β
∑
j

{
(a∇pj ,∇pj)j + (cpj , pj)j + 〈〈dpj , pj〉〉Γj

}
· (3.24)

Hence,

|γ|2 = 1− 4β
R(p, λ)

∑
j

{
(a∇pj ,∇pj)j + (cpj , pj) + 〈〈dpj , pj〉〉Γj

}
· (3.25)

Thus, |γ| ≤ 1 and |γ| = 1 if and only if∑
j

{
(a∇pj ,∇pj)j + (cpj , pj)j + 〈〈dpj , pj〉〉Γj

}
= 0, (3.26)

so that it suffices to demonstrate that |γ| = 1 implies that the associated eigenvector (p, λ) is trivial. Clearly,
if c0 > 0, pj = 0, j = 1, . . . , J , and it follows from (3.21) that λjk = 0 for all j and k. If not, we first observe
that it follows from (3.26) that

∇pj = 0 in Ωj , j = 1, . . . , J, and pj(ξj) = 0 if ξj ∈ Γj . (3.27)
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Then, for any boundary element Ωj , pj = 0 in Ωj . It also follows that

γ
∑
k

〈〈λjk, v〉〉Γjk = 0, v ∈ NChj ,

for boundary elements, from which it follows that λjk = 0 at nodes of boundary elements.
Next, take an element Ωj with a face in common with a boundary element Ωk. If c(x) > 0, it follows from

(3.26) that pj = 0 in Ωj . If c(x) ≡ 0 on Ωj , note that

λkj = λjk = 0 and pk(ξkj) = pj(ξjk) = 0 on Γjk.

Thus, we again have pj = 0 and λj` = 0. Working inward from the boundary element-by-element shows that
(p, λ) vanishes, so that ρ(T0,0) < 1, as we set out to show.

This argument does not establish a bound for ρ(T0,0) < 1 in terms of the discretization parameter h; we show
in the next section that having c0 > 0 allows such an estimate.

3.4. An estimate for the spectral radius of the iteration operator when c0 > 0

We assume in this section that c(x) ≥ c0 > 0 and show that there exists a positive constant M such that,
for any eigenvector (p, λ) of T0,0,

R(p, λ) ≤ 4Mβ
∑
j

{
(a∇pj ,∇pj)j + (cpj , pj)j + 〈〈dpj , pj〉〉Γj

}
, (3.28)

from which, by (3.28) and (3.25), it follows that

|γ|2 ≤ 1− 1
M
· (3.29)

That, in turn, will imply an estimate for the rate of convergence of the iterative procedure (3.10).
First, if (p, λ) is an eigenvector of T0,0, then substituting (3.20) in (3.19) leads to

(a∇pj ,∇v)j + (cpj , v)j +
∑
k

〈〈λjk , v〉〉Γjk + 〈〈dpj , v〉〉Γj = 0, v ∈ NChj , ∀j. (3.30)

Then, let Ωj be an arbitrary element and choose v = ṽ ∈ NChj in (3.30) such that

ṽ(ξjk) = λjk ,

with the convention that λjk = 0 if the corresponding face is in Γ. Then, the bound (3.43) derived in Section 3.6
implies that

hmax(Ωj)−1
(
‖ṽ‖20,Ωj + hmin(Ωj)2‖∇ṽ‖20,Ωj

)
≤ K〈〈λjk, λjk〉〉∂Ωj . (3.31)

Then, by (3.30) and (3.31),

〈〈λjk , λjk〉〉∂Ωj = −(a∇pj ,∇ṽ)j − (cpj , ṽ)j

≤ C
(
‖∇pj‖0,Ωjhmax(Ωj)

1
2 hmin(Ωj)−1 + ‖pj‖0,Ωjhmax(Ωj)

1
2

)
〈〈λjk , λjk〉〉

1
2
∂Ωj

,

and

〈〈λjk , λjk〉〉∂Ωj ≤ Chmax(Ωj)
[
‖pj‖20,Ωj + hmin(Ωj)−2‖∇pj‖20,Ωj

]
. (3.32)
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Also, by (3.41),

〈〈pj , pj〉〉∂Ωj ≤
C

hmin(Ωj)
‖pj‖20,∂Ωj . (3.33)

Set

ζ = max
j

hmax(Ωj)
hmin(Ωj)

, hmax = max
j
hmax(Ωj), hmin = min

j
hmin(Ωj). (3.34)

Combining (3.32) and (3.33), we see that

R(p, λ) =
∑
jk

|λjk − βpj(ξjk)|20,Γjk ≤ 2
∑
j

{
〈〈λjk, λjk〉〉∂Ωj + β2〈〈pj , pj〉〉Ωj

}
≤ C

∑
j

(
hmax(Ωj)
hmin(Ωj)2

‖∇pj‖20,Ωj +
(
hmax(Ωj) +

β2

hmin(Ωj)

)
‖pj‖20,Ωj

)

≤ C
∑
j

(
ζ

hmin
‖∇pj‖20,Ωj +

(
β2

hmin
+ hmax

)
‖pj‖20,Ωj

)
≤ 4M(β)β

∑
j

(
(a∇pj ,∇pj)j + (cpj , pj)j + 〈〈dpj , pj〉〉Γj

)
,

(3.35)

where

M(β) =
1
4
C max

(
ζ

a0hminβ
,

1
c0

(
β

hmin
+
hmax

β

))
. (3.36)

The function M(β) is minimized by choosing the two terms in (3.36) to be equal; hence the optimal β satisfies
the equation

β2 = a−1
0 c0ζ − c0hminhmax ∼ a−1

0 c0ζ,

so that

β ∼
√
a−1

0 c0ζ. (3.37)

Then,

M ∼ K
√

(a0c0)−1ζ
1

hmin
, (3.38)

and

|γ|2 ≤ 1−K
√
a0c0ζ−1hmin.

Thus, it follows that

ρ(T0,0) ≤ 1−K
√
a0c0ζ−1hmin, (3.39)

with a different K.
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Theorem 3.2. Let a(x) ≥ a0 > 0 and c(x) ≥ c0 > 0, and let ζ be the maximum aspect ratio for the partition
Ωj , j = 1, . . . , J . Let β be chosen as in (3.37). Then, the spectral radius of the operator T0,0 satisfies the
bound (3.39).

If the partition is quasiregular, then ζ = O(1) as hmax → 0, β = O(1) and ρ(T0,0) ≤ 1−Kh as h→ 0. This
is the best rate of convergence that can be expected in a domain decomposition iteration based on subdomains
at the element level.

3.5. The three-dimensional problem

Let us consider the nonconforming finite element space based on the reference cubic element R̂ = [−1, 1]3 given
by either choice ofQ` as given in (2.20) or (2.21) in Section 2. The hybridization procedure and localizations can
be carried out in exactly the same manner as for the two-dimensional problem, so that a domain decomposition
iteration can be defined in a completely analogous fashion to that above. Moreover, the analysis of convergence
of the iteration is unchanged, except for modifying the values of the constants in the technical lemmata.

3.6. Some calculus

Consider the element E = (− 1
2hx,

1
2hx)× (− 1

2hy,
1
2hy), and set

hmin(E) = min(hx, hy), hmax(E) = max(hx, hy),

and consider the basis Q1. It is easy to see that the basis element that is one at (− 1
2hx, 0) and vanishes at the

other three nodes is given by

v =
1
4

+
x

hx
− 3

2

(
x2

h2
x

− 20x4

3h4
x

− y2

h2
y

− 20y4

3h4
y

)
·

Thus, ∫∫
E

v2 dxdy =
781
5040

hxhy,

and it follows that

‖z‖0,∞,E ≤
K√
hxhy

‖z‖0,E, z ∈ NCh(E), (3.40)

where K will be a generic constant in this section. From (3.40), it is easy to see that

〈〈z, z〉〉E ≤ 4hmax(E)‖z‖20,∞,E ≤
K

hmin(E)
‖z‖20,E, z ∈ NCh(E). (3.41)

Another simple calculation shows that∫∫
E

|∇v|2 dxdy =
(

65hy
28hx

+
37hx
28hy

)
≤ Khmax(E)

hmin(E)
,

so that

‖∇z‖0,E ≤
K

hmin(E)
‖z‖0,E, z ∈ NCh(E). (3.42)
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Conversely, a scaling argument shows that

hmax(E)−1
(
‖z‖20,E + hmin(E)2‖∇z‖20,E

)
≤ K〈〈z, z〉〉∂E, z ∈ NCh(E). (3.43)

Completely analogous calculations can be made when Q2 is considered and for either basis suggested in the
three-dimensional case.
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