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SIGNIFICANCE STATEMENT 

 

We describe several non-contact methods of orienting objects in three-dimensional (3D) space 

using Magnetic Levitation (MagLev), and report the discovery of a sharp geometry-dependent 

transition of the orientation of levitating objects. An analytical theory of the orientation of 

arbitrary objects in Maglev explains this transition.  MagLev is capable of manipulating and 

orienting hard and soft objects, and objects of irregular shape. Since controlling the orientation of 

objects in space is a prerequisite for assembling complex structures from simpler components, 

this paper extends magnetic levitation into 3D self-assembly, robotic assembly, and non-contact 

(stiction-free) orientation of hard and soft objects for applications in biomimetics, soft robotics, 

and stimulus responsive materials, among others. 
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Abstract  

 

This paper describes several non-contact methods of orienting objects in three-dimensional (3D) 

space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged 

coaxially with like-poles facing (an anti-Helmholtz configuration) and a container containing a 

paramagnetic liquid in which the objects are suspended. Absent external forcing, objects 

levitating in the device adopt predictable static orientations; the orientation depends on the shape 

and distribution of mass within the objects. The orientation of objects of uniform density in the 

MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes 

this transition and predicts the orientation of objects in the MagLev device. Manipulation of the 

orientation of the levitating objects in space is achieved in two ways: i) by rotating and/or 

translating the MagLev device while the objects are suspended in the paramagnetic solution 

between the magnets; ii) by moving a small external magnet close to the levitating objects while  

keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using 

MagLev is possible for objects having a range of different physical characteristics (e.g., different 

shapes, sizes, and mechanical properties from hard polymers to gels and fluids). Magnetic 

levitation thus has the potential to be useful for sorting and positioning components in 3D space, 

orienting objects for assembly, constructing non-contact devices, and assembling objects 

composed of soft materials such as hydrogels, elastomers, and jammed granular media.  
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\body 

Introduction 

 

Developing new techniques to manipulate and orient components is part of the developing 

field of advanced manufacturing. Procedures for orienting hard objects reliably in three 

dimensions (3D) are essential for many existing manufacturing processes and relevant to a range 

of applications in other areas (1). Examples include operating automated manufacturing lines, 

sorting and pre-positioning components for assembly, and inspecting parts for quality control. 

Components in assembly lines often have random orientations, and they must be oriented 

properly before assembly (2-4). Advanced  and ‘next-generation’ approaches based on 

biomimetic (5-8) and soft robotic (9) strageties, and hierarchically organized, self-assembled, 

and stimulus-responsive materials (10-15) particularly require methods capable of orienting and 

assembling soft, sticky, and easily damaged materials.  Few methods exist to manipulate these 

types of materials without damaging them.  

One way of orienting hard objects is to agitate them mechanically, and to allow them to fit 

(or fall) into openings of complementary shape (2); for appropriate geometries, a correct fit 

ensures that the object is appropriately oriented and can be transported to the next process. The 

disadvantages of this method are that it can be slow, and that it is not suitable for objects that are 

soft, fragile, or sticky. Most importantly, it is only reliable for objects of anisotropic shape: that 

is, it fails for objects that have only slightly asymmetrical shapes or sizes (16, 17).  

Robotics provides an alternative method for orienting hard objects. Robotic arms can grasp 

and arbitrarily position objects that are randomly oriented, but to do so, they require imaging 

devices, sensors and complex control algorithms (3). Such robots, therefore, must incorporate 

complex, expensive vision systems (18); such systems also do not work well with soft materials 
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(19, 20) (although soft robots (21, 22) and grippers (23) may develop to a level at which they 

ease the task of manipulating soft or fragile objects). In general, automated systems (e.g., “pick-

and-place” robotic systems) handle objects of specific shapes, and are not designed for general-

purpose recognition and manipulation of objects of arbitrary shapes and materials (24, 25). Thus, 

changes in a manufacturing process may require extensive modifications to a robotic system 

before it can handle objects of (even slightly) different shapes or sizes (26).  

This paper describes several non-contact methods of orienting both hard and soft objects of 

different shapes and sizes using Magnetic Levitation (MagLev). Objects are suspended in 

aqueous solutions of a paramagnetic salt (e.g., MnCl2), and levitated against gravity in a 

magnetic field gradient generated by two NdFeB magnets arranged with like poles facing each 

other (a MagLev device, see Fig. 1) (27, 28).  Historically, magnetic levitation, in air, of strongly 

diamagnetic materials (29) such as bismuth and pyrolytic graphite has been used to create 

devices such as a frictionless rotor (30), a tiltmeter/seismometer (31) and a pressure gauge (32). 

We and others have used magnetic levitation in paramagnetic liquids for trapping small objects 

and separating diamagnetic materials on the basis of differences in density (28, 29, 33-47). This 

paper extends MagLev to the manipulation and orientation of objects of uniform density in 3D 

space. Non-spherical objects levitate with a well-defined orientation in the device. When the 

density of the object is uniform, the orientation that the levitating object adopts in the device 

depends only on the shape and aspect ratio of the object.  We discovered a sharp, aspect ratio-

dependent transition in the orientation of objects levitating in the MagLev device.  We present an 

analytical theory that explains this transition, and predicts the orientation of objects in the 

MagLev device.  

The orientation of levitating objects in space can be manipulated in two ways: i) by rotating 

and/or translating the MagLev device (with the objects suspended between the magnets), ii) by 
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keeping the MagLev device stationary while perturbing the magnetic field externally (e.g., by 

moving a small magnet or ferromagnetic probe close to the levitating objects). 

 

Background. The MagLev device that we used was similar to the ones previously described (27, 

47). Finite element simulations based on the parameters (dimensions, strength of the magnetic 

field, magnetic susceptibility of the solution) of this device show that, to a good approximation, 

the gradient of the magnetic field is linear, with a constant slope between the surface of the top 

magnet to the surface of the bottom magnet, and the magnetic field is zero at the center of the 

device (27). 

When an object is immersed in a (paramagnetic) liquid, it experiences a gravitational force,  ⃗ , due to the difference in densities between the object, ρo  (kg m
-3

), and the solution, ρs (kg m
-3

) 

(Fig. 1). In Equation (1), V (m
3
) is the volume of the object and g (m s

− 2
) is the acceleration due 

to gravity. By convention, we take the direction towards the center of the earth as positive. The 

gravitational force,  ⃗ , acts upwards when the object has a lower density than the liquid, 

downwards when the object has a higher density than the liquid, and is zero when the object has 

the same density as the liquid.  

  ⃗  (     )  ⃗                                                                             (1) 

 

When placed in the MagLev device, an object with a magnetic susceptibility χo (χo is 

dimensionless and is typically on the order of 10
-5

 for diamagnetic objects (27)), that is different 

from the magnetic susceptibility of the paramagnetic solution, χs  (χs ~  1.8 × 10
-4

 for 1.00 M  

MnCl2 (27)), experiences a magnetic force,  ⃗   , given by Equation (2) (27).  In Eq. 2,  ⃗⃗⃗ is the 
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applied magnetic field (T) and μ0 = 4 π × 10−2
 (N A

− 2
) is the magnetic permeability of free 

space.   

  ⃗    (     )     ⃗⃗  (  ⃗⃗⃗)                                                             (2) 

 

The magnetic force arises due to the interaction between the paramagnetic liquid and the 

gradient in the magnetic field between the two coaxial magnets. In a gradient of magnetic field, 

maximizing the volume of paramagnetic liquid in regions of high magnetic field strength 

minimizes the potential energy of the system.  Thus, in a MagLev device, the magnetic force acts 

to displace diamagnetic objects towards the center of the device, where the magnitude of the 

field is lowest. This movement of diamagnetic objects away from high-field regions allows the 

volume of paramagnetic liquid displaced by the object to occupy regions of higher relative field 

strength closer to the surface of the magnets. 

An object levitates stably when the gravitational and magnetic forces balance. Equation (3)  

gives the levitation height h (Fig.1) at which this equilibrium is achieved for a point-like object 

(27). In this equation, d (m) is the separation distance between the magnets, and Bo is the 

magnitude of the magnetic field at the surface of the magnets.  To a good approximation, Eq. 3 

also describes the levitation height of the center of volume of finite-sized, homogenous spherical 

objects (and less generally of objects that are heterogeneous and/or non-spherical) in the MagLev 

device (27, 47).  

   (     )     (     )                                                                  (3) 
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If   ⃗  >  ⃗    everywhere in the device, the objects sinks, and if  ⃗   <  ⃗    everywhere in the 

device, the object rises. Thus, only values of h from 0 to the height of the meniscus of the 

paramagnetic liquid are relevant practically, although Eq. 3 can, in principle, provide values of h 

ranging from    to   .  

 

 
 

Convention for Describing Orientation. Non-spherical objects adopt distinguishable 

orientations in the MagLev device (and, by extension, a fixed laboratory frame of reference). 

Here we describe the convention we adopt to describe our results. We use Cartesian coordinates. 

The fixed coordinates (i.e., the laboratory frame of reference) are the x-, y-, and z- axes. The 

MagLev device may be rotated relative to the laboratory frame of reference, and thus we define a 

body-fixed coordinate system, x’-, y’-, z’-, for the device (Fig. 1). To describe the orientation of 

objects with obvious (even if approximate) axes of symmetry (e.g., the long axis of a screw or a 

cylinder), we define a normalized direction vector  ⃗ (Fig. 1 inset). The direction of  ⃗ could, in 

principle, be chosen arbitrarily, but for objects with obvious axes of symmetry, it is usually 

convenient to define  ⃗ to be aligned with one such axis.  

 

Results and Discussion 

 

The Orientations of Non-spherical Objects Levitating in a MagLev Device. As a preliminary 

study, we levitated a Nylon screw (9 mm in length) in the MagLev device. In these experiments, 

we rested the MagLev device on a flat laboratory bench, and hence the x’-, y’-, z’- axes coincided 

with the x-, y-, z- axes of the laboratory frame of reference.  The concentration of MnCl2 was 
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1.50 M, yielding a solution of density ρs ~ 1.15 g/cm³ (measured with a pycnometer). The 

density of the solution was similar to that of the screw, ρo = 1.15 g/cm³ (manufacturer’s data). 

We chose the direction vector  ⃗  to point along the long axis of the screw. The screw levitated at 

the center of the device and adopted an orientation with  ⃗  parallel to the surface of the magnets 

(Fig. 2A). We next modified the shape of the screw by cutting the shaft to a length of 2.5 mm. 

The shortened screw, while still levitating at the center of the device, adopted an orientation with  ⃗ pointing perpendicular to the surface of the magnets (Fig. 2B). Since we only changed the 

geometry of the screw, albeit substantially, we inferred that geometry played a role in 

determining the orientation of objects in this MagLev device.   

 We designed a series of experiments with model objects to explore the role of geometry for 

orientation in the MagLev device. We machined objects out of organic polymers with circular, 

annular, square, and triangular two-dimensional cross sections, each with a constant 

‘characteristic’ length, . Depending on the object,  was the diameter of the circle, the outer 

diameter of the annulus, the side width of the square, or the length of the sides of the equilateral 

triangle (Fig. 2C-F). We varied the thickness, T, of the objects in the third dimension to produce 

cylinders, annular cylinders, square prisms, and triangular prisms. Levitating these relatively 

simple, symmetric 3D objects with MagLev allowed us to obtain a theoretical understanding of 

the governing physics. To classify the shapes, we defined a non-dimensional aspect ratio 

parameter, AR, to be the ratio between the thickness of the object and its characteristic length 

(i.e., AR = T/ ; see Fig. 2).  We set  ⃗ to be aligned along the thickness axis of the object.  

 We started by levitating objects of small AR, and progressively levitated objects with larger 

AR. We captured images of the objects along the y’-z’ plane and measured the angle α that  ⃗ 

subtended with respect to the z’- axis of the device. We defined α to be zero when  ⃗ was parallel 

to the z’-axis. The value of α was clustered either around 0 or 90—  ⃗ was parallel or 
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perpendicular to the surface of the magnets — with at most a 10 (typically < 5variation 

observed between replicate objects. Plots of α versus AR for each of the shapes revealed that α 

jumped abruptly from 0to 90at what appeared to be a critical value of AR, which we denote as 

AR
*
.  The value of AR

*
 appeared to be different for the different shapes.  For the cylinder we 

observed 0.84 ≤ AR
*
 ≤ 0.88, for the annular cylinder we observed 1.04 ≤ AR

*
 ≤1.12, for the square 

prism we observed 0.90 ≤ AR
*
 ≤1.10, and for the triangular prism we observed 0.65 ≤ AR

*
 ≤ 0.73. 

The value of AR
*

 and the orientation of the objects in the y’-z’ plane did not depend on the shape 

of the magnets, the levitation height of the objects (Fig. S1) and the distance, d, between the two 

magnets (varied from 45 mm to 65 mm) (Fig. S2), suggesting that the observed effects are purely 

a function of the shape of the objects. 

 The orientation of the object in the x’-y’ plane, as expected, did depend on the shape of the 

magnets. For square magnets, the objects centered in the magnetic field and aligned along the 

diagonals (Fig. S3). For disc-shaped magnets, the final orientation of the object in the x’-y’ plane 

was dependent on the history of sample. Shaking the container, or removing the container and 

replacing it in the MagLev device, caused the orientation of the object in this plane to change 

(data not shown). The orientation of the object in the y’-z’ plane, however, was still fixed and 

determined only by AR. 

   

Modeling the Height and Orientation of Non-spherical Objects in MagLev. The dependence 

of the height and orientation of objects on shape was one for which we wished to have an 

analytical treatment. Rather than work with equations of force (Eq. 1, Eq.  2), which, without 

modification, are valid strictly for point-like objects, we consider the potential energy of an 

arbitrary object located in a region with superimposed magnetic and gravitational fields (a 
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MagLev system). Equation (4) gives the energy density (energy per unit volume) of the MagLev 

system.  

                       ( ⃗) ⃗⃗    ( ⃗) ⃗   ⃗⃗                         (4) 

 

In this equation, umag is the magnetic contribution and ugrav is the gravitational contribution to the 

total potential energy density,   ( ⃗)    ( ⃗)     is the magnetic susceptibility of the object 

relative to a homogenous medium,   ( ⃗)    ( ⃗)     is the density of the object relative to a 

homogenous medium, and  ⃗⃗  (     ) is the height of the object. In general, the object can be 

heterogeneous in both density and magnetic susceptibility such that these functions depend on 

the position coordinate  ⃗. Note that taking the negative of the derivative of ugrav and umag with 

respect to z’ gives Eq. 1 and Eq. 2, as expected. 

At static equilibrium, the potential energy,   ∫       , where V is the volume of the 

object, has to be minimized. Finding the equilibrium configuration involves minimizing 

simultaneously the energy associated with the levitation height and orientation of the object. 

Parameterizing the object, and numerically solving the resulting set of multivariable equations 

(minimization has to be performed over the spatial coordinates and the distributions of density 

and susceptibility), provides the levitation height and equilibrium orientation for arbitrary objects 

in arbitrary magnetic fields.   

  Simplifications of Eq. 4 allow analytical closed-form solutions that provide physical 

insight. The equilibrium levitation height    will occur where 
      . For a linearly varying 

magnetic field, the levitation height of the centroid of the object in the MagLev depends only on 

the average susceptibility  ̅    ∫   ( ⃗)     and the average density  ̅    ∫   ( ⃗)     of 
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the object, regardless of the shape and the distribution of the heterogeneities within the object.  

Thus, replacement    with  ̅ and     with  ̅  in  Eq.  3 gives the levitation height of the centroid 

of an arbitrary object The SI contains the derivation). 

 The equilibrium orientation(s) at angle   will occur at the local minima of U, where 

       and          . We choose a body-fixed coordinate system  ⃗(           )  aligned with a 

principal axes of the object, and fix the x’’-axis to remain parallel to the x’-axis of the MagLev 

reference frame (we include the full derivation and a procedure to find this preferred reference 

frame in the SI). We proceed to analyze the rotation of the object around the x’-axis with the 

same convention as in the experiments and parameterize orientation as the angle   that   ⃗ 

subtends with respect to the z’- axis. Equation 5 gives this energy for an object that is 

homogenous in susceptibility and density.  

  ( )         (   )                                          (5) 

 

In this equation,           ,      is the principle second moment of area along the z’’-axis, and   

is the ratio of the principle second moments of area along the y’’- and z’’- axes.  

Fig. 3A shows a plot of Eq. 5 at representative values of R. For values of R < 1,  ( )      , and the potential minima occur at   = 0
o
 and 180

o
.  For values of R > 1,   ( )             , and the potential minima occur at   = 90

o
 and 270

o
. All other values 

of   result in energies that lie within these extrema and are not stable. Thus, objects with uniform 

density will only orient with   = 0
o
 or   = 90

o
. This result rationalizes the experimental 

observations in Fig. 2.  When R approaches 1, the linear theory predicts a flat energy landscape. 
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Adapting the analysis that led to Eq. 5 for nonlinear magnetic fields by retaining higher order 

terms in the expression for  ⃗⃗ provides solutions for the orientation of these objects (See SI). 

We calculate the value of AR
* 

at which it is energetically favorable for the objects to switch 

orientation from   = 0
o
 or   = 90

o
, and plot the results in Fig. 2C-F as a dashed line (See SI 

Appendix for full calculation.) Our calculations match our experimental results excellently. 

Furthermore, plotting α versus R results in the collapse of our data for all the shapes onto a 

master curve where the transition between orientations occurs at R = 1 (Fig. 3B).  

  

Manipulating the Orientation of Objects by Rotating the MagLev Device. We used another 

Nylon screw (8.5 mm in length) to illustrate the process involved in manipulating —  without 

contact with a solid surface —  the orientation of an object suspended inside an entirely closed 

container of paramagnetic liquid. We controlled the orientation of the screw by rotating the 

MagLev device together with the container of paramagnetic liquid. The concentration of MnCl2 

was again 1.50 M, and thus the screw levitated at the center of the device (See Eq. 3.). Fig. 4 

shows the orientation of the screw in the y-z plane when the device was rotated 360 counter-

clockwise about the x-axis (the z’- axis rotated relative to the z- axis). For reference, we used a 

30 × 22 mm cross as a background, keeping the cross fixed with respect to the laboratory frame 

of reference. The screw, suspended in solution, rotated in the lab frame of reference and tracked 

the angle of rotation of the magnets (Fig. 4B). Rotations about the other two axes resulted in 

similar outcomes (data not shown). We conclude that rotating (and translating) about the x-, y-, 

and z- axes allows arbitrary orienting and positioning of objects in three dimensions with respect 

to the laboratory frame of reference. Fig. S4 demonstrates that the orientation of the objects can 

also be manipulated by moving only the magnets, while keeping the container stationary — a 
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procedure that might be useful in certain situations: for example, when access to the oriented 

objects from the top of the container is desired.   

Choosing a solution that has the same density as the object is important for contactless 

manipulation of objects by rotating the device. Fig. 4C shows the results when the density of the 

solution is lower than the density of the object (e.g., the same screw used in Fig. 4B). Rotating 

the device to 45
o
 caused the screw to translate towards the walls of the container, and eventually 

to contact the wall.  Further rotation of the device to 90
o 
caused the screw, which was touching 

the container, to flip, and prevented its further manipulation. Although not shown here, it is 

rational to speculate that normal forces on an object, due to contact with a hard wall, might 

damage or deform soft, sticky, or fragile objects.  

 Why does using a solution of lower density cause the screw to contact the wall of the 

container? Recall that when the density of the solution is equal to the density of the object, the 

gravitational force acting on the object is zero (Eq. 1), and the center of volume of the object 

levitates at the center of the device (Eq. 3). When the density of the solution is less than that of 

the object, force balance requires that the object equilibrate at a smaller levitation height (the 

example shown in Fig. 4C), due to the non-zero gravitational force. Reversing the direction of 

the force vectors describes the situation for objects with a density higher than the solution, and 

the object equilibrates at a larger levitation height. Rotating  the direction of the magnetic force 

(always acting along the z’-axis) with respect to the direction of the gravitational force (always 

acting along the z- axis) produces a component of the net force that acts perpendicular to the z- 

axis. The perpendicular component of the force, which increases in magnitude with increasing 

angles of rotation and reaches a maximum at =90
o
,
 
causes the object to translate towards the 

wall to maintain static equilibrium.  



 

15 

 It is clear that when the gravitational force is zero, the object remains fixed at the center of 

device. This configuration allows arbitrary rotations of the device without the object contacting 

the walls of the container. A practical means of matching the density of the liquid to an object of 

unknown density is to start with a concentrated solution of paramagnetic salt and progressively 

dilute the solution until the object levitates at the center of the device.  

    

Manipulating the Orientation of Objects with External Magnets. Another method of 

controlling the orientation of objects, without contact with a solid surface, is by using external 

magnets to modify the magnetic field generated by the fixed coaxial magnets in the MagLev 

device. It is energetically favorable for the paramagnetic liquid in the container to respond to 

changes in the magnetic field by redistributing volume to occupy regions of locally high field 

strength. This movement of liquid will indirectly cause the displacement of levitating 

diamagnetic objects in the MagLev device.  

 We demonstrate this method by manipulating the orientation of a Nylon screw (2 cm in 

length) in the x’-y’ plane of a MagLev device equipped with disc-shaped magnets (Fig. 5). We 

used circular magnets since this geometry resulted in a circularly symmetric field in the x’-y’ 

plane. Thus, the screw does not have any preferred orientation in this plane. Magnets with shapes 

of lower symmetry, for example square and rectangular magnets, favor the orientation of the 

object along specific planes of symmetry, such as along the diagonals (Fig. S4)  (27, 47).  Fig. 

5B shows an image of the screw viewed along the x’-y’ plane of the device. A cross pattern 

affixed to the bottom magnet is provided as a guide to the eye. As expected, the long axis of the 

screw always oriented perpendicular to the z’ axis while the head of the screw adopted a different 

orientation in the x’-y’ plane each time the container was placed in the device (Fig. 5B shows just 

one such orientation). 
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  We used a small cubic magnet (0.64  0.64  0.64 cm, magnetic field strength at the 

surface ~ 0.4 T) to generate, externally, a localized region of high magnetic field strength to 

manipulate the orientation of the head of the screw. We brought the small magnet to a distance of 

about two cm from the head of the levitating screw (the walls of the container prevented a closer 

approach of the magnet). The head moved away from the small magnet and came to rest after 

rotating ~ 45
o 
away from the surface of the external magnet. By moving the magnet around the 

exterior of the container, we oriented the head of the screw along the four principal axes of the 

cross (Fig. 5C). At each position, the screw remained at its new orientation even after the small 

magnet was moved away from the device.  Furthermore, combinations of several external 

magnets allowed finer control of the orientation of levitating objects (Fig. S5). 

  

Orienting Soft and Sticky Objects in MagLev. MagLev shows particular promise for 

manipulating and controlling the orientation of soft materials.  As proof or principle, we used 

MagLev to manipulate objects fabricated out of hydrogels, elastomers, and colloids — three 

classes of materials with diverse technological applications.   

Hydrogels have been used to fabricate actuators (15), soft robots (5, 9), and artificial tissues 

(6-8).  For example, directed assembly of hydrogel strips and blocks laden with different cell-

types is a promising method for engineering artificial tissues (6-8).  Hydrogels used in 

biomimetic applications are soft (6-8), and tend to stick to surfaces due to the capillary action of 

the liquid film on the hydrogel surfaces. In Fig. 6A, we used MagLev in combination with an 

external magnet to orient a slab of poly(N-isopropylacrylamide) hydrogel; ordinarily, this 

material would deform or break when handled by a hard gripper (Young’s modulus, E, of the 

hydrogel ~ 1000 Pa). We inserted the object into the MagLev device by gently releasing the 

hydrogel from the mold into the paramagnetic liquid. In the MagLev container, the object was 
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able to assume its natural shape, and the competing magnetic and gravitational forces acting on it 

determined its orientation. An external magnet allowed the control of the orientation of the sharp 

end of the hydrogel relative to the four principal axes of the cross.  

In Fig. 6B, we controlled the orientation of a pneumatically actuated soft-gripper made out 

of the silicone elastomer EcoFlex. The gripper, a modular part of a larger soft robot 

assembly(48), deforms easily when subject to moderate forces and tends to adhere to surfaces 

due the low surface energy of cured EcoFlex.  Rotating the magnets allowed control over the 

orientation of the gripping face with respect to the laboratory frame of reference.  We envision 

that MagLev, with further development, could extend modular strategies for the assembly (48) of 

robots to materials that are softer than elastomers (e.g., hydrogels (9)).   

Self-assembled granular and colloidal materials, held together by relatively weak physical 

bonds, are a class of soft or fragile condensed matter that show promise as stimuli-responsive 

materials and containers (11, 13, 14, 49-51).  These materials, despite being composed 

predominantly of fluid, can adopt non-spherical shapes (i.e., they can demonstrate solid-like 

properties) due to the jamming of the colloidal particles on their surfaces (12, 51, 52).  The 

capillary bonds that confer their solid-like properties are weak, and hence these solids have yield 

strengths on the order of  
  ⁄  ~ tens of Pa (53). The surface tension of the liquid is     (N/m), 

and the radius of the object is R. Although such low yield strengths are sufficient to maintain the 

shape of the objects against gravity and thermal agitation, once fabricated, these objects cannot 

be manipulated with hard grippers without causing irreversible plastic deformation due to 

localized shear-melting of the jammed colloidal monolayer (53, 54). Fig. 6C shows control over 

the orientation of a non-spherical perfluorodecalin droplet covered with a jammed monolayer of 

10-µm diameter polystyrene particles. We obtained the stable non-spherical peanut-like object 

by forcing two spherical particle-covered droplets to fuse by squeezing them mechanically. 
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MagLev thus allows active manipulation of self-assembled diamagnetic granular structures 

without requiring the use of magnetic or paramagnetic particles (11). All of the manipulations 

demonstrated here can also be performed on composite objects with metallic components (Fig. 

S6).  

 

Conclusion 

 

Previous works have shown that an object placed in a MagLev device orients reliably based on 

the distribution of density in the object (47). In this paper, we have demonstrated experimentally 

and theoretically that, for objects with a homogeneous density, the distribution of volume (i.e. 

shape) also plays a relevant role in determining the orientation of the object. As a result, we have 

shown that MagLev provides a method to control the orientation of objects (including objects 

that are soft or fragile) in three dimensions without contact, which may have implications for 

industrial applications such as automated assembly. The MagLev-based method for controlling 

the orientation of objects has a number of useful features. (i) It is non-damaging to fragile objects 

because it does not involve mechanical contact. (ii) It can flexibly orient objects of various 

shapes and a range of sizes. (iii) It can control the orientation of objects in three dimensions. (iv) 

It can control the orientation of objects inside an entirely closed container. (v) It is inexpensive. 

(vi) It does not require an external power source or any additional equipment to operate, beyond 

holders for the magnets. (vii) It can be made biocompatible with the use of chelated 

paramagnetic salts (45).  (viii) Non-aqueous paramagnetic liquids (46) make it possible to use 

this method on moisture- or water-sensitive objects. 
 
 

In its present form, this method also has several limitations.  (i) MagLev, as we describe it 

here, operates best with materials with densities of ~ 1 < ρ < 3 g/cm
3
. It is well-adapted to 
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organic polymers, but less so to metals and heavier ceramics, although with higher field strengths 

and more dense paramagnetic liquids, it should also apply to more dense objects.  (ii) MagLev 

does not enable control over the orientation of objects smaller than ~ ten micrometers in 

diameter because the magnetic and gravitational forces acting on these objects are insufficient to 

overcome Brownian motion, for the configuration and type of magnets used in this study.  

These limitations aside, MagLev is compatible with a number of practical objects, such as 

plastic screws, polymeric objects, metal-polymer composites, soft hydrogels, elastomers and 

granular matter. As such, we expect that further development of the MagLev as a strategy for 

orientation and assembly of components will ultimately prove particularly useful in fields that 

require the manipulation and self-assembly of soft materials (e.g., components of soft robots (5, 

9) or mechanically fragile components.  

 

Materials and Methods 

Full experimental details are provided in SI Materials and Methods. 
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Figure Legends 

 

Fig.1 Scheme describing Magnetic Levitation. Two permanent magnets with like poles facing 

are arranged coaxially a distance, d, apart (the MagLev device). The laboratory fixed axes are x-, 

y-, and z-, and the axes fixed on the MagLev device are x’-, y’-, and z’-. A diamagnetic object 

(shown as a sphere) in a container containing paramagnetic liquid (dark gray), experiences a 

gravitational force  ⃗  and a magnetic force  ⃗    when placed in the MagLev device. The 

schematic depicts the direction of the forces for an object of a higher density than the 

paramagnetic liquid. The direction of the vectors will be opposite for an object that is less dense 

than the liquid. When the two forces are in balance, the object levitates at a levitation height, h. 

Inset. A homogeneous spherical object has no unique plane of symmetry. To classify the 

orientation of non-spherical objects in the MagLev device (a cylinder is depicted here as an 
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example), we define a unit vector  ⃗ (direction vector), taken typically to be along the long axis of 

the object. The angle subtended by  ⃗ and the z’- axis (magnetic field axis) is α.  
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Fig. 2  Equlibrium orientations of non-spherical objects in MagLev.  (A,B) A Nylon screw 

orients differently when the length of the shaft was reduced from 9.5 mm to 2.5 mm.  (C-F) Plots 

of the the orientation of the objects (angle α) versus their aspect ratios AR=T/ (schematic).   Each 

data point is an average of seven replicate objects. The error bars represent the standard 

deviation. The x-error bars are smaller than the data point. The dashed vertical line is the value of 

the critical aspect ratio, AR
*

, predicted by theory. The insets in each plot show representative 

images of objects levitating in the MagLev device. The black arrow indicates the direction of  ⃗. 

The cross in the background is for reference, and the horizontal line in the cross measured 30 

mm. 
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Fig. 3.  Energy and orientation of objects in MagLev. (A) Plot of  ( )         (   )        (Eq. 5). R is the ratio of the second moment of area of the object and   is the angle 

that the  ⃗ makes with respect to the z’-axis.  For R < 1, continuous black line, the two 

(degenerate) minima in potential energy occur at α=90o
 and 270

 o
. For R > 1, dashed and dot 

black line, the two (degenerate) minima in potential energy occur at α=0
o
 and 180

o
.  When R 

approaches 1, the linear theory predicts a flat energy landscape. Higher order nonlinear terms in 

the magnetic field become important and provide unique solutions (see SI). The schematic at the 

top of the plot shows the orientation of the object with respect to the z’. (B) Plot of α versus R fpr 

the experimental objects in Figure 2. All the data collapses onto a master curve with the 

transition in orientation at R=1.    
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Fig. 4.  Controlling the orientation of a levitating object in laboratory space by rotating the 

MagLev device.  (A) Schematic of the experimental setup. We rotated the MagLev device with 

the container containing the screw anti-clockwise about the x-axis. The laboratory fixed axes are 

labeled x-, y-, and z- with the x-axis coming out of the page. The axes fixed on the device are 

labeled x’-, y’-, and z’- with the x’-axis coming out of the page. Gravity is positive downwards. 

is the angle that the z’- axis makes relative to the z- axis.  (B) Experimental images taken 

along the y-z plane of a Nylon screw (8.5 mm in length) in the MagLev. We kept the cross in the 

background fixed relative to the laboratory. The screw tracks the position of the magnets, 

rotating a full 360
o
 with respect to the laboratory frame of reference.  The white double headed 

arrows indicate the orientation of the axis of the magnetic field gradient. (C) Similar rotations 

caused the screw to translate and contact the wall of the container when the density of the screw 

was greater than the density of the solution. Further rotations caused the screw to flip orientation.  

For scale, the horizontal line in the cross is 30 mm.  
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Fig.  5. Manipulating the orientation of an object in the x’-y’ plane of a MagLev device with an 

external magnet. (A) Schematic of the experimental setup. We levitated a black Nylon screw in a 

MagLev device equipped with disc-shaped magnets. A webcam glued to the top magnet imaged 

the position of the screw. A crosshatch pattern glued to the bottom magnet served as a guide to 

the eye.  Due to the cylindrical symmetry of the magnetic field, the long-axis of the screw does 

not have a preferred orientation in the x’-y’ plane. The image in (B) shows one of the orientations 

the screw adopts when placed in the device. We moved an external magnet close to the screw to 

align the screw head along the red lines of the pattern. (C) Experimental images of the screw 

aligned along the pattern. The brown square indicates the approximate position of the external 

magnet. We did not monitor the movement of the screw in the other planes of the device.  Scale 

bar 5 mm. Also see Fig. S5 for images taken along the z’-y’ plane of a screw being manipulated 

with external magnets.   
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Fig.  6.  Manipulation of soft, sticky, and easily deformable objects.  (A) Photographs along the 

x’-y’ plane showing control of the orientation of a PNIPAM hydrogel using external magnets. 

We used the same experimental setup as in Fig. 4.  The sharp end of the hydrogel was made to 

point in the four principal axis of the cross pattern. The brown square indicates the approximate 

position of the external magnet. The hydrogel levitated stably in each position after we withdrew 

the external magnet. (B) Images along the z’-y’ plane of a soft gripper component made out of 

Ecoflex 0030. The orientation of the gripping face was changed with respect to the laboratory 
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frame of reference by rotating the magnets. The black double headed arrows indicate the 

orientation of the axis of the magnetic field gradient, and  is the angle of rotation of the 

magnets with respect to the z-axis. (C) Schematic and picture of an armored droplet. The droplet 

despite being composed predominantly of liquid, adopts a stable peanut shape due to the 

jamming of the polystyrene particles on its interface.  (D) We controlled the orientation of the 

armored droplet with respect to the cross pattern by using an external magnet. The manipulation 

of the position of the object with MagLev did not deform this soft solid.   Scale bars (A) 5 mm 

(B) the horizontal line of the cross is 30 mm. (C) 2 mm (D) 5 mm.  
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SI Materials and Methods 

 

Materials. We purchased manganese (II) chloride tetrahydrate (ACS Reagent Grade), 

perfluorodecalin (95 % pure), Allura Red AC (dye content 80 %) from Sigma Aldrich. 

Polystyrene particles were purchased from Invitrogen. Heavy Liquid was purchased from 

GeoSciences Inc. Polymeric components, such as poly(methyl methacrylate) (PMMA), 

polytetrafluoroethylene (Teflon) and polyoxymethylene (Delrin), were purchased from 

McMaster-Carr and custom machined: PMMA sheets with a thickness l = 6.35 mm, rods with a 

diameter l = 6.35 mm, tubes with an outer diameter l = 6.35 mm and  inner diameter of 5.56  mm 

were cut into rectangular, circular, and annular blocks with different thickness, T; Delrin and 

PMMA sheets were cut into equilateral triangular prisms (l = 6.67 mm) with different T. 

Polyamide (Nylon 6/6) screws (2 cm in length) were purchased from McMaster-Carr.  

 

Levitation of Objects in MagLev. We used commercially available NdFeB magnets — square 

magnets (5.0  5.0  2.5 cm) or disc magnets (4.8 cm in diameter, 2.5 cm thick), which are 

capable of providing surface fields of ~ 0.4 T. We levitated objects in an aqueous solution of 

MnCl2 in a rectangular glass container (4.5  3.0  4.5 cm). We adjusted the concentration of 

MnCl2 to yield a solution that had a density that was similar to that of the object so that the 

object levitated close to the center of the device. We sonicated the solution for one minute to 

remove air bubbles. After waiting a minimum of three minutes, to allow the object to levitaite to 



its equilbrium height and orientation,  we took an image of the objects in the device, using a 

Nikon DS-50 digital camera. We measured the orientation angle, α, from the photographs using 

ImageJ (NIH Bethesda). We used a digital angle indicator (McMaster-Carr, accuracy of 0.01) 

when rotating the device. 

 

Fabrication of Armored Droplets. We spread a monolayer of polysytrene particles onto an 

air/water interface by adding dropwise a suspension of polystrene particles in ethanol. The 

ethanol spread on the water surface and evoporated, thus depositing the particles on the surface. 

Once a complete monolayer had formed, we added perfluorodecalin dropwise onto the surface of 

this monolayer. The perfloruodecalin formed a lens-shaped drop and eventually, with additional 

volume, overcame the surface tension of the water and penetrated the surface of the liquid, and 

sank. Perfluorodecalin has a density higher than water (ρ=1.95 g/cm3). The droplet picked up a 

jammed monolayer of particles from the water surface. These particles were trapped at the 

interface of the perfluorodecalin droplet and did not desorb. We produced two coated droplets 

that we then fused to form the peanut shaped object by squeezing the droplets between two glass 

plates(12). We then added MnCl2 and a commercial water-based density matching liquid (Heavy 

Liquid, ρ=2.85 g/cm3, Geoliquids Inc) and levitated the non-spherical droplet in the MagLev 

device.  

 

SI Figures 

 



 

  



Fig. S1.   The orientation of objects does not depend on its levitation height in the MagLev 

device. We imaged the levitating Nylon screw along the y-z- plane. We progressively increased 

the density of the paramagnetic medium by adding sucrose, while keeping [MnCl2] constant at 

1.0 M. The orientation of the screw did not change with levitation height. The distance between 

the lines in the ruled scale in the background is 5 mm.  
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Fig. S2.  The orientation of objects is insensitive to the separation distance between the magnets. 

We imaged the levitating Nylon screw along the y-z- plane. The separation distance between the 

top and bottom magnets: (from top to bottom) 45 mm, 55 mm, and 65 mm. The screw was 

levitated in 1.0 M MnCl2 solution containing sucrose. The orientation of the screw did not 

change. The distance between the lines in the ruled scale in the background is 5 mm.  

  



 



Fig. S3.  Equilibrium orientation of objects in the x’-y’ plane of the MagLev with square 

magnets.  The top image shows the cross pattern that we used as a guide to the eye, the straight 

black lines in the pattern were aligned along the diagonals of the magnet.  We allowed the 

hollow PMMA cylinder to equilibrate for 3 minutes before imaging. We then perturbed the 

cylinder by moving the container out of the device several times. The cylinder orients along the 

diagonals of the magnet. The behavior of the cylinder is expected based on the location of the 

minima in the magnetic field in this plane. Scale bar 5 mm.  

  



  

 



Fig. S4.  Keeping the container stationary while rotating the device as a means of manipulating 

the orientation of objects. We placed the container containing the screw and the paramagnetic 

liquid on a pedestal. We then rotated the MagLev device with respect to the container. The object 

tracked the position of the magnets. The cross in the background was fixed relative to the 

laboratory frame of reference. With this configuration, the top of the container remained open 

and accessible, allowing external grippers, for example, to retrieve the oriented objects.  For 

scale, the horizontal line in the cross is 30 mm.  
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Fig. S5.  Manipulating the orientation of an object in the xy- plane with an external magnet. (A) 

Initial orientation of a Nylon screw (2 cm in length) levitating in the MagLev device. The 

orientation of the screw was controlled by using (B-D) one or (E-F) two external magnet(s) . The 

screw remained in its new position orientation after the magnet(s) was/were removed. Schemes 

on the right show the orientation of the objects.  
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Fig. S6 Manipulation of objects with metallic or paramagnetic components.  (A) A Nylon screw 

levitating in the MagLev device. The paramagnetic solution is [MnCl2] = 1.0 M. (B) The same 

screw wrapped in aluminum foil and levitating in the device. The orientation of the object did 

not change.   

 

 

 



SI Text

In our experiments, we observed that objects of homogeneous density and anisotropic

shape levitating in a MagLev device moved to a stable levitation height away from the

surface of the magnets and adopted a stable orientation with respect to the magnetic field.

The orientation of the object depended on the object’s shape and its aspect ratio. As the

aspect ratio of the object was increased, we observed that the objects changed orientation

sharply at a critical aspect ratio.

In the following sections, we present a general theory for the orientation and levitation

of arbitrary objects in MagLev. The layout of the SI is as follows. In section I, we obtain

an analytical closed form approximation of the magnetic field in a MagLev device. In

Section II, we derive the potential energy of an arbitrary object in a MagLev device and

find expressions for the equilibrium height and equilibrium orientation of the object. We

conclude: (i) the levitation height of the centroid of an object depends only on its average

density and its average susceptibility. The levitation height does not depend on the the

distribution of these quantities within an object. This result greatly simplifies calculations

for objects of heterogeneous density and/or magnetic susceptibility; (ii) a homogeneous

object has only two potential stable configurations in the MagLev. The configuration that

is preferred (i.e. of lowest potential energy) depends only on the ratio of second moments

of area of the object. This result is consistent with a torque balance, but is more general

and proves that the levitating object does not have any metastable orientations. In section

III, we calculate the potential energy of the levitating objects used in experiments and

obtain analytical predictions for the critical aspect ratio, AR at which transitions in

orientation occur. The theoretical values are in excellent agreement with experiments.

1



1 Expression for the Magnetic Field in the Magnetic

Levitation Device

We assume that the MagLev device is stationary with respect to the laboratory frame of

reference. Thus the fixed coordinates (i.e., the laboratory frame of reference), the x-,y-,z-

axes, as defined in the main text, is always coincident with the body-fixed x′-,y′-,z′- axes of

the MagLev device. To simplify the notation, we equate these two coordinates and define

the “MagLev frame of reference” as ~r = (x, y, z).

The Maglev device consists of two coaxial circular or square magnets with like poles

facing set a distance d apart. We choose the z axis (unit vector ez) to be the axis of

symmetry and define the upper surface of the bottom magnet to be z = 0 and the lower

surface of the top magnet to be at z = d. This simple configuration between the two

magnets sets up a rather complicated magnetic field that is a function of axial and radial

positions.

In our experiments we find that the orientation of the object in the plane perpendicular

to the surface of the magnets is independent of the shape of the magnets. Thus, to simplify

the analysis, we consider the radially symmetric case, and let the lateral extent of the

magnetic field to be R. The axial symmetry allows the expression of the magnetic field in

the volume between the magnets −R ≤ x ≤ R, −R ≤ y ≤ R and 0 ≤ z ≤ d, in cylindrical

coordinates, approximately as a field that is a function of z and ρ =
√

x2 + y2, B(ρ, z).

Note that the term ρ used in this section is different from the use of ρ for the mass density.

For ρ used to refer to mass density we always have a subscript to refer to the object.

We next obtain an approximation for the field, B(x, y, z), between two magnets in the

absence of the paramagnetic medium. Solving Maxwell’s equations yields the magnetic

field - this is however complicated to attempt analytically. The field generated by

two-loops of wire of radius R through which a current I flows, arranged in the
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anti-Helmholtz configuration yields to leading order:

Bz = 3Iµo

(

d

2
R2

)[

(
d

2
)2 +R2

]− 5

2

(

z +
d

2

)

+ .... (1)

Bρ = −3

2
Iµo

(

d

2
R2

)[

(
d

2
)2 +R2

]− 5

2

ρ+ ... (2)

Here, µo is the permeability of free space. The region of field minimum is at the center of

the device equidistant from the surface of the magnets. The field is maximum at the

surface of the magnets, i.e. at z = 0 and d , and the magnitude of Bo can, in principle, be a

function of z and ρ. A single permanent magnet can be modeled as an infinite number of

loops extending from R = 0 to R = Rm, where Rm is the radius of the magnet. Thus,

integrating, and keeping only leading order terms, the field due to permanent magnets in

the anti-Helmholtz configuration is expected to have the form

Bz ≈
[

∫ Rm

0
3Iµ

(

d
2
R2

) [

(d
2
)2 +R2

]− 5

2 dR
]

(

z + d
2

)

which on rearranging yields approximate

expressions

Bz = Bo,z

(

1− 2
z

d

)

, and (3)

Bρ = Bo,ρ

( ρ

R

)

(4)

Thus, the field is approximately

Bo(x, y, z) ≈ Bo,z

(

1− 2
z

d

)

ez +
1√
2
Bo,ρ

( ρ

R

)

ex +
1√
2
Bo,ρ

( ρ

R

)

ey. (5)

The magnetic flux lines are perpendicular close to the surface of the magnets but curve

appreciably at the center. Thus, although the magnetic field is zero at the point

equidistant between the magnets, this is also a point of inflexion of the flux lines. When a

paramagnetic liquid, of magnetic susceptibility χm, is introduced between the magnets, the

magnetic field will change. To leading order, one may approximate the field by the linear

3



term in z - this is the Taylor series expansion about the point ρ = 0 where only the term

due to the geometric symmetries of the two-magnet configuration is retained. Thus

(consistent with Mirica et. al. (2)) we write approximately

B(x, y, z) ≈ Bo

(

1− 2
z

d

)

ez. (6)

For a linear variation in z, Bo is constant.

2 Equilibrium Orientation and Position of an Object

of Arbitrary Shape in a Linearly Varying Magnetic

Field

2.1 Total Energy

Consider a dielectric object, of volume V , in an paramagnetic medium suspended in a

uniform magnetic field defined in (6). The object has a magnetic susceptibility χo(~r) and

density ρo(~r). These quantities may vary as a function of position, parametrized by the

vector ~r = (x, y, z), within the object. The magnetic susceptibility of the medium is χm.

To simplify calculations, we take advantage of the symmetry of the magnetic field and

define the origin, O, of the MagLev frame of reference at z + d/2. Therefore z is measured

relative to the center of the device (where B = 0) and B = 2Bo

d
zez. Since both χ(~r)o ≪ 1

and χm ≪ 1, the warping of the field is negligible; the object does not significantly modify

the shape of the magnetic field lines. This assumption is true for most diamagnetic objects

and paramagnetic media. Equation (7) gives the potential energy density due to the

magnetic field within the volume of the object.
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umag = −1

2

∆χ(~r)

µ0

B ·B = −∆χ(~r)

2µ0

(

2Bs

d
z

)2

= −2∆χ(~r)B2
0

µ0d2
z2

= β∆χ(~r)z2 (7)

In this equation, ∆χ(~r) = χo(~r)− χm, and we have defined the constant β = − 2B2

0

µ0d2
.

Equation (8) gives the potential energy density due to the gravitational field within the

volume of the object.

ugrav = ∆ρ(~r)gz, (8)

Integrating the energy density over the volume of the object provides the potential

energy of the system. (Equations (9) and (10)).

Umag =

∫

V

umagdV = β

∫

V

∆χ(~r)z2dV (9)

Ugrav =

∫

V

ugravdV = g

∫

V

ρ(~r)zdV (10)

In these equations, dV is the volume element in the MagLev frame of reference. The total

energy of the MagLev system is U = Umag + Ugrav.

We next define a body-fixed frame of reference for the object, with origin O′.

Translation and rotation of the object within the MagLev frame of reference can be

described relative to this “object frame of reference”. The object frame of reference is

chosen arbitrarily (at first). We will provide in the subsequent sections a method to find

the ideal reference frame that simplifies calculations.

Within this object frame of reference, we define ~r′ = (x′, y′, z′) to be the coordinates.

Since the magnetic field in our approximation only varies in z, we take the origin O′ to be

along the z′ axis. Any rotation of the object frame of reference in the MagLev frame of

5



reference can be described as a rotation by an angle α around some axis defined by

eu = (sin θ cosφ, sin θ sinφ, cos θ). We use spherical coordinates to describe the MagLev

frame of reference: θ is the declination angle from z, and φ is the azimuthal angle measured

from x. The axis of rotation will always lie in the xy-plane such that θ = π/2 and

ez = (cosφ, sinφ, 0). A rotation by an angle α about the unit vector eu can be represented

by the rotation matrix in Equation (11).

A =













cosα + (1− cosα) cos2 φ (1− cosα) cosφ sinφ sinα sinφ

(1− cosα) cosφ sinφ cosα + (1− cosα) sin2 φ − cosφ sinα

− sinα sinφ cosφ sinα cosα













(11)

Any configuration of the object in the MagLev can be treated as a pure rotation by A of

the original arbitrarily chosen configuration (which may not correspond to the minimal

energy configuration of the object) plus a vertical translation ~h = (0, 0, h).The coordinate

transformation from the object frame of reference to the MagLev frame of reference is

given by Equation (12).

~r = A~r′ + ~h. (12)

Since the energy only depends on z, we need only to find z = ez · ~r, which reduces to

Equation (13).

z = ez ·
(

A~r′ + ~h
)

= (ezA) ~r′ + ez · ~h

=













− sinα sinφ

sinα cosφ

cosα













·













x′

y′

z′













+ h

= −x′ sinα sinφ+ y′ sinα cosφ+ z′ cosα + h (13)
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Using Equation (13) we re-write the magnetic and gravitational potential energies in the

object frame of reference.

Umag = β

∫

V ′

∆χ(~r) (−x′ sinα sinφ+ y′ sinα cosφ+ z′ cosα + h)
2
dV ′ (14)

Ugrav = g

∫

V ′

∆ρ(~r′) (−x′ sinα sinφ+ y′ sinα cosφ+ z′ cosα + h) dV ′. (15)

The behavior of U will depend on the zeroth, first, and second moments of the functions

∆χ(~r) and ∆ρ(~r′) defined on the volume V ′ of the object. Expansion of these integrals will

result in many terms. Choosing an appropriate object frame of reference (we call this

frame of reference the “principal frame of reference”) however, will result in many terms

vanishing. We now proceed to describe a procedure for finding the principal frame of

reference.

2.2 Moments of a Function

Consider an arbitrary object with volume V defined in an object frame of reference O′ with

body-fixed coordinates ~r′ = (x′, y′, z′). We define a general scalar function f(x′, y′, z′) inside

the object, and f = 0 everywhere outside the object (Fig. 1). The moments of this general

function f(x′, y′, z′) is given by Equation (16).

M ijk
f =

∫

V ′

x′iy′jz′kf(x′, y′, z′)dV ′. (16)

The center of f , in Cartesian coordinates, which we define as
(

x̄′
f , ȳ

′
f , z̄

′
f

)

is given by

7



Figure S7: Procedure for finding the principal frame of reference of an arbitrarily oriented
object in the MagLev. For clarity, we only show a 2D cross section of the object. Analyzing
the orientational potential energy in the principal frame simplifies calculations.

Equations (17-19).

x̄′
f =

∫ ′
V
x′f(x′, y′, z′)dV ′

∫ ′
V
f(x′, y′, z′)dV ′

=
M100

f

M000
f

(17)

ȳ′f =

∫ ′
V
y′f(x′, y′, z′)dV ′

∫ ′
V
f(x′, y′, z′)dV ′

=
M010

f

M000
f

(18)

z̄′f =

∫ ′
V
z′f(x′, y′, z′)dV ′

∫ ′
V
f(x′, y′, z′)dV ′

=
M001

f

M000
f

(19)

For example, if f = const, then M000
0 = V ′ and (x̄′, ȳ′, z̄′) is the geometric centroid of the

object. If f = χ(x′, y′, z′), then M000
χ =

∫

χ(x′, y′, z′)dV ′ = χ̄V ′, and
(

x̄′
χ, ȳ′χ, z̄

′
χ

)

is the

center of susceptibility. If f = ρ(x′, y′, z′), then M000
ρ = ρ̄V ′, and

(

x̄′
ρ, ȳ′ρ, z̄

′
ρ

)

is the center

of mass.

To find the principal axes and orientation of the object, we define the second order

central moments of the object µijk
f (Equation (20)).

µijk
f =

M ijk
f

M000
f

− x̄′
f
j ȳ′f

j z̄′f
k (20)

We construct the covariance matrix of the function f (Equation (21)).
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cov[f(x′, y′, z′)] =













µ200
f µ110

f µ101
f

µ110
f µ020

f µ011
f

µ101
f µ011

f µ002
f













(21)

The covariance matrix allows calculation of the length and direction of the three principal

axes of the object. The eigenvectors (v1,v2,v3) of the covariance matrix correspond to the

principal axes of the object, weighted by the function f(x’,y’,z’). The eigenvalues

(λ2
1, λ

2
2, λ

2
3) correspond to the squared length of the three principal axes. By constructing a

rotation matrix Q = [v1v2v3] composed of the eigenvectors, we can perform a change of

coordinates ~r′ → Q~r′ that will rotate the object such that its principal axes are parallel to

the axes of the MagLev frame of reference.

If we translate
(

x̄′
f , ȳ

′
f , z̄

′
f

)

to O′, then x̄′
f = ȳ′f = z̄′f = 0, and M100

f = M010
f = M001

f = 0.

If we also rotate the object frame of reference by applying Q, then v1 will be aligned with

the x-axis. In this principal frame of reference, the covariance matrix is diagonalized, i.e.

the axes of the object will be collinear with the axes of the MagLev frame of reference.

Therefore, µ110
f = µ101

f = µ011
f = 0 and M110

f = M101
f = M011

f = 0. In this principal frame of

reference, the integrals of all first order terms and second order cross-terms vanish, and the

lengths of the principal axes reduces to Equations (22-24).

λ2
1 =

M200
f

M000
f

=

∫

V ′
x′2f(x′, y′.z′)dV ′

∫

V ′
f(x′, y′.z′)dV ′ (22)

λ2
2 =

M020
f

M000
f

=

∫

V ′
y′2f(x′, y′.z′)dV ′

∫

V ′
f(x′, y′.z′)dV ′ . (23)

λ2
3 =

M002
f

M000
f

=

∫

V ′
z′2f(x′, y′.z′)dV ′

∫

V ′
f(x′, y′.z′)dV ′ . (24)

2.3 Magnetic Potential Energy

We can simplify Umag by applying the above steps to an object, i.e. by orienting the object

in its principal frame of reference, and then by inspecting each of the nine terms separately.
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U200
mag = β sin2 α sin2 φ

∫

V ′

x′2∆χ(~r′)dV ′ = β sin2 α sin2 φM200
χ

= β∆χ̄V λ2
1 sin

2 α sin2 φ (25)

U020
mag = β sin2 α cos2 φ

∫

V ′

y′
2
∆χ(~r′)dV ′ = β sin2 α cos2 φM020

χ

= β∆χ̄V λ2
2 sin

2 α cos2 φ (26)

U002
mag = β cos2 α

∫

V ′

z′
2
∆χ(~r′)dV ′ = β sin2 αM002

χ

= β∆χ̄V λ2
3 cos

2 α (27)

U110
mag ∝

∫

V ′

x′y′∆χ(~r′)dV ′ = M110
χ = 0 (28)

U101
mag ∝

∫

V ′

x′z′∆χ(~r′)dV ′ = M101
χ = 0 (29)

U011
mag ∝

∫

V ′

y′z′∆χ(~r′)dV ′ = M011
χ = 0 (30)

U100
mag ∝

∫

V ′

x′∆χ(~r′)dV ′ = M100
χ ∝ x̄χ = 0 (31)

U010
mag ∝

∫

V ′

y′∆χ(~r′)dV ′ = M010
χ ∝ ȳχ = 0 (32)

U001
mag ∝

∫

V ′

z′∆χ(~r′)dV ′ = M001
χ ∝ z̄χ = 0 (33)

U000
mag = βh2

∫

V ′

∆χ(~r′)dV ′ = βh2∆χ̄V, (34)

To obtain the preceding equations, we used the relations defined by equations (22), (23),

and (24) along with M000
χ = ∆χ̄V . The total magnetic potential energy Umag =

∑

ijk U
ijk
mag

is therefore given by Equation (35).

Umag = U200
mag + U020

mag + U002
mag + U000

mag

= β∆χ̄V
(

λ2
1 sin

2 α sin2 φ+ λ2
2 sin

2 α cos2 φ+ λ2
3 cos

2 α + h2
)

= β∆χ̄V
[

λ2
2 − λ2

3 +
(

λ2
1 − λ2

2

)

sin2 φ
]

sin2 α + β∆χ̄V h2, (35)
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To obtain Equation (35), we dropped terms that are constant with respect to the two

degrees of freedom, α and h. We define ratios of the second moment of susceptibility Ry

(Equation (36)) and Rz (Equation (37)) of the object.

Ry =

(

λ2

λ1

)2

(36)

Rz =

(

λ3

λ1

)2

, (37)

such that

Umag = β∆χ̄V λ2
1

[

Ry −Rz + (1−Ry) sin2 φ
]

sin2 α + β∆χ̄V h2. (38)

This result is the full three-dimensional form of the magnetic potential energy for an

arbitrary object that is parametrized within a MagLev (laboratory) frame of reference.

The angle α is the angle of declination of the z’-axis from the z-axis. The angle φ defines

the axis within the xy-plane about which the object rotates. If we did not use the principal

frame of reference construction, Equations (28-33) would be non-zero and the calculations

would be more complex.
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2.4 Gravitational Potential Energy

Using a similar procedure, we expand the gravitational potential energy into four terms.

U (100)
grav = −g sinα sinφ

∫

V ′

x′∆ρ(~r′)dV ′ = −g sinα sinφM100
ρ

= −mgx̄′
ρ sinα sinφ (39)

U (010)
grav = g sinα cosφ

∫

V ′

y′∆ρ(~r′)dV ′ = g sinα cosφM010
ρ

= mgȳ′ρ sinα cosφ (40)

U (001)
grav = g cosα

∫

V ′

z′∆ρ(~r′)dV ′ = g cosαM001
ρ

= mgz̄′ρ cosα (41)

U (000)
grav = gh

∫

V ′

∆ρ(~r′)dV ′ = ghM000
ρ

= mgh, (42)

In this equation, ~rρ
′ =

(

x̄′
ρ, ȳ

′
ρ, z̄

′
ρ

)

is the position of the center of mass of the principal

frame of reference. Equation (43) gives the total gravitational energy of the object.

Ugrav = mg
(

h− x̄′
ρ sinα sinφ+ ȳ′ρ sinα cosφ+ z̄′ρ cosα

)

= mg
(

h− r̄′ρ · e′z
)

, (43)

In this equation, e′z = ezA = (sinα sinφ, sinα cosφ, cosα), which is the z-axis unit vector

parametrized in the object frame of reference. Thus, the gravitational potential energy

depends only the height of the object h and the z- component of the center of mass, as

expected.
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2.5 Equilibrium Height

The magnitude of the gravitational field is constant everywhere in the MagLev device,

whereas the magnitude of the magnetic field depends on position. Thus, we expect the

levitation height of the center of the object will not depend on the specific distribution of

density within the object. It will only depend on the mean density of the object. The

equilibrium height h0 occurs where ∂U
∂h

= 0.

∂U

∂h
=

∂Umag

∂h
+

∂Ugrav

∂h
= 2β∆χ̄V h0 +∆ρ̄V g = 0, (44)

Equation (45) gives the equilibrium levitation height of an arbitrary object in the MagLev.

h0 = − g∆ρ̄

2β∆χ̄
. (45)

Expanding the constants we obtain Equation (46).

h0 =
(ρ̄o − ρm)gµ0d

2

(χ̄o − χm)4B2
0

(46)

This result proves that the levitation height of an object in a MagLev device (relative to

the center of susceptibility of the object) does not depend on the specific local distribution

of susceptibility (and density) within the object. The levitation height of the center of

susceptibility of the object (which may differ from the centroid) is wholly determined by its

mean density and mean susceptibility.

If the susceptibility (and/or the density) is distributed homogeneously (or with specific

symmetries) within the object, then the center of susceptibility (and/or the center of mass)

corresponds to the geometric centroid of the object. If we define h relative to the face of

the bottom magnet, we obtain Equation (47).

h0 =
(ρo − ρm)gµ0d

2

(χo − χm)4B2
0

+
d

2
, (47)
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This equation is consistent with equation 5 of Mirica et. al. (2).

We conclude that the position and orientation of the objects are decoupled, provided

that the magnetic field is linear. Therefore, in a linear magnetic field, we can minimize with

respect to the height to find the equilibrium position, and then minimize independently

with respect to orientation to calculate the equilibrium orientation of an object. The

decoupling allows the use of coordinate transformations such as those in Section 2.2 and

2.3 (which simplify calculations by making many terms zero), to perform calculations

independent of the actual equilibrium levitation height of the object in the device.

2.6 Potential Energy of Orientation for a Homogenous Object

For objects of homogenous susceptibility and density, we can make the following

simplifications: (i) ∆χ(~r) = ∆χ and ∆ρ(~r) = ∆ρ; (ii) ~rρ = 0 and there is no gravitational

torque
(

∂Ugrav

∂α
= 0

)

; (iii) λ2
1, λ

2
2, and λ2

3 reduce to the second moments of area of the

object. All the objects that we tested experimentally had a pair of degenerate second

moments (a square prism, a cylinder, a hollow cylinder, and an equilateral prism). The

second moment of area, Ry is 1, if we orient our principal frame of reference so that the

first two principal axes are degenerate (λ1 = λ2). We thus can define a single parameter, R

that is a ratio of second moments that characterizes fully the behavior of objects with

double degenerate geometries (Equation (48)).

R =
Rz

Ry
=

(

λz

λy

)2

. (48)

Equation (49) gives the total potential energy for objects with double degenerate

geometries.

U = βV∆χλ2
1 (Ry −Rz) sin2 α + βV∆χh2 +∆ρV gh. (49)

To calculate the orientation of an object, we consider only the angle dependent part
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U(α) of the potential energy, which is given by Equation (50).

U(α) = βV∆χλ2
2 (1−R) sin2 α

∝ (1−R) sin2 α. (50)

The equilibrium orientations occur at the local minima of U(α). The extrema of this

function occur at α = 0, π/2, π, and 3π/2 (the function is periodic). The sign of (1−R)

determines which of these are minima and which are maxima. If R < 1, then U(α) ∝ sin2 α

and the minima occur at α = 0 and α = π. If R > 1, then U(α) ∝ − sin2 α ∝ cos2 α and

the minima occur at α = π/2 and α = 3π/2. If R = 1, then U(α) = 0 and the potential

energy is degenerate; the object does not have any preferred orientation. For this system,

the orientation is completely determined by the value of R; the major axis (largest

eigenvalue) of the sample will always align perpendicular to the magnetic gradient (z-axis).

Intuitively, the magnetic field acts to both displace the object away from the magnets

(levitation), and orient in a way such that the object appears to be “as small as possible”

relative to the magnetic gradient.

2.7 The Effect of Non-Linearities of the Magnetic Field on the

Orientation of Dimensionally Degenerate Objects of

Homogeneous Density

We have analyzed the effects of non-linearities in the magnetic field on degenerate shapes

to show that the non-linear terms qualify the energy minima. The full analysis is lengthy,

thus we outline the basic steps here. First, as mentioned in the previous section, the

magnetic field plateaus when approaching the surface of the magnets and has an inflexion

point at the center. Therefore, the non-linearity of the field can be approximated by

B = B0z +B1z
3 +O(z5) where B0 is the linear coefficient of the magnetic field and B1 is
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the cubic coefficient of the magnetic field. The contribution of the cubic term cancels part

of the linear term, since the magnetic field stops increasing in magnitude as fast when away

from the center.

Assuming that the higher order terms are small compared to the leading one, the

magnetic energy density is then given by Equation (51).

umag ≈
∆χ

2µ0

B2
0z

2 +
∆χ

2µ0

2B0B1z
4 = c1z

2 + c2z
4. (51)

In this equation, c1 =
∆χ
2µ0

B2
0 and c2 =

∆χ
2µ0

2B0B1 and (c1 > 0, |c2| << c1).

Here, c2 > 0 if B1 and B0 have the same sign, and c2 < 0 if B1 and B0 have different

signs.

Equation (52) gives the total magnetic potential energy.

Umag =

∫

V

umag =

∫

V0

(c1z
2 + c2z

4)dV = U1 + U2, (52)

In this equation, V0 is the shape of the object, U1 = c1
∫

V0

z2dV , and U2 = c2
∫

V0

z4dV .

At equilibrium, this energy is again minimized as the system is conservative with no

dissipation. We analyze an object oriented in its principal frame of reference and, without

loss of generality, consider a 2D cross-section in the yz-plane. Since U1 ≫ U2 for small

objects, the behavior of a non-degenerate case (R < 0 or R > 0) is dominated by U1, as

expected, for which there are no metastable states. For the dimensionally degenerate case

(R=1), such as for a square, the energy U1 = 0. Within this 2D cross-section,

z = y′ sinα + z′ cosα, and following a procedure similar to that in the previous section we
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find that for U2 =
∑

ij U
ij
2 :

U4,0
2 = c2 sin

4 α

∫

V0

y′4dV (53)

U3,1
2 = 4c2 cosα sin3 α

∫

V0

y′3z′1dV (54)

U2,2
2 = 6c2 cos

2 α sin2 α

∫

V0

y′2z′2dV (55)

U1,3
2 = 4c2 cos

3 α sin1 α

∫

V0

y′1z′3dV (56)

U0,4
2 = c2 cosα

4

∫

V0

z′4dV, (57)

which rely on the fourth geometric moments of the shape. For a square with side length ℓ,

U3,1
2 = U1,3

2 = 0 the remaining potential energy is:

U2 = c2
ℓ6

480
(cos (4α)− 7)

∝ cos (4α) (58)

For a superlinear magnetic field (c2 > 0) (the field increases with an exponent greater

than 1), Equation (58) shows that there are four stable configurations:

α = 0, 90◦, 180◦, 270◦. For a sublinear magnetic field (c2 < 0), there are also four stable

configurations: α = 45◦, 135◦, 225◦, 315◦. Based on our experimental observations of the

orientation of the objects, it appears that the field is slightly superlinear in our typical

MagLev setup. Simulations of the magnetic field using Mathematica, also demonstrates

that the field is superlinear in the vertical direction (results not shown).
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3 Specific Calculations for Objects in the

Experiments

In the previous sections, we demonstrated analytically how principles of symmetry in

conjunction with a simplified linear form for the magnetic field provides predictions for the

orientation of objects in the MagLev. Due to the minimization of magnetic potential

energy, homogeneous objects can orient only along their principal axis of symmetry in a

linear magnetic field. To compare theory to experiments, in this section, we present specific

calculations for the objects used in our experiments. The experimental objects have a pair

of degenerate principle axes (λ1 = λ2). We choose a body-fixed principal reference frame

such that one of the degenerate axes (λ1) remains collinear with the x- and x′-axes. In this

reference frame, all rotation is constrained to the yz-plane (around the x- and x′-axes). We

can, therefore, use Equation (50) to analyze the change in potential energy due to the

orientation of the object. We define a unit vector p perpendicular to the face that spans

the degenerate principal axes, and measure the angle α as the angle of inclination between

p and the z−axis (Fig. 2 in the main paper and Fig. S8). We prepare the object in an

initial state α = 0 (configuration 1). We expect that an object will abruptly transition

from α = 0 to α = 90 ◦ (configuration 2) when its second moment ratio R transitions from

R < 1 to R > 1. R can be calculated using Equation (59).

R =

(

λ3

λ2

)2

=

∫

V
z2dV

∫

V
y2dV

(59)

Although R is a parameter that wholly predicts the orientation of a homogeneous

object in a linear field, this value cannot, typically, be easily measured experimentally. We

parametrize our objects with a pair of length parameters, ℓ for the characteristic width of

the face of the object, and T for the thickness (Fig. S8). Here we calculate R for various

shapes and relate it to the the easily measured aspect ratio, AR = T/ℓ. In the experiments,
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Figure S8: Sketch of the configuration of a cylinder with the bounds of integration marked.

one dimension (ℓ) was kept constant while the other (T ) was varied so as to change AR

(and therefore R).

3.1 Solid block of cross section area ℓ× ℓ and length T

For a solid rectangular block, we use Cartesian coordinates for integration.

R =

∫

V0

z2dV
∫

V0

y2dV
=

∫ T/2

−T/2
z2dz

∫ ℓ/2

−ℓ/2
dy

∫ ℓ/2

−ℓ/2
dx

∫ T/2

−T/2
dz

∫ ℓ/2

−ℓ/2
y2dy

∫ ℓ/2

−ℓ/2
dx

=
l2T 3/12

ℓ4T/12
=

T 2

ℓ2
= A2

R, (60)

and therefore

AR =
√
R. (61)

The critical aspect ratio is therefore AR = 1, matching experiment. For AR < 1 , the object

will orient in configuration 1.
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3.2 Solid cylinder of diameter ℓ and height T

For a solid cylinder, we use cylindrical coordinates to simplify integration.

R =

∫

V0

z2dV
∫

V0

y2dV
=

∫ T/2

−T/2
z2dz

∫ 2π

0
dφ

∫ ℓ/2

0
rdr

∫ T/2

−T/2
dz

∫ 2π

0

∫ ℓ/2

0
(r sinφ)2rdrdφ

=
π
48
ℓ2T 3

π
64
ℓ4T

=
4T 2

3ℓ2
=

4

3
A2

R, (62)

and therefore

AR =

√

3

4
R. (63)

The critical aspect ratio is therefore AR =
√

3/4 ≈ 0.86, matching experiment. For

AR < 0.86 , the object will orient in configuration 1.

3.3 Hollow cylinder of outer diameter ℓ, inner diameter ǫℓ and

length T

.

For a hollow cylinder, we continue use cylindrical coordinates to simplify integration.

R =

∫

V0

z2dV
∫

V0

y2dV
=

∫ T/2

−T/2
z2dz

∫ 2π

0
dφ

∫ ℓ/2

ǫℓ/2
rdr

∫ T/2

−T/2
dz

∫ 2π

0

∫ ℓ/2

ǫℓ/2
(r sinφ)2rdrdφ

=
π
48
ℓ2T 3(1− ǫ2)

π
64
ℓ4T (1− ǫ4)

(64)

=
4(1− ǫ2)T 2

3(1− ǫ4)ℓ2
=

4(1− ǫ2)

3(1− ǫ4)
A2

R, (65)

and therefore

AR =

√

3

4

(1− ǫ4)

(1− ǫ2)
R. (66)

We note that increasing ǫ (making a hollow cylinder) will increase the critical aspect ratio

for the change in orientation - indeed we get critical aspect ratios that are greater than

unity for a range of ǫ. When ǫ = 0, we recover the result for a solid cylinder. When ǫ = 1,

there is no cylinder. For a range of ǫ, we have critical aspect ratios of greater than unity.

For the experiments the outer diameter of the hollow cylinder is 1/4 inch and the thickness
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of the wall is 1/32 inch (i.e. ǫ = 3/4). Substituting these values, we find the critical aspect

ratio to be AR ≈ 1.09 matching experiment. For AR < 1.09 , the object will orient in

configuration 1.

3.4 Triangular block

For a triangular block, we use Cartesian coordinates to parametrize the limits of

integration.

R =

∫

V0

z2dV
∫

V0

y2dV
=

∫ T/2

−T/2
z2dz

∫ l/2

−l/2
dx

∫ −
√
3|x|+ℓ/

√
3

−ℓ/2
√
3

dy
∫ T/2

−T/2
dz

∫ l/2

−l/2
dx

∫ −
√
3|x|+ℓ/

√
3

−ℓ/2
√
3

y2dy
=

1
16

√
3
ℓ2T 3

1
32

√
3
ℓ4T

(67)

= 2
T 2

ℓ2
= 2A2

R, (68)

and therefore

AR =

√

R

2
. (69)

The critical aspect ratio is therefore AR =
√

1/2 ≈ 0.70, matching experiment. For

AR < 0.7, the object will orient in configuration 1.
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