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The modulation instability (MI) is a universal mechanism that is responsible for the disintegration of weakly

nonlinear narrow-banded wave fields and the emergence of localized extreme events in dispersive media. The

instability dynamics is naturally triggered, when unstable energy sidebands located around the main energy

peak are excited and then follow an exponential growth law. As a consequence of four wave mixing effect,

these primary sidebands generate an infinite number of additional sidebands, forming a triangular sideband

cascade. After saturation, it is expected that the system experiences a return to initial conditions followed by a

spectral recurrence dynamics. Much complex nonlinear wave field motion is expected, when the secondary or

successive sideband pair that is created is also located in the finite instability gain range around the main carrier

frequency peak. This latter process is referred to as higher-order MI. We report a numerical and experimental

study that confirms observation of higher-order MI dynamics in water waves. Furthermore, we show that the

presence of weak dissipation may counterintuitively enhance wave focusing in the second recurrent cycle of wave

amplification. The interdisciplinary weakly nonlinear approach in addressing the evolution of unstable nonlinear

waves dynamics may find significant resonance in other nonlinear dispersive media in physics, such as optics,

solids, superfluids, and plasma.

DOI: 10.1103/PhysRevE.96.022219

I. INTRODUCTION

One possible explanation for the formation of extreme

wave events, for instance, in the ocean and nonlinear optical

media, is modulation instability (MI) [1–3]. Understanding the

wave dynamics of modulationally unstable waves is of major

significance for the sake of accurate modeling and prediction

of localized structures as well as of rogue waves in particular

[4,5]. The MI describes the disintegration of unidirectional and

narrow-banded wave fields. Physically, the instability is driven,

when sidebands that are located around the main carrier energy

peak in a specific instability range are excited. The progressive

focusing of the wave field is translated in the spectral domain

with an advancing formation of an infinite number of sidebands

in the form of a triangular cascade [6,7].

One deterministic way to study the MI is by use of the

nonlinear Schrödinger equation (NLSE) [8,9]. This weakly

nonlinear evolution equation is indeed very useful in the

study of the problem, in view of its integrability [10]. In

fact, the NLSE admits a family of exact solutions that model

stationary, pulsating, and modulationally unstable wave fields

[11]. The standard model that describes the MI process is

the family of Akhmediev breathers (ABs) [12]. Indeed, for

each unstable modulation frequency, or unstable sideband,

one can assign an exact analytical AB expression to study

the spatiotemporal evolution of the wave field. From an

experimental perspective these universal types of solutions are
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very valuable, since the complex nonlinear physical processes

can be controlled in time and space and adjusted to laboratory

environments [13,14].

It is also known that for nonideal input conditions the

wave field experiences a focusing recurrence after the first

growth and decay cycle of instability, also known as Fermi-

Pasta-Ulam (FPU) recurrence [6,15–17]. Interestingly, under

particular conditions when the primary sidebands are shifted

closer to the main frequency peak, the secondary or higher

sidebands may also fall within the unstable frequency range.

As a consequence, it is expected that focused wave packets

undergo a pulse splitting followed by much complex nonlinear

wave interaction compared to a standard FPU recurrence

dynamics. This process is referred to as higher-order MI

[18,19] and has been so far observed experimentally only in

Kerr media [19,20].

In this paper, we report the observation of higher-order

MI on the water surface using the framework of ABs, taking

into account weak dissipation that is present in our laboratory

setup and that impacts the nonlinear wave propagation motion.

Experiments have been conducted in a unique and very large

hydrodynamic wave facility, allowing the observation of a

long-ranging evolution of unstable wave dynamics. We also

show that weak dissipation, usually and naturally present

in laboratory environments, may counterintuitively enhance

the second recurrent focusing in a higher-order MI regime.

The laboratory measurements, describing the higher-order

dynamics, are in very good agreement with corresponding

and nonconservative modified NLSE (MNLSE) simulations

and justify the relevance of universal evolution equations in

the study of nonlinear wave propagation in dispersive media.
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II. THEORETICAL FRAMEWORK

The dynamics of surface gravity waves in deep water can

be described by the framework of the NLSE [21]

i

(

�x +
2k

ω
�t

)

−
k

ω2
�t t − k3|�|2� = 0, (1)

where g denotes the gravitational acceleration and k is the

wave number of the narrow-banded as well as unidirectional

wave field, that is connected to the wave frequency ω through

the linear dispersion relation k = ω2

g
. The NLSE is the simplest

evolution equation that takes into account dispersion and

nonlinearity of the wave dynamics. It can be also regarded as

a universal evolution equation that describes wave dynamics

in other fields of physics, such as solids [22,23], optics [4,24],

superfluid helium [25], and plasma [26]. The particularity of

the NLSE is its integrability. Indeed, it admits a number of

stationary and pulsating localized envelope structures. One

particular NLSE solution that describes the dynamics of MI

of a Stokes wave of amplitude a is known as the Akhmediev

breather [27]:

�(X,T ) = a

√
2a cos(a�T ) + (1 − 4a) cosh(2a2RX) + iR sinh(2a2RX)

√
2a cos(a�T ) − cosh(2a2RX)

exp(2a2iX). (2)

Here, 0 < a < 0.5 denotes the breather parameter, R =√
8a(1 − 2a) denotes the growth and decay rate, � =

2
√

1 − 2a denotes the modulation frequency, while X = k3

2
x

and T =
√

2k2(x − cgt). Note that when a −→ 0.5 the mod-

ulation period becomes infinite, the growth becomes algebraic

rather than exponential, and the wave dynamics is then

described by the universal Peregrine breather solution [28–32].

The AB-type wave motion has been observed in a wide range

of physical media and provides an ideal framework to control

MI in space and time in laboratory environments [16,17,33]. In

order to study numerically and/or experimentally the evolution

dynamics of modulationally unstable Stokes waves, the initial

input wave field of amplitude a can be determined by

�(x = x0,t) = a[1 + amod cos(�t)]. (3)

To ensure initial AB dynamics as described in Eq. (2),

the relation between modulation amplitude amod and the

modulation frequency � should be as follows: � =
√

2Rμi

amod−μ
,

where μ is a real parameter [16,34]. Even though experiments

in optics and hydrodynamics can be well controlled, the

presence of weak dissipation is inevitable. For water waves

one possible source of dissipation is the viscosity. An effective

model to take this into account is the addition of a linear

attenuation factor of a wave envelope in the NLSE framework.

Thus, for a given viscosity parameter ν the NLSE becomes

[35,36]

i

(

�x +
2k

ω
�t

)

−
k

ω2
�t t − k3|�|2� = −iD�, (4)

where D = 4k3

ω
ν. It is also known that when ensuring a long

propagation distance of the wave field the MI undergoes a

recurrent focusing [6]. In this case, when only the primary

sideband pair is within the unstable frequency range the

unstable waves manifest FPU-like growth-decay cycles [16].

When weak dissipation is at play, the cycle exhibits a

specific shift, commuting crest and trough dynamics in each

focusing cycle [17]. In the presence of strong dissipation, the

modulation instability can be also completely annihilated [37].

When the secondary or higher sideband pairs fall into the

standard MI frequency range, a complex dynamics of the wave

field arises from splitting of the focusing localized structures

and in some cases is followed by a nonlinear interaction of

wave envelopes [19].

Within the context of ABs, this can be achieved by shifting

the modulation frequency towards � −→ 0 or the breather

parameter towards a −→ 0.5—more precisely, when a ∈
]0.375; 0.5[. We emphasize that higher-order MI dynamics can

be also triggered from a three wave system with correct phase

adjustment, choosing the sideband pair close to the carrier

frequency accordingly, allowing the higher-order sidebands

to lie in the unstable gain range [16,19]. The wave envelope

splitting occurring after the first compression does not allow a

return to the initial quasiregular condensate [19].

Figure 1 shows the dimensional wave dynamics of an

AB model Eq. (2) for a = 0.45 as well as corresponding

FIG. 1. Top left (a): NLSE envelope evolution simulations of a

conservative AB. Top right (b): NLSE envelope evolution simulations

of a dissipative AB with ν = 1.2×10−5. Bottom left (c): NLSE sim-

ulations of a conservative envelope evolution with an approximated

cosine modulation that fits the theoretical AB. Bottom right (d): NLSE

simulations of a dissipative envelope evolution with an approximated

cosine modulation that fits the theoretical AB with ν = 1.2×10−5.

The carrier parameters have been chosen to be ε = ak = 0.12 with

amplitude a = 0.03 m at x = −50 m, the modulation frequency is

determined by a = 0.45, while the envelope amplitudes have been

normalized by the value of the amplitude a.
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FIG. 2. Maximal wave amplitude amplifications |ψ(t)| in the higher-order MI regime for carrier parameters a = 0.03 m and ε = 0.12 and

a = 0.45 over a propagation distance of x = 250 m. Blue lines: Conservative dynamics. Red lines: Dissipative dynamics. Upper panels (a) and

(b): AB dynamics. Lower panels (c) and (d): Corresponding cosine perturbation, as described by Eq. (3). Left panels (a) and (c): Dissipation

rate is determined by ν = 1.2×10−5. Right panels (b) and (d): Dissipation rate is determined by ν = 4.1×10−5.

fitted periodic cosine envelope Eq. (3) in a conservative and

dissipative context for carrier parameters ε = ak = 0.12 and

a = 0.03 m. Clearly, a wave envelope pattern distinction can

be noticed in the higher-order MI regime, either in the con-

servative or dissipative framework as well as either within the

AB framework or cosine envelope approach approximation.

We would like to briefly point out that the dissipation param-

eter allows to control the complex spatiotemporal arrangement

(nonlinear superposition) of breather-type structures. In fact,

for each modulation frequency in this regime determined by

a ∈ ]0.375; 0.5[ we can find a set of dissipation parameters D,

or alternatively ν, that engenders a collision of the fissioned

ABs and as a result a significant focusing is expected due

to the nonlinear interaction of these. Figure 2 shows the

normalized maximal amplitude amplifications ψ = �
a

reached

in the case of the higher-order MI regime for an AB case and

approximated cosine modulation in the conservative as well

as dissipative framework. As expected, the first focusing is

retarded when approximating the AB dynamics by a cosine

modulation for a = 0.45, as described by Eq. (3) [16]. More

interestingly, when dissipation is at play for the chosen

dissipation value that is determined by ν = 1.2×10−5 the

following second wave focusing of the initial AB envelope

is significantly more amplified. Indeed, this second focusing

is shown to be much higher than expected from standard

AB or standard MI predictions. Namely, it is beyond three

times the amplitude of the background [21,38]. This type of

dynamics at play for this case, as shown in the upper right

and upper left panel of Figs. 1 and 2, respectively, resembles

the formalism and observations of AB collisions [39] and

confirms the possibility of wave focusing enhancement due

to dissipation, as theoretically reported for the Benjamin Feir

Index in [40], completing within the framework of breathers

the complex picture of the nonlinear stage of modulation

instability in a dissipative regime. The fact that these significant

amplifications do not occur when approximating the AB

envelope by a cosine approach shows the importance of

phase-shift dynamics in the dissipative process.

III. EXPERIMENTAL RESULTS

Next, we describe the experimental as well as correspond-

ing numerical investigation, related to higher-order MI wave

dynamics on the water surface within the framework of AB

envelope dynamics. Experiments have been conducted in a

large water wave facility, installed at the Tainan Hydraulics

laboratory. The facility has a length of 200 m with a constant

water depth of 1.35 m while 60 capacitance wave gauges are

installed along the flume. The small spacing between each

wave probe allows a unique, precise, as well as accurate

wave field acquisition. This is a decisive fact, when aiming

for the reconstruction of the wave’s envelopes in order to

compare these with weakly nonlinear NLSE-type predictions.

Figure 3 shows the schematic illustration of the water wave

flume as well as the placement of the wave gauges along the

facility.

In order to generate higher-order MI hydrodynamics we

injected two different AB-type wave fields for a = 0.45, which

FIG. 3. Schematic description of the water wave facility, installed at the Tainan Hydraulics Laboratory.
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FIG. 4. From right to left: NLSE (4) simulations (a) and (d), experimental results (b) and (e), as well as MNLSE (5) simulations (c) and

(f). Upper panels (a)–(c): AB wave envelope evolution with parameter a = 0.45 as well as carrier parameters ε = 0.10 and a = 0.017 m

for ν = 2.2×10−5. Bottom panels (d)–(f): AB evolution with parameter a = 0.45 as well as carrier parameters ε = 0.12 and a = 0.03 m for

ν = 4.1×10−5.

is the case when the second and third sideband pairs are within

the unstable range with exponential growth rate [18,19,21].

The starting dynamics is initiated by taking into account

small incipient envelope modulation, so that the first focusing

occurs between 40 to 60 m from the wave maker. For the

sake of validation of experimental results, the envelope of

the measured water surface dynamics has been reconstructed,

using the Hilbert transform [21] and then compared to

NLSE and MNLSE simulations, including dissipation. The

dissipative MNLSE formalism can be described by [36]

i

(

�x +
2k

ω
�t

)

−
k

ω2
�t t − k3|�|2�

= i
k3

ω
{6|�|2�t + 2�(|�|2)t − 2i�H[(|�|2)t ]}

+ i
k3

ω

(

−4ν� − 20i
ν

ω
�t

)

. (5)

The linear dissipation rate D has been determined in a

prior experimental setting for a regular wave field with same

corresponding wave parameters. Then, the parameter ν has

been derived according to the relationship described in Eq. (4).

The experimental results together with the numerical NLSE

(4) and MNLSE (5) predictions are shown in Fig. 4.

Although the tank has a noticeable length of 200 m, we

have not been able to observe the entire second focusing cycle

that would reveal the corresponding complete dynamics of

fissioned AB-type envelopes for the chosen wave and breather

configuration parameters. However, we can clearly see the

initialization of this focusing process, particularly, in the case

shown in the upper panel of Fig. 4.

The propagation distance required to observe the latter

nonlinear dynamics can be reduced by increasing the value

of the wave steepness. However, increasing the steepness

engenders breaking of these steep focused AB breather-type

waves as a result of significant amplification, thus weakly

nonlinear theories fail in describing such complicated wave

dynamics [41]. Furthermore, due to the high wave amplitude

amplifications reached for the chosen values of AB parameter

a as well as for the choice of carrier steepness, we can clearly

notice and state that the MNLSE predictions are indeed more

accurate than the NLSE model forecast. This can be notified

in the asymmetry of wave envelope profiles in physical space.

This is indeed well captured in the MNLSE approach and

can be explained by assessing the effects of higher-order

dispersion and mean flow [42–44]. The latter asymmetry is

obviously also translated to an asymmetry in the spectral

Fourier space. We also emphasize that the dissipation in the

model, that is determined by the experiment in the specific

laboratory environment, does not allow the observation of a

second wave amplification focusing that is higher compared to

the first focusing cycle. The corresponding spectral evolutions

are depicted in Fig. 5. Note that we just turn our attention on

the spectral dynamics around the carrier peak frequency and

exclude the dynamics of the higher-order Stokes harmonics

(bound waves), that is, frequencies around ω
π

, 3ω
2π

, 2ω
π

, etc., in

the spectral domain. These spectral evolutions clearly show

the nonlinear complexity of the wave dynamics at play as

well as the expected presence of strong asymmetry around

the main carrier energy. In addition, we can perceive the

initialization of the second wave focusing, characterized by

the beginning of spectral broadening that is clearly annotated.

This is another clear proof for the quantitative accuracy

of the MNLSE approach when studying higher-order MI

022219-4
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FIG. 5. From right to left: NLSE (4) (a) and (d), experimental (b) and (e), as well as MNLSE (5) spectral evolution of the wave field (c)

and (f). Upper panels (a)–(c): Spectral dynamics along the wave flume with AB parameter a = 0.45 as well as carrier parameters ε = 0.10

and a = 0.017 m for ν = 2.2×10−5. Bottom panels (d)–(f): Spectral dynamics along the wave flume with AB parameter a = 0.45 as well as

carrier parameters ε = 0.12 and a = 0.03 m for ν = 4.1×10−5.

processes. We annotate that the observed wave physics in

the higher-order MI regime, as represented in the spectral

domain, is utterly different than FPU dynamics. Indeed, after

the spectral broadening, that is a result of wave focusing, the

dynamical process does not return to a three wave system. This

is also a first-time excellent comparison of long-term spectral

evolution dynamics of MI in hydrodynamics.

IV. CONCLUSION

To conclude, we studied numerically and experimentally

higher-order MI wave dynamics for surface gravity water

waves in the presence of weak dissipation. The initial

conditions for the experiments have been provided through

the NLSE deterministic AB framework, complementing for

instance experimental studies in optics in which the wave

dynamics have been initiated from nonideal breather input

conditions. We discussed the possibility of counterintuitive

higher second wave focusing in a dissipative regime that is a

result of AB-type envelope collision. The respective higher-

order MI laboratory experiments reported are in very good

agreement with numerical (dissipative) MNLSE simulations

and confirm the applicability of weakly nonlinear models in

the study of nonlinear water waves including extreme events,

also when dissipation is at play. Furthermore, we showed

that the dissipation parameter can be regarded as a new

degree of freedom to control MI dynamics. We anticipate

further studies in several nonlinear dispersive media with

respect to higher-order MI, also to overcome the experimental

limitations in hydrodynamics that are summarized in a short

wave propagation distance and limited dissipation parameter

range. Future work may be also devoted to the theoretical

analysis of the effect of dissipation in the NLSE modeling

[45,46] as well as prediction of extreme waves [47,48] in

various physical media governed by the NLSE-type equations.
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