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Preface

The present lecture note is dedicated to the study of the optimality conditions and
the duality results for nonlinear vector optimization problems, in finite and infinite
dimensions. The problems include are nonlinear vector optimization problems, sym-
metric dual problems, continuous-time vector optimization problems, relationships
between vector optimization and variational inequality problems.

Nonlinear vector optimization problems arise in several contexts such as in the
building and interpretation of economic models; the study of various technologi-
cal processes; the development of optimal choices in finance; management science;
production processes; transportation problems and statistical decisions, etc.

In preparing this lecture note a special effort has been made to obtain a self-
contained treatment of the subjects; so we hope that this may be a suitable source
for a beginner in this fast growing area of research, a semester graduate course
in nonlinear programing, and a good reference book. This book may be useful to
theoretical economists, engineers, and applied researchers involved in this area of
active research.

The lecture note is divided into eight chapters:
Chapter 1 briefly deals with the notion of nonlinear programing problems with

basic notations and preliminaries.
Chapter 2 deals with various concepts of convex sets, convex functions, invex set,

invex functions, quasiinvex functions, pseudoinvex functions, type I and generalized
type I functions, V-invex functions, and univex functions.

Chapter 3 covers some new type of generalized convex functions, such as
Type I univex functions, generalized type I univex functions, nondifferentiable
d-type I, nondifferentiable pseudo-d-type I, nondifferentiable quasi d-type I and
related functions, and similar concepts for continuous-time case, for nonsmooth
continuous-time case, and for n-set functions are introduced.

Chapter 4 deals with the optimality conditions for multiobjective programing
problems, nondifferentiable programing problems, minimax fractional programing
problems, mathematical programing problems in Banach spaces, in complex spaces,
continuous-time programing problems, nonsmooth continuous-time programing

v



vi Preface

problems, and multiobjective fractional subset programing problems under the
assumptions of some generalized convexity given in Chap. 3.

In Chap. 5 we give Mond–Weir type and General Mond–Weir type duality results
for primal problems given in Chap. 4. Moreover, duality results for nonsmooth
programing problems and control problems are also given in Chap. 5.

Chapter 6 deals with second and higher order duality results for minimax pro-
graming problems, nondifferentiable minimax programing problems, nondifferen-
tiable mathematical programing problems under assumptions generalized convexity
conditions.

Chapter 7 is about symmetric duality results for mathematical programing prob-
lems, mixed symmetric duality results for nondifferentiable multiobjective program-
ing problems, minimax mixed integer programing problems, and symmetric duality
results for nondifferentiable multiobjective fractional variational problems.

Chapter 8 is about relationships between vector variational-like inequality prob-
lems and vector optimization problems under various assumptions of generalized
convexity. Such relationships are also studied for nonsmooth vector optimization
problems as well. Some characterization of generalized univex functions using
generalized monotonicity are also given in this chapter.

Varanasi, India Shashi Kant Mishra
Beijing, China Shou-Yang Wang
Hong Kong Kin Keung Lai
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Chapter 1
Introduction

Nonlinear vector optimization (NVO) deals with optimization models with at least
one nonlinear function, also called continuous optimization or smooth optimization.
A general model is in the following form:

minimize f (x)
subject to

x ∈ X

gi (x) ≤ 0, i = 1, 2, . . . , m

h j (x) = 0, i = 1, 2, . . . , k.

Functions f : X → R, g : X → Rm and h : X → Rk are assumed to be continuously
differentiable (i.e., smooth functions), and X ⊆ Rn is assumed to be open.

Let K = {x : x ∈ X , g(x) ≤ 0, h(x) = 0} denote the set of all feasible solutions
of the problem (P).

Linear programming aroused interest in constraints in the form of inequalities
and in the theory of linear inequalities and convex sets. The study of Kuhn–Tucker
(Kuhn was a student of Tucker and became the principal investigator, worked
together on several projects dealing with linear and nonlinear programming prob-
lems under generous sponsorship of the Naval Research from 1948 until 1972)
appeared in the middle of this interest with a full recognition of such developments.

Kuhn–Tucker (1951) first used the name “Nonlinear Programming.” However,
the theory of nonlinear programming when the constraints are all in the form of
equalities has been known for a long time. The inequality constraints were treated in
a fairly satisfactory manner by Karush (1939) in his M.Sc. thesis, at the Department
of Mathematics, University of Chicago. A summary of the thesis was published
as an appendix to: Kuhn (1976). Karush’s work is apparently under the influence
of a similar work in the calculus of variations by Valentine (1937). As a struggling
graduate student meeting requirements for going on to his Ph.D., the thought of pub-
lication never occurred to Karush and he was not encouraged to publish his Master’s
thesis by his supervisor L.M. Graves. At that time, no one anticipated the future

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
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2 1 Introduction

interest in these problems and their potential practical applications. The school of
classical calculus of variations at Chicago also popularized the theory of optimal
control under the name of the “Pontryagin’s maximum principle.”

It was not the calculus of variations, optimization or control theory that moti-
vated Fritz John, but rather the direct desire to find a method that would help to
prove inequalities as they occur in geometry. Next to Karush, but still prior to Kuhn
and Tucker, Fritz John (1948) considered the nonlinear programming problem with
inequality constraints.

In May of 1948, Dantzig visited von Neumann in Princeton to discuss poten-
tial connections between the then very new subject of linear programming and the
theory of games. Tucker happened to give Dantzig a lift to the train station for his
return trip to Washington DC. On the way, Dantzig gave a short exposition of what
linear programming was, using the transportation problem as a simple illustrative
example. This sounded like Kirkhoff’s Law to Tucker and he made this observation
during the ride, but thought little about it until September of 1949.

On leave at Stanford in the fall of 1949, Tucker had a chance to return to the
question: what was the relation between linear programming and the Kirkhoff-
Maxwell treatment of electrical networks. It was at this point that Tucker (1957)
recognized the parallel between Maxwell’s potentials and Lagrange multipliers, and
identified the underlying optimization problem of minimizing heat loss. Tucker
then wrote Gale and Kuhn, inviting them to do a sequel to (Gale et al. 1951).
Gale declined, Kuhn accepted and paper developed by correspondence between
Stanford and Princeton shifted emphasis from the quadratic case to the general non-
linear programming problem and to properties of convexity that imply the necessary
conditions for an optimum are also sufficient.

A convex nonlinear programing problem can be formulated as:
(P)

minimize f (x)
subject to

x ∈ X

gi (x) ≤ 0, i = 1, 2, . . . , m

h j (x) = 0, i = 1, 2, . . . , k.

Functions f , g and h are assumed to be convex.
Nicest among nonlinear programs, useful necessary and sufficient optimality

conditions for global minimum are only known for convex programming problems.
The Fritz John necessary condition (John 1948) for a feasible point x∗ to be

optimal for (P) is the existence of λ ∗
0 ∈ R, λ ∗ ∈ Rm such that

λ ∗
0∇ f (x∗)+λ ∗T

∇g(x∗) = 0

λ ∗T
g(x∗) = 0

(λ ∗
0 ,λ ∗) ≥ 0, (λ ∗

0 ,λ ∗) �= 0.
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There are no restrictions on the objective and constraint functions, apart from the
differentiability.

However, by imposing a regularity condition on the constraint function, the λ ∗
0

may, without loss of generality, be taken as 1, and we obtain the Kuhn–Tucker
necessary conditions (Kuhn–Tucker 1951): there exists λ ∗ ∈ Rm such that

∇ f (x∗)+λ ∗T
∇g(x∗) = 0

λ ∗T
g(x∗) = 0

λ ∗ ≥ 0, λ ∗ �= 0.

There are a variety of regularity conditions, or constraint qualifications, which
yield the Kuhn–Tucker necessary conditions. Some requires differentiability with
no notion of convexity, and some have an assumption of convexity.

If the functions involved in the problem are convex then the necessary conditions
for optimality are also sufficient.

In nonlinear programing, if the model is nonconvex, no efficient algorithm can
guarantee finding a global minimum. So, one has to compromise with various types
of solution expected. However, for convex programs, every local minimum is a
global minimum. For convex programs, any method finding a local minimum will
find a global minimum. Moreover, any stationary point is a global minimum in the
case of convex programs.

1.1 Nonlinear Symmetric Dual Pair of Programming Problems

It is well known that every linear program is symmetric in the sense that the dual
of the dual is the original problem. However, this is not the case with a general
nonlinear programming problem.

Dantzig et al. (1965) introduced the following problem:

minimize f (x,y)− yT∇y f (x,y)
subject to

∇y f (x,y) ≤ 0
x ≥ 0, y ≥ 0,

Its symmetric dual is

maximize f (u,v)−uT∇u f (u,v)
subject to

∇u f (u,v) ≤ 0
u ≥ 0, v ≥ 0.



4 1 Introduction

Mond and Weir (1981) proposed a relaxed version of the problems given by Dantzig
et al. (1965). The problem of Mond and Weir has an advantage that one can use more
generalized class of convex functions and the objective functions of the primal and
dual problems are similar:

minimize f (x,y)
subject to

yT∇y f (x,y) ≤ 0
x ≥ 0,

Its symmetric dual is
maximize f (u,v)
subject to

uT∇u f (u,v) ≤ 0
v ≥ 0.

These problems have direct connections with two person zero sum games.
The optimization problems discussed above are only finite-dimensional. How-

ever, a great deal of optimization theory is concerned with problems involving
infinite dimensional case. Two types of problems fitting into this scheme are vari-
ational and control problems. Hanson (1964) observed that variational and control
problems are continuous-time analogue of finite dimensional nonlinear program-
ming problems. Since then the fields of nonlinear programming and the calculus
of variations have to some extent merged together within optimization theory,
hence enhancing the potential for continued research in both fields. These types
of problems are studied in Sect. 4.6, 4.7, and 5.16–5.19.

1.2 Motivation

Convexity is one of the most frequently used hypotheses in optimization theory. It is
usually introduced to give global validity to propositions otherwise only locally true
(for convex functions, for instance, any local minimum is also a global minimum)
and to obtain sufficient conditions that are generally only necessary, as with the
Kuhn–Tucker conditions in nonlinear programing. In microeconomics, convexity
plays a fundamental role in general equilibrium theory and in duality results. In
particular, in consumer theory, the convexity of preference ensures the existence of a
demand function. In game theory, convexity ensures the existence of an equilibrium
solution.

Convexity assumptions are often not satisfied in real-world economic models;
see Arrow and Intriligator (1981). The necessary KKT conditions imply a maximum
under some condition weaker than convexity. It suffices if − f is pseudo-convex and
each −gi is pseudo-concave, or less restrictively if the vector−( f , g1, g2, . . . , gm) is
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invex. An economic model where an objective function is to be maximized, subject
to constraints on the economic processes involved, leads to a nonlinear program-
ming problem. It is well known that, under some restrictions, a maximum may
be described by a Lagrangian function. The Lagrangian has a zero gradient at a
maximum point, but this is not enough to imply a maximum, unless additional
restrictions, such as concavity or quasi-concavity are imposed, but these often do
not hold for many practical problems, so go for invexity, pseudo-invexity, etc.

In the past century, the notion of a convex function has been generalized in
various ways, either by an extension to abstract spaces, or by a change in the def-
inition of convexity. One of the more recent generalizations, for instance, is due
to Hanson, who introduced invex functions in 1981: f : Rn → R is invex when-
ever it is differentiable and there exists a function η : Rn × Rn → Rn such that
f (x)− f (y) ≥ ∇ f (x) η (x, y). Many important properties of convex functions are
preserved within a wider functional environment, for example, a local minimum is
also a global minimum if the function involved is invex.

However, invexity is not the only generalization of convexity. In fact, after the
work of Hanson (1981), mathematicians and other practiceners started attempting
to further weakening of the concept of invexity. This has finally led to a whole field
of research, known as “generalized convexity.” It is impossible to collect the entire
progress on the subject in one book, as there has been eight international confer-
ences on generalized convexity. However, there is no book on the topic dealing with
some generalized convexity and various nonlinear programing problems. This is a
desperate need of advanced level students or new researchers in this field.



Chapter 2
Generalized Convex Functions

Convexity is one of the most frequently used hypotheses in optimization theory. It
is usually introduced to give global validity to propositions otherwise only locally
true, for instance, a local minimum is also a global minimum for a convex function.
Moreover, convexity is also used to obtain sufficiency for conditions that are only
necessary, as with the classical Fermat theorem or with Kuhn-Tucker conditions in
nonlinear programming. In microeconomics, convexity plays a fundamental role in
general equilibrium theory and in duality theory. For more applications and histor-
ical reference, see, Arrow and Intriligator (1981), Guerraggio and Molho (2004),
Islam and Craven (2005). The convexity of sets and the convexity and concavity of
functions have been the object of many studies during the past one hundred years.
Early contributions to convex analysis were made by Holder (1889), Jensen (1906),
and Minkowski (1910, 1911). The importance of convex functions is well known
in optimization problems. Convex functions come up in many mathematical models
used in economics, engineering, etc. More often, convexity does not appear as a nat-
ural property of the various functions and domain encountered in such models. The
property of convexity is invariant with respect to certain operations and transfor-
mations. However, for many problems encountered in economics and engineering
the notion of convexity does no longer suffice. Hence, it is necessary to extend the
notion of convexity to the notions of pseudo-convexity, quasi-convexity, etc. We
should mention the early work by de de Finetti (1949), Fenchel (1953), Arrow and
Enthoven (1961), Mangasarian (1965), Ponstein (1967), and Karamardian (1967).
In the recent years, several extensions have been considered for the classical con-
vexity. A significant generalization of convex functions is that of invex functions
introduced by Hanson (1981). Hanson’s initial result inspired a great deal of sub-
sequent work which has greatly expanded the role and applications of invexity in
nonlinear optimization and other branches of pure and applied sciences.

In this chapter, we shall discuss about various concepts of generalized convex
functions introduced in the literature in last thirty years for the purpose of weak-
ening the limitations of convexity in mathematical programming. Hanson (1981)
introduced the concept of invexity as a generalization of convexity for scalar con-
strained optimization problems, and he showed that weak duality and sufficiency of

S.K. Mishra et al., Generalized Convexity and Vector Optimization,
Nonconvex Optimization and Its Applications.
c© Springer-Verlag Berlin Heidelberg 2009
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the Kuhn-Tucker optimality conditions hold when invexity is required instead of the
usual requirement of convexity of the functions involved in the problem.

2.1 Convex and Generalized Convex Functions

Definition 2.1.1. A subset X of Rn is convex if for every x1,x2 ∈ X and 0 < λ < 1,
we have

λx1 +(1−λ)x2 ∈ X .

Definition 2.1.2. A function f : X → R defined on a convex subset X of Rn is convex
if for any x1,x2 ∈ X and 0 < λ < 1, we have

f (λx1 +(1−λ)x2) ≤ λ f (x1)+ (1−λ) f (x2) .

If we have strict inequality for all x1 �= x2 in the above definition, the function is
said to be strictly convex.

Historically the first type of generalized convex function was considered by de
Finetti (1949) who first introduced the quasiconvex functions (a name given by
Fenchel (1953)) after 6 years.

Definition 2.1.3. A function f : X → R is quasiconvex on X if

f (x) ≤ f (y) ⇒ f (λx +(1−λ)y) ≤ f (y) , ∀x, y ∈ X , ∀ λ ∈ [0, 1]

or, equivalently, in non-Euclidean form

f (λx +(1−λ)y) ≤ max{ f (x) , f (y)} , ∀x, y ∈ X , ∀ λ ∈ [0, 1] .

For further study and characterization of quasiconvex functions, one can see
Giorgi et al. (2004).

In the differentiable case, we have the following definition given in Avriel
et al. (1988):

Definition 2.1.4. A function f : X → R is said to be quasiconvex on X if

f (x) ≤ f (y) ⇒ (x− y)∇ f (y) ≤ 0, ∀x, y ∈ X .

An important property of a differentiable convex function is that any stationary
point is also a global minimum point; however, this useful property is not restricted
to differentiable convex functions only. The family of pseudoconvex functions intro-
duced by Mangasarian (1965) and under the name of semiconvex functions by
Tuy (1964), strictly includes the family of differentiable convex functions and has
the above mentioned property as well.
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Definition 2.1.5. Let f : X → R be differentiable on the open set X ⊂ Rn; then f is
pseudoconvex on X if:

f (x) < f (y) ⇒ (x− y)∇ f (y) < 0, ∀x, y ∈ X

or equivalently if

(x− y)∇ f (y) ≥ 0 ⇒ f (x) ≥ f (y) , ∀x, y ∈ X .

From this definition it appears obvious that, if f is pseudoconvex and∇ f (y) = 0,
then y is a global minimum of f over X . Pseudoconvexity plays a key role in obtain-
ing sufficient optimality conditions for a nonlinear programming problem as, if a
differentiable objective function can be shown or assumed to be pseudoconvex, then
the usual first-order stationary conditions are able to produce a global minimum.

The function f : X → R is called pseudoconcave if − f is pseudoconvex.
Functions that are both pseudoconvex and pseudoconcave are called pseudolin-

ear. Pseudolinear functions are particularly important in certain optimization prob-
lems, both in scalar and vector cases; see Chew and Choo (1984), Komlosi (1993),
Rapcsak (1991), Kaul et al. (1993), and Mishra (1995).

The following result due to Chew and Choo (1984) characterizes the class of
pseudolinear functions.

Theorem 2.1.1. Let f : X → R, where X ⊂ Rn is an open convex set. Then the
following statements are equivalent:

(i) f is pseudolinear.
(ii) For any x,y ∈ X, it is (x− y)∇ f (y) = 0 if and only if f (x) = f (y).

(iii) There exists a function p : X ×X → R+ such that

f (x) = f (y)+ p(x, y) · (x− y)∇ f (y) .

The class of pseudolinear functions includes many classes of functions useful
for applications, e.g., the class of linear fractional functions (see, e.g., Chew and
Choo (1984)).

An example of a pseudolinear function is given by f (x) = x + x3, x ∈ R. More
generally, Kortanek and Evans (1967) observed that if f is pseudolinear on the
convex set X ⊂ Rn, then the function F = f (x) + [ f (x)]3 is also pseudolinear on X .

For characterization of the solution set of a pseudolinear program, one can see
Jeyakumar and Yang (1995).

Ponstein (1967) introduced the concept of strictly pseudoconvex functions for
differentiable functions.

Definition 2.1.6. A function f : X → R, differentiable on the open set X ⊂ Rn, is
strictly pseudoconvex on X if

f (x) ≤ f (y) ⇒ (x− y)∇ f (y) < 0, ∀ x, y ∈ X , x �= y,
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or equivalently if

(x− y)∇ f (y) ≥ 0 ⇒ f (x) > f (y) , ∀ x, y ∈ X , x �= y.

The comparison of the definitions of pseudoconvexity and strict pseudoconvexity
shows that strict pseudoconvexity implies pseudoconvexity. Ponstein (1967) showed
that pseudoconvexity plus strict quasiconvexity implies strict pseudoconvexity and
that strict pseudoconvexity implies strict quasiconvexity.

In a minimization problem, if the strict pseudoconvexity of the objective function
can be shown or assumed, then the solution to the first-order optimality conditions
is a unique global minimum. Many other characterization of strict pseudoconvex
functions are given by Diewert et al. (1981).

Convex functions play an important role in optimization theory. The optimization
problem:

minimize f (x) for x ∈ X ⊆ Rn, subject to g(x) � 0,

is called a convex program if the functions involved are convex on some subset X of
Rn. Convex programs have many useful properties:

1. The set of all feasible solutions is convex.
2. Any local minimum is a global minimum.
3. The Karush–Kuhn–Tucker optimality conditions are sufficient for a minimum.
4. Duality relations hold between the problem and its dual.
5. A minimum is unique if the objective function is strictly convex.

However, for many problems encountered in economics and engineering the
notion of convexity does no longer suffice. To meet this demand and the convexity
requirement to prove sufficient optimality conditions for a differentiable mathemat-
ical programming problem, the notion of invexity was introduced by Hanson (1981)
by substituting the linear term (x− y), appearing in the definition of differentiable
convex, pseudoconvex and quasiconvex functions, with an arbitrary vector-valued
function.

2.2 Invex and Generalized Invex Functions

Definition 2.2.1. A function f : X → R, X open subset of Rn, is said to be invex on
X with respect to η if there exists vector-valued function η : X ×X → Rn such that

f (x)− f (y) ≥ ηT (x,y)∇ f (y) , ∀x, y ∈ X .

The name “invex” was given by Craven (1981) and stands for “invariant convex.”
Similarly f is said to be pseudoinvex on X with respect to η if there exists vector-

valued function η : X ×X → Rn such that

ηT (x,y)∇ f (y) ≥ 0 ⇒ f (x) ≥ f (y) , ∀x, y ∈ X .
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The function f : X → R, X open subset of Rn, is said to be quasiinvex on X with
respect to η if there exists vector-valued function η : X ×X → Rn such that

f (x) ≤ f (y) ⇒ ηT (x,y)∇ f (y) ≤ 0, ∀x, y ∈ X .

Craven (1981) gave necessary and sufficient conditions for function f to be invex
assuming that the functions f and η are twice continuously differentiable.

Ben-Israel and Mond (1986) and Kaul and Kaur (1985) also studied some
relationships among the various classes of (generalized) invex functions and (gen-
eralized) convex functions. Let us list their results for the sake completion:

(1) A differentiable convex function is also invex, but not conversely, see example,
Kaul and Kaur (1985).

(2) A differentiable pseudo-convex function is also pseudo-invex, but not con-
versely, see example, Kaul and Kaur (1985).

(3) A differentiable quasi-convex function is also quasi-invex, but not conversely,
see example, Kaul and Kaur (1985).

(4) Any invex function is also pseudo-invex for the same function η (x, x̄), but not
conversely, see example, Kaul and Kaur (1985).

(5) Any pseudo-invex function is also quasi-invex, but not conversely.

Further insights on these relationships can be deduced by means of the following
characterizations of invex functions:

Theorem 2.2.1. (Ben-Israel and Mond (1986)) Let f : X → R be differentiable on
the open set X ⊂ Rn; then f is invex if and only if every stationary point of f is a
global minimum of f over X.

It is adequate, in order to apply invexity to the study of optimality and duality
conditions, to know that a function is invex without identifying an appropriate func-
tion η (x, x̄). However, Theorem 2.2.1 allows us to find a function η (x, x̄), when f (x)
is known to be invex; viz.

η (x, x̄) =

⎧
⎨

⎩

[ f (x)− f (x̄)]∇ f (x̄)
∇ f (x̄)∇ f (x̄)

, if ∇ f (x̄) �= 0

0, if ∇ f (x̄) = 0.

Remark 2.2.1. If we consider an invex function f on set X0 ⊆ X , with X0 not open,
it is not true that any local minimum of f on X0 is also a global minimum. Let us
consider the following example.

Example 2.2.1. Let f (x,y) = y
(
x2 −1

)2 and X0 = {(x,y) : (x,y) ∈ R2,x ≥ −1/2,
y ≥ 1}. Every stationary point of f on X0 is a global minimum of f on X0, and
therefore f is invex on X0. The point (−1/2,1) is a local minimum point of f on X0,
with f (−1/2,1) = 9/16, but the global minimum is f (1,y) = f (−1,y) = 0.

In order to consider some type of invexity for nondifferentiable functions, Ben-
Israel and Mond (1986) and Weir and Mond (1988) introduced the following
function:
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Definition 2.2.2. A function f : X → R is said to be pre-invex on X if there exists a
vector function η : X ×X → Rn such that

(y +λη (x, y)) ∈ X , ∀λ ∈ [0, 1] , ∀ x, y ∈ X

and

f (y +λη (x, y)) ≤ λ f (x)+ (1−λ) f (y) , ∀λ ∈ [0, 1] , ∀ x, y ∈ X .

Weir and Mond (1988a) gave the following example of a pre-invex function
which is not convex.

Example 2.2.2. f (x) = −|x| , x ∈ R. Then f is a pre-invex function with η given as
follows:

η (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x− y, if y ≤ 0 and x ≤ 0
x− y, if y ≥ 0 and x ≥ 0
y− x, if y > 0 and x < 0
y− x, if y < 0 and x > 0.

As for convex functions, any local minimum of a pre-invex function is a global
minimum and nonnegative linear combinations of pre-invex functions are pre-invex.
Pre-invex functions were utilized by Weir and Mond (1988a) to establish proper
efficiency results in multiple objective optimization problems.

2.3 Type I and Related Functions

Subsequently, Hanson and Mond (1982) introduced two new classes of functions
which are not only sufficient but are also necessary for optimality in primal and
dual problems, respectively. Let

P = {x : x ∈ X ,g(x) � 0} and D = {x : (x,y) ∈Y} ,

where Y = {(x,y) : x ∈ X ,y ∈ Rm,∇x f (x)+ yT∇xg(x) = 0;y � 0}.
Hanson and Mond (1982) defined:

Definition 2.3.1. f (x) and g(x) as Type I objective and constraint functions, respec-
tively, with respect to η (x) at x̄ if there exists an n-dimensional vector function η (x)
defined for all x ∈ P such that

f (x)− f (x̄) � [∇x f (x̄)]T η (x, x̄)

and
−g(x̄) � [∇xg(x̄)]T η (x, x̄) ,

the objective and constraint functions f (x) and g(x) are calledstrictly Type I if we
have strict inequalities in the above definition.
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Definition 2.3.2. f (x) and g(x) as Type II objective and constraint functions,
respectively, with respect to η (x) at x̄ if there exists an n-dimensional vector function
η (x) defined for all x ∈ P such that

f (x̄)− f (x) � [∇x f (x)]T η (x, x̄)

and
−g(x) � [∇xg(x)]T η (x, x̄) .

the objective and constraint functions f (x) and g(x) are called strictly Type II if we
have strict inequalities in the above definition.

Rueda and Hanson (1988) established the following relations:

1. If f (x) and g(x) are convex objective and constraint functions, respectively,
then f (x) and g(x) are Type I, but the converse is not necessarily true, as can be
seen from the following example.

Example 2.3.1. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =

x + sinx and g(x) = −sinx are Type I functions with respect to η(x) =
(

2√
3

)

(
sinx− 1

2

)
at x̄ = π/6, but f (x) and g(x) are not convex with respect to the same

η(x) =
(

2√
3

)(
sinx− 1

2

)
as can be seen by taking x = π/4 and x̄ = π/6.

2. If f (x) and g(x) are convex objective and constraint functions, respectively,
then f (x) and g(x) are Type II, but the converse is not necessarily true, as can be
seen from the following example.

Example 2.3.2. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =

x+ sinx and g(x) = −sinx are Type II functions with respect to η (x) = ( 1
2−sinx)

cosx at

x̄ = π
/

6, but f (x)andg(x) are not convex with respect to the same η (x) = ( 1
2−sinx)

cosx
at x̄ = π

/
6.

3. If f (x) and g(x) are strictly convex objective and constraint functions, respec-
tively, then f (x) and g(x) are strictly Type I, but the converse is not necessarily true,
as can be seen from the following example.

Example 2.3.3. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =
−x + cosx and g(x) = −cosx are strictly Type I functions with respect to η (x) =
1−

(
2√
2

)
cosx at x̄ = π

/
4, but f (x)andg(x) are not strictly convex with respect to

the same η (x) = 1−
(

2√
2

)
cosx.

4. If f (x) and g(x) are strictly convex objective and constraint functions, respec-
tively, then f (x) and g(x) are strictly Type II, but the converse is not necessarily
true, as can be seen from the following example.



14 2 Generalized Convex Functions

Example 2.3.4. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =
−x + cosx and g(x) = −cosx are strictly Type II functions with respect to η (x) =
(

cosx−
√

2
2

)

sinx at x̄ = π
/

4, but f (x) and g(x) are not strictly convex with respect to the

same η (x) = 1−
(

2√
2

)
cosx.

Rueda and Hanson (1988) defined:

Definition 2.3.3. f (x) and g(x) as pseudo-Type I objective and constraint func-
tions, respectively, with respect to η (x) at x̄ if there exists an n-dimensional vector
function η (x) defined for all x ∈ P such that

[∇x f (x)]T η (x, x̄) � 0 ⇒ f (x̄)− f (x) � 0

and
[∇xg(x)]T η (x, x̄) � 0 ⇒−g(x) � 0.

Definition 2.3.4. f (x) and g(x) as quasi-Type I objective and constraint functions,
respectively, with respect to η (x) at x̄ if there exists an n-dimensional vector function
η (x) defined for all x ∈ P such that

f (x)− f (x̄) � 0 ⇒ [∇x f (x̄)]T η (x, x̄) � 0.

and
−g(x) � 0 ⇒ [∇xg(x)]T η (x, x̄) � 0.

Pseudo-Type II and quasi-Type II objective and constraint functions are defined
similarly.

It was shown by Rueda and Hanson (1988) that:

1. Type I objective and constraint functions ⇒ pseudo-Type I objective and con-
straint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.5. The functions f :
(− π

2 , π2
) → R and g :

(− π
2 , π2

) → R defined by
f (x) = −cos2 x and g(x) = −cosx are pseudo-Type I functions with respect to
η (x) = − 1

2 +
(√

2
/

2
)

cosx at x̄ = −π/4, but f (x) and g(x) are not Type I with

respect to the same η (x) = − 1
2 +

(√
2
/

2
)

cosx as can be seen by taking x = 0.

2. Type II objective and constraint functions ⇒ pseudo-Type II objective and
constraint functions, but the converse is not necessarily true, as can be seen from the
following.

Example 2.3.6. The functions f :
(− π

2 , π2
) → R and g :

(− π
2 , π2

) → R defined by
f (x) = −cos2 x and g(x) = −cosx are pseudo-Type II functions with respect to
η (x) = sin x

(
cosx−√

2
/

2
)

at x̄ = −π/4, but f (x) and g(x) are not Type II with

respect to the same η (x) = sinx
(

cosx−√
2
/

2
)

as can be seen by taking x = π
/

3.
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3. Type I objective and constraint functions ⇒ quasi-Type I objective and con-
straint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.7. The functions f : (0,π) → R and g : (0,π) → R defined by f (x) =
sin3 x and g(x) = −cosx are quasi-Type I functions with respect to η (x) = −1 at
x̄ = π

/
2, but f (x) and g(x) are not Type I with respect to the same η (x) = −1 as

can be seen by taking x̄ = π
/

4.

4. Type II objective and constraint functions ⇒ quasi-Type II objective and con-
straint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.8. The functions f : (0,∞) → R and g : (0,∞) → R defined by f (x) =
− 1

x and g(x) = 1− x are quasi-Type II functions with respect to η (x) = 1− x at
x̄ = 1, but f (x) and g(x) are not Type II with respect to the same η (x) = 1− x as
can be seen by taking x = 2.

5. Strictly Type I objective and constraint functions ⇒ Type I objective and con-
straint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.9. The functions f :
(− π

2 , π2
) → R and g :

(− π
2 , π2

) → R defined by
f (x) =−sinx and g(x) =−cosx are Type I functions with respect to η (x) = sinx at
x̄ = 0, but f (x) and g(x) are not strictly Type I with respect to the same η (x) = sinx
at x̄ = 0.

6. Strictly Type II objective and constraint functions ⇒ Type II objective and
constraint functions, but the converse is not necessarily true, as can be seen from the
following example.

Example 2.3.10. The functions f :
(
0, π2

)→ R and g :
(
0, π2

)→ R defined by f (x) =
−sinx and g(x) = −e−x are Type II functions with respect to η (x) = 1 at x̄ = 0, but
f (x)andg(x) are not strictly Type I with respect to the same η (x) at x̄ = 0.

Kaul et al. (1994) further extended the concepts of Rueda and Hanson (1988)
to pseudo-quasi Type I, quasi-pseudo Type I objective and constraint functions as
follows.

Definition 2.3.5. f (x) and g(x) as quasi-pseudo-Type I objective and constraint
functions, respectively, with respect to η (x) at x̄ if there exists an n-dimensional
vector function η (x) defined for all x ∈ P such that

f (x)− f (x̄) � 0 ⇒ [∇x f (x̄)]T η (x, x̄) � 0

and
[∇xg(x)]T η (x, x̄) � 0 ⇒−g(x) � 0.
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Definition 2.3.6. f (x) and g(x) as pseudo-quasi-Type I objective and constraint
functions, respectively,with respect to η (x) at x̄ if there exists an n-dimensional
vector function η (x) defined for all x ∈ P such that

[∇x f (x̄)]T η (x, x̄) � 0 ⇒ f (x)− f (x̄) � 0

and
−g(x) � 0 ⇒ [∇xg(x)]T η (x, x̄) � 0.

2.4 Univex and Related Functions

Let f be a differentiable function defined on a nonempty subset X of Rn and let
φ : R → R and k : X ×X → R+. For x, x̄ ∈ X , we write k (x, x̄) = lim

λ→0
b(x, x̄,λ ) � 0.

Bector et al. (1992) defined b-invex functions as follows.

Definition 2.4.1. The function f is said to be B-invex with respect to η and k, at x̄
if for all x ∈ X, we have

k (x, x̄) [ f (x)− f (x̄)] � [∇x f (x̄)]T η (x, x̄) .

Bector et al. (1992) further extended this concept to univex functions as follows.

Definition 2.4.2. The function f is said to be univex with respect to η ,φ and k, at x̄
if for all x ∈ X, we have

k (x, x̄)φ [ f (x)− f (x̄)] � [∇x f (x̄)]T η (x, x̄) .

Definition 2.4.3. The function f is said to be quasi-univex with respect to η ,φ and
k, at x̄ if for all x ∈ X, we have

φ [ f (x)− f (x̄)] � 0 ⇒ k (x, x̄)η (x, x̄)T∇x f (x̄) � 0.

Definition 2.4.4. The function f is said to be pseudo-univex with respect to η ,φ and
k, at x̄ if for all x ∈ X, we have

η (x, x̄)T∇x f (x̄) � 0 ⇒ k (x, x̄)φ [ f (x)− f (x̄)] � 0.

Bector et al. (1992) gave the following relations with some other generalized
convex functions existing in the literature.

1. Every B-invex function is univex function with φ : R → R defined as φ (a) =
a,∀a ∈ R, but not conversely.

Example 2.4.1. Let f : R → R be defined by f (x) = x3, where,

η (x, x̄) =
{

x2 + x̄2 + xx̄, x > x̄
x− x̄,x � x̄
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and

k (x, x̄) =
{

x̄2/(x− x̄), x > x̄
0, x � x̄.

Let φ : R → R be defined by φ (a) = 3a. The function f is univex but not b-invex,
because for x = 1, x̄ = 1/2, k (x, x̄)φ [ f (x)− f (x̄)] < η (x, x̄)T∇x f (x̄) .

2. Every invex function is univex function with φ : R → R defined as φ (a) =
a,∀a ∈ R, and k (x, x̄) ≡ 1, but not conversely.

Example 2.4.2. The function considered in above example is univex but not invex,
because for x = −3, x̄ = 1, f (x)− f (x̄) < η (x, x̄)T∇x f (x̄) .

3. Every convex function is univex function with φ : R → R defined as φ (a) =
a,∀a ∈ R,k (x, x̄) ≡ 1, and η (x, x̄) ≡ x− x̄, but not conversely.

Example 2.4.3. The function considered in above example is univex but not convex,
because for x = −2, x̄ = 1, f (x)− f (x̄) < (x− x̄)T∇x f (x̄) .

4. Every b-vex function is univex function with φ : R → R defined as φ (a) =
a,∀a ∈ R, and η (x, x̄) ≡ x− x̄, but not conversely.

Example 2.4.4. The function considered in above example is univex but not b-vex,
because for x = 1

10 , x̄ = 1
100 ,k (x, x̄) [ f (x)− f (x̄)] < (x− x̄)T∇x f (x̄) .

Rueda et al. (1995) obtained optimality and duality results for several mathemat-
ical programs by combining the concepts of type I functions and univex functions.
They combined the Type I and univex functions as follows.

Definition 2.4.5. The differentiable functions f (x) and g(x) are called Type I univex
objective and constraint functions, respectively with respect to η ,φ0,φ1,b0,b1 at
x̄ ∈ X, if for all x ∈ X, we have

b0 (x, x̄)φ0 [ f (x)− f (x̄)] � η (x, x̄)T∇x f (x̄)

and
−b1 (x, x̄)φ1 [g(x̄)] � η (x, x̄)T∇xg(x̄) .

Rueda et al. (1995) gave examples of functions that are univex but not Type I
univex.

Example 2.4.5. The functions f ,g : [1,∞) → R, defined by f (x) = x3 and g(x) =
1− x, are univex at x̄ = 1 with respect to b0 = b1 = 1,η (x, x̄) = x − x̄,φ0 (a) =
3a,φ1 (a) = 1, but g does not satisfy the second inequality of the above definition at
x̄ = 1.

They also pointed out that there are functions which are Type I univex but not
univex.

Example 2.4.6. The functions f ,g : [1,∞) → R, defined by f (x) = −1/x and g(x) =
1−x, are Type I univex with respect to b0 = b1 = 1,η(x, x̄)=−1/(x− x̄), φ0(a) = a,
φ1(a) = −a, at x̄ = 1, but g is not univex at x̄ = 1.
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Following Rueda et al. (1995), Mishra (1998b) gave several sufficient optimality
conditions and duality results for multiobjective programming problems by combin-
ing the concepts of Pseudo-quasi-Type I, quasi-pseudo-Type I functions and univex
functions.

2.5 V-Invex and Related Functions

Jeyakumar and Mond (1992) introduced the notion of V-invexity for a vector func-
tion f = ( f1, f2, . . . , fp) and discussed its applications to a class of constrained
multiobjective optimization problems. We now give the definitions of Jeyakumar
and Mond (1992) as follows.

Definition 2.5.1. A vector function f : X → Rp is said to be V-invex if there exist
functions η : X ×X → Rn and αi : X ×X → R+ −{0} such that for each x, x̄ ∈ X
and for i = 1,2, . . . , p,

fi (x)− fi (x̄) � αi (x, x̄)∇ fi (x̄)η (x, x̄) .

for p = 1 and η̄ (x, x̄) = αi (x, x̄)η (x, x̄) the above definition reduces to the usual
definition of invexity given by Hanson (1981).

Definition 2.5.2. A vector function f : X → Rp is said to be V-pseudoinvex if there
exist functionsη : X×X →Rn and βi : X ×X →R+−{0} such that for each x, x̄ ∈X
and for i = 1,2, . . . , p,

p

∑
i=1
∇ fi (x̄)η (x, x̄) � 0 ⇒

p

∑
i=1
βi (x, x̄) fi (x) �

p

∑
i=1
βi (x, x̄) fi (x̄).

Definition 2.5.3. A vector function f : X → Rp is said to be V-quasiinvex if there
exist functions η : X ×X →Rn and δi : X ×X →R+−{0} such that for each x, x̄∈ X
and for i = 1,2, . . . , p,

p

∑
i=1
δi (x, x̄) fi (x) �

p

∑
i=1
δi (x, x̄) fi (x̄) ⇒

p

∑
i=1
∇ fi (x̄)η (x, x̄) � 0.

It is evident that every V-invex function is both V-pseudo-invex (with βi (x, x̄) =
1

αi(x,x̄)
) and V-quasi-invex (with δi (x, x̄) = 1

αi(x,x̄)
). Also if we set p = 1, αi (x, x̄) = 1,

βi (x, x̄) = 1, δi (x, x̄) = 1 and η (x, x̄) = x− x̄, then the above definitions reduce to
those of convexity, pseudo-convexity and quasi-convexity, respectively.

Definition 2.5.4. A vector optimization problem:

(VP) V −min( f1, f2, . . . , fp) subject to g(x) � 0,
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where fi : X → R, i = 1,2, . . . , p and g : X → Rm are differentiable functions on
X, is said to be V-invex vector optimization problem if each f1, f2, . . ., fp and
g1, g2, . . ., gm is a V-invex function.

Note that, invex vector optimization problems are necessarily V-invex, but not
conversely. As a simple example, we consider following example from Jeyakumar
and Mond (1992).

Example 2.5.1. Consider

min
x1,x2∈R

(
x2

1
x2

,
x1

x2

)

subject to 1− x1 ≤ 1,1− x2 ≤ 1.

Then it is easy to see that this problem is a V-invex vector optimization problem
with α1 = x̄2

x2
, α2 = x̄1

x1
, β1 = 1 = β2, and η (x, x̄) = x− x̄; but clearly, the problem

does not satisfy the invexity conditions with the same η .
It is also worth noticing that the functions involved in the above problem are

invex, but the problem is not necessarily invex.
It is known (see Craven (1981)) that invex problems can be constructed from

convex problems by certain nonlinear coordinate transformations. In the follow-
ing, we see that V-invex functions can be formed from certain nonconvex functions
(in particular from convex-concave or linear fractional functions) by coordinate
transformations.

Example 2.5.2. Consider function, h : Rn → Rp defined by h(x) = ( f1(φ(x)), . . . ,
fp(φ(x))), where fi : Rn → R, i = 1,2, . . . , p, are strongly pseudo-convex functions
with real positive functions αi,φ : Rn → Rn is surjective with φ ′ (x̄) onto for each
x̄ ∈ Rn. Then, the function h is V-invex.

Example 2.5.3. Consider the composite vector function h(x) = ( f1(F1(x)), . . . ,
fp(Fp(x))), where for each i = 1, 2, . . . , p, Fi : X0 →R is continuously differentiable
and pseudolinear with the positive proportional function αi (·, ·), and fi : R → R
is convex. Then, h(x) is V−invex with η (x, y) = x − y. This follows from the
following convex inequality and pseudolinearity conditions:

fi (Fi (x))− fi (Fi (y)) ≥ f ′i (Fi (y))(Fi (x)−Fi (y))
= f ′i (Fi (y))αi (x, y)F ′

i (y)(x− y)

= αi (x, y)( fi ◦Fi)′ (y)(x− y) .

For a simple example of a composite vector function, we consider

h(x1, x2) =
(

ex1/x2 ,
x1 − x2

x1 + x2

)

, where X0 =
{
(x1, x2) ∈ R2 : x1 ≥ 1, x2 ≥ 1

}
.

Example 2.5.4. Consider the function H(x)= (f1((g1◦ψ)(x)), . . . , fp((gp ◦ψ)(x))),
where each fi is pseudolinear on Rn with proportional functions αi (x, y) ,ψ is a
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differentiable mapping from Rn onto Rn such thatψ ′ (y) is surjective for each y∈Rn,
and fi : R → R is convex for each i. Then H is V -invex.

Jeyakumar and Mond (1992) have shown that the V -invexity is preserved under
a smooth convex transformation.

Proposition 2.5.1. Let ψ : R → R be differentiable and convex with positive deriva-
tive everywhere; let h : X0 → Rp be V-invex. Then, the function

hψ (x) = (ψ (h1 (x)) , . . . , ψ (hp (x))) , x ∈ X0

is V -invex.

The following very important property of V -invex functions was also established
by Jeyakumar and Mond (1992).

Proposition 2.5.2. Let f : Rn → Rp be V-invex. Then y ∈ Rn is a (global) weak

minimum of f if and only if there exists 0 �= τ ∈ Rp, τ ≥ 0,
p
∑

i=1
τi f ′i (y) = 0.

By Proposition 2.5.2, one can conclude that for a V -invex vector function every
critical point (i.e., f ′i (y) = 0, i = 1, . . . , p) is a global weak minimum.

Hanson et al. (2001) extended the (scalarized) generalized type-I invexity into a
vector (V-type-I) invexity.

Definition 2.5.5. The vector problem (VP) is said to be V-type-I at x̄∈ Xif there exist
positive real-valued functions αi and β j defined on X × X and an n-dimensional
vector-valued function η : X ×X → Rn such that

fi (x)− fi (x̄) � αi (x, x̄)∇ fi (x̄)η (x, x̄)

and
−g j (x̄) � β j (x, x̄)∇g j (x̄)η (x, x̄) ,

for every x ∈ X and for all i = 1,2, . . . , p and j = 1,2, . . . ,m.

Definition 2.5.6. The vector problem (VP) is said to be quasi-V-type-I at x̄ ∈ X if
there exist positive real-valued functions αi and β j defined on X × X and an n-
dimensional vector-valued function η : X ×X → Rn such that

p

∑
i=1
τiαi (x, x̄) [ fi (x)− fi (x̄)] � 0 ⇒

p

∑
i=1
τiη (x, x̄)∇ fi (x̄) � 0

and

−
m

∑
j=1
λ jβ j (x, x̄)g j (x̄) � 0 ⇒

m

∑
j=1
λ jη (x, x̄)∇g j (x̄) � 0,

for every x ∈ X.
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Definition 2.5.7. The vector problem (VP) is said to be pseudo-V-type-I at x̄ ∈ X
if there exist positive real-valued functions αiand β j defined on X × X and an
n-dimensional vector-valued function η : X ×X → Rn such that

p

∑
i=1
τiη (x, x̄)∇ fi (x̄) � 0 ⇒

p

∑
i=1
τiαi (x, x̄) [ fi (x)− fi (x̄)] � 0

and
m

∑
j=1
λ jη (x, x̄)∇g j (x̄) � 0 ⇒−

m

∑
j=1
λ jβ j (x, x̄)g j (x̄) � 0,

for every x ∈ X.

Definition 2.5.8. The vector problem (VP) is said to be quasi-pseudo-V-type-I at
x̄ ∈ X if there exist positive real-valued functions αi and β j defined on X ×X and an
n-dimensional vector-valued function η : X ×X → Rn such that

p

∑
i=1
τiαi (x, x̄) [ fi (x)− fi (x̄)] � 0 ⇒

p

∑
i=1
τiη (x, x̄)∇ fi (x̄) � 0

and
m

∑
j=1
λ jη (x, x̄)∇g j (x̄) � 0 ⇒−

m

∑
j=1
λ jβ j (x, x̄)g j (x̄) � 0,

for every x ∈ X.

Definition 2.5.9. The vector problem (VP) is said to be pseudo-quasi-V-type-I at
x̄ ∈ X if there exist positive real-valued functions αi and β j defined on X ×X and an
n-dimensional vector-valued function η : X ×X → Rn such that

p

∑
i=1
τiη (x, x̄)∇ fi (x̄) � 0 ⇒

p

∑
i=1
τiαi (x, x̄) [ fi (x)− fi (x̄)] � 0

and

−
m

∑
j=1
λ jβ j (x, x̄)g j (x̄) � 0 ⇒

m

∑
j=1
λ jη (x, x̄)∇g j (x̄) � 0,

for every x ∈ X.

Nevertheless the study of generalized convexity of a vector function is not yet
sufficiently explored and some classes of generalized convexity have been intro-
duced recently. Several attempts have been made by many authors to introduce
possibly a most wide class of generalized convex function, which can meet the
demand of a real life situation to formulate a nonlinear programming problem
and therefore get a best possible solution for the same. Recently, Aghezzaf and
Hachimi (2001) introduced a new class of functions, which we shall give in next
section.
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2.6 Further Generalized Convex Functions

Definition 2.6.1. f is said to be weak strictly pseudoinvex with respect to η at x̄ ∈ X
if there exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) ≤ f (x̄) ⇒ ∇ f (x̄)η(x, x̄) < 0.

This definition is a slight extension of that of the pseudoinvex functions. This
class of functions does not contain the class of invex functions, but does contain the
class of strictly pseudoinvex functions.

Every strictly pseudoinvex function is weak strictly pseudoinvex with respect to
the same η . However, the converse is not necessarily true, as can be seen from the
following example.

Example 2.6.1. The function f = ( f1, f2) defined on X = R, by f1 (x) = x(x + 2) and
f2 (x) = x(x + 2)2 is weak strictly pseudoinvex function with respect to η (x, x̄) =
x + 2 at x̄ = 0, but it s not strictly pseudoinvex with respect to the same η (x, x̄) at x̄
because for x̄ = −2, we have

f (x) � f (x̄) but ∇ f (x̄)η (x, x̄) = 0 ≮ 0.

Definition 2.6.2. f is said to be strong pseudoinvex with respect to η at x̄ ∈X if there
exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) ≤ f (x̄) ⇒ ∇ f (x̄)η (x, x̄) ≤ 0.

Instead of the class of weak strictly pseudoinvex, the class of strong pseudoinvex
functions does contain the class of invex functions. Also, every weak strictly pseu-
doinvex function is strong pseudoinvex with respect to the same η . However, the
converse is not necessarily true, as can be seen from the following example.

Example 2.6.2. The function f = ( f1, f2) defined on X = R, by f1 (x) = x3 and
f2 (x) = x(x + 2)2 is strongly pseudoinvex function with respect to η (x, x̄) = x at
x̄ = 0, but it is not weak strictly pseudoinvex with respect to the same η (x, x̄) at x̄
because for x̄ = −1

f (x) ≤ f (x̄) but ∇ f (x̄)η (x, x̄) = (0,−4)T
≮ 0,

also f is not invex with respect to the same η at x̄, as can be seen by taking x̄ = −2.

There exist functions f that are pseudoinvex but not strong pseudoinvex with
respect to the same η . Conversely, we can find functions that are strong pseudoinvex,
but they are not pseudoinvex with respect to the same η .

Example 2.6.3. The function f : R → R2, defined by f1 (x) = x(x−2)2 and f2 (x) =
x(x−3), is pseudoinvex with respect to η (x, x̄) = x− x̄ at x̄ = 0, but it is not weak
strictly pseudoinvex with respect to the same η (x, x̄) when x = 2.
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Example 2.6.4. The function f : R → R2, defined by f1 (x) = x(x−2) and f2 (x) =
x2 (x−1), is strong pseudoinvex with respect to η (x, x̄) = x− x̄ at x̄ = 0, but it is not
pseudoinvex with respect to the same η (x, x̄) at that point.

Remark 2.6.1. If f is both pseudoinvex and quasiinvex with respect to η at x̄ ∈ X ,
then it is strong pseudoinvex function with respect to the same η at x̄.

Definition 2.6.3. f is said to be weak quasiinvex with respect to η at x̄ ∈ X if there
exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) ≤ f (x̄) ⇒ ∇ f (x̄)η (x, x̄) � 0.

Every quasiinvex function is weak quasiinvex with respect to the same η .
However, the converse is not necessarily true.

Example 2.6.5. Define a function f : R → R2, by f1 (x) = x(x−2)2 and f2 (x) =
x2 (x−2), then the function is weak quasiinvex with respect to η (x, x̄) = x− x̄ at
x̄ = 0, but it is not quasiinvex with respect to the same η (x, x̄) at x̄ = 0, because
f (x) � f (x̄) but ∇ f (x̄)η (x, x̄) � 0, for x = 2.

Definition 2.6.4. f is said to be weak pseudoinvex with respect to η at x̄ ∈ X if there
exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) < f (x̄) ⇒ ∇ f (x̄)η (x, x̄) ≤ 0.

The class of weak pseudoinvex functions does contain the class of invex func-
tions, pseudoinvex functions, strong pseudoinvex functions and strong quasiinvex
functions.

Remark 2.6.2. Notice from Examples 2.6.1–2.6.4, that the concepts of weak strictly
pseudoinvex, strong pseudoinvex, weak pseudoinvex, and pseudoinvex vector-
valued functions are different, in general. However, they coincide in the scalar-
valued case.

Definition 2.6.5. f is said to be strong quasiinvex with respect to η at x̄ ∈ X if there
exists a vector function η (x, x̄) defined on X ×X such that, for all x ∈ X,

f (x) � f (x̄) ⇒ ∇ f (x̄)η (x, x̄) ≤ 0.

Every strong quasiinvex function s both quasiivex and strong pseudoinvex with
respect to the same η .

Aghezzaf and Hachimi (2001) introduced the class of weak prequasiinex func-
tions by generalzing the class of preinvex (Ben-Israel and Mond 1986) and the class
prequasiinvex functions (Suneja et al. 1993).

Definition 2.6.6. We say that f is weak prequasiinvex at x̄ ∈ X with respect to η if
X is invex at x̄ with respect to η and, for each x ∈ X,

f (x) ≤ f (x̄) ⇒ f (x̄ +λη (x, x̄)) � f (x̄) , 0 < λ � 0.


