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Abstract

In this paper we study sparsity-inducing nonconvex penalty functions using Lévy
processes. We define such a penalty as the Laplace exponent of a subordina-
tor. Accordingly, we propose a novel approach for the construction of sparsity-
inducing nonconvex penalties. Particularly, we show that the nonconvex logarith-
mic (LOG) and exponential (EXP) penalty functions are the Laplace exponents
of Gamma and compound Poisson subordinators, respectively. Additionally, we
explore the concave conjugate of nonconvex penalties. We find that the LOG and
EXP penalties are the concave conjugates of negative Kullback-Leiber (KL) dis-
tance functions. Furthermore, the relationship between these two penalties is due
to asymmetricity of the KL distance.

1 Introduction

Variable selection plays a fundamental role in statistical modeling for high-dimensional data sets,
especially when the underlying model has a sparse representation. The approach based on penalty
theory has been widely used for variable selection in the literature. A principled approach is to
due the lasso of [17], which uses the ¢;-norm penalty. Recently, some nonconvex alternatives,
such as the bridge penalty, the nonconvex exponential penalty (EXP) [3, 8], the logarithmic penalty
(LOG) [19, 13], the smoothly clipped absolute deviation (SCAD) penalty [6] and the minimax con-
cave plus (MCP) penalty [20], have been demonstrated to have attractive properties theoretically and
practically.

There has also been work on nonconvex penalties within a Bayesian framework. Zou and Li [23]
derived their local linear approximation (LLA) algorithm by combining the EM algorithm with an
inverse Laplace transformation. In particular, they showed that the bridge penalty can be obtained
by mixing the Laplace distribution with a stable distribution. However, Zou and Li [23] proved that
both MCP and SCAD can not be cast into this framework. Other authors have shown that the prior
induced from the LOG penalty has an interpretation as a scale mixture of Laplace distributions with
an inverse gamma density [5, 9, 12, 2]. Recently, Zhang et al. [22] extended this class of Laplace
variance mixtures by using a generalized inverse Gaussian density. Additionally, Griffin and Brown
[11] devised a family of normal-exponential-gamma priors.

Our work is motivated by recent developments of Bayesian nonparametric methods in feature se-
lection [10, 18, 4, 15]. Especially, Polson and Scott [15] proposed a nonparametric approach for
normal variance mixtures using Lévy processes, which embeds finite dimensional normal variance
mixtures in infinite ones. We develop a Bayesian nonparametric approach for the construction
of sparsity-inducing nonconvex penalties. Particularly, we show that Laplace transformations of
Lévy processes can be viewed as pseudo-priors and the corresponding Laplace exponents then form



sparsity-inducing nonconvex penalties. Moreover, we exemplify that the LOG and EXP penalties
can be respectively regarded as Laplace exponents of Gamma and compound Poisson subordinators.

In addition, we show that both LOG and EXP can be constructed via the Kullback-Leibler distance.
This construction recovers an inherent connection between LOG and EXP. Moreover, it provides us
with an approach for adaptively updating tuning hyperparameters, which is a very important com-
putational issue in nonconvex sparse penalization. Typically, the multi-stage LLA and SparseNet
algorithms with nonconvex penalties [21, 13] implement a two-dimensional grid research, so they
take more computational costs. However, we do not claim that our method will always be optimal
for generalization performance.

2 Lévy Processes for Nonconvex Penalty Functions

Suppose we are given a set of training data {(x;,y;) : ¢ = 1,...,n}, where the x; € RP are the
input vectors and the y; are the corresponding outputs. Moreover, we assume that >, x; = 0 and
>, yi = 0. We now consider the following linear regression model:

y = Xb + ¢,
where y = (y1,...,yn)7T is the nx1 output vector, X = [xy,...,%,]T is the nxp input matrix,
and ¢ is a Gaussian error vector N (e|0,c1,,). We aim to find a sparse estimate of regression vector
b = (by,...,by)" under the MAP framework.

We particular study the use of Laplace variance mixtures in sparsity modeling. For this purpose, we
define a hierarchical model:

ind _
[bj[n;, 0] "~ L(b;[0,0(2n;) "),
iid
(] ~ p(n;),
p(o) = “Constant”,

where the 7);s are known as the local shrinkage parameters and L(b|u,n) denotes a Laplace distri-
bution of the density

1 1
L) = g exp (= 5 b —ul).
The classical regularization framework is based on a penalty function induced from the margin prior

p(bjlo). Let
P(|bl) = —logp(blo),
where p(b|o) = [ L(b0,0n~")p(n)dn. Then the penalized regression problem is

min {F(0) 2 Jlly-Xbl3+ 2> v}

j=1

2
Using some direct calculations, we can obtain that % > 0 and < d1/|)b(|"f D < 0. This implies
that ¢(|b]) is nondecreasing and concave in |b|. In other words, +(|b|) forms a class of nonconvex

penalty functions for b.

Motivated by use of Bayesian nonparametrics in sparsity modeling, we now explore Laplace scale
mixtures by relating 1 with a subordinator. We thus have a Bayesian nonparametric formulation for
the construction of joint priors of the b;’s.

2.1 Subordinators and Laplace Exponents

Before we go into the presentation, we give some notions and lemmas that will be uses later. Let
f € C>(0,00) with f > 0. We say f is completely monotone if (—1)"f() > 0 for all n € N and
a Bernstein function if (—1)" f(") < 0 for all n € N. The following lemma will be useful.

Lemma 1 Let v be the Lévy measure such that [;° min(u, 1)v(du) < oo.



(1) f is a Bernstein function if and only if the mapping s — exp(—tf(s)) is completely mono-
tone for all t > 0.

(2) f is a Bernstein function if and only if it has the representation

f(s)=a+Bs+ /00 [1 — exp(—su)]u(du) forall s > 0, (D
0
where o, 3 > 0.

Our work is based on the notion of subordinators. Roughly speaking, a subordinator is an one-
dimensional Lévy process that is non-decreasing (a.s.) [16]. An important property for subordinators
is given in the following lemma.

Lemma?2 IfT = (T(t) : t > 0) is a subordinator, then the Laplace transformation of its density
takes the form

BeT0) = [T e TONT@)aT(e) = e,
0
where -
Y(s) = PBs Jr/ [1—e*"]v(du) fors>O0. 2)
0
Here B > 0 and v is the Lévy measure defined in Lemma 1.

Conversely, if 1 is an arbitrary mapping from (0,00) — (0, 00) of the form (2), then e ~*¥(%) is the
Laplace transformation of the density of a subordinator.

Lemmas 1 and 2 can be found in [1, 16]. The function v in (2) is usually called the Laplace
exponent of the subordinator and it satisfies 1/(0) = 0. Lemma 1 implies that the Laplace exponent
1 is a Bernstein function and the corresponding Laplace transformation exp(—t1)(s)) is completely
monotone.

Recall that the Laplace exponent () is nonnegative, nondecreasing and concave on (0, o). Thus,
if we let s = |b|, then t(]b|) defines a nonconvex penalty function of b on (—oo, 00). Moreover,
such t(|b|) is nondifferentiable at the origin because ¥’ (0%) > 0 and ¢'(0~) < 0. Thus, it is able
to induce sparsity. In this regard, exp(—t1(|b|)) forms a pseudo-prior for b'. Lemma 2 shows that
the prior can be defined by a Laplace transformation. In summary, we have the following theorem.

Theorem 1 Let ¢)(s) be a nonzero Bernstein function of s on (0,00). If 1(s) = 0, then ¥(|b]) is a
nondifferentiable and nonconvex function of b on (—oo, 00). Furthermore,

exp(-t0() = [ exp(- ITOWTO)T(), > 0
where (T'(t) : t > 0) is some subordinator.

The subordinator 7T°(t) plays the same role as the local shrinkage parameter 7, which is also called a
latent variable. Moreover, we will see that ¢ plays the role of a tuning hyperparameter. Theorem 1
shows an explicit relationship between the local shrinkage parameter and the corresponding tuning
hyperparameter; i.e., the former is a stochastic process of the later. It is also worth noting that

exp(—ty(|b])) = 2/000 L(blo, 2T()) )T () ~'p(T(1))dT ().

Thus, if [ T(t) " 'p(T(t))dT(t) = 1/C < oo, p*(T(t)) & CT(t)~*p(T'(t)) defines a new proper
density for T'(t). In this case, the proper prior C exp(—t1)(|b|)) is a Laplace scale mixture, i.e., the
mixture of L(b|0, (27°(t))~*) with p*(T'(t)). If [~ T(t)'p(T'(t))dT(t) = oo, then p*(T(t)) £
T(t)~'p(T(t)) defines an improper density for 7'(¢). Thus, the improper prior exp(—ti(|b])) is a
mixture of L(b|0, (2T'(t)) 1) with p*(T'(t)).

"If [;° exp(—tv(s))ds is infinite, exp(—tt([b])) is an improper density w.r.t. Lebesgue measure. Other-
wise, it can forms a proper density. In any case, we use the terminology of pseudo-priors for exp(—#1(|b])).



2.2 The MAP Estimation

Based on the subordinator given in the previous subsection, we rewrite the hierarchical representa-
tion for joint prior of the b; under the regression framework. That is,

[bjlng. o] " L(b;10,0(2n,)7Y),
p () o< on; (),
which is equivalent to
by milo] & exp (= Lo, )p(n,).

Here T'(t;) = n;. The joint marginal pseudo-prior of the b;’s is
/4 %) p
p(blo) =TT [~ e (= Zl) Poyan, = [T exo (= 10 (P21)).
j=170 7 =1 7
Thus, the MAP estimate of b is based on the following optimization problem
1 p
min { Zlly = XbJ3+0 Y Lu(bl/0)}.
j=1

Clearly, the ¢;’s are tuning hyperparameters and the 7);’s are latent variables. Moreover, it is inter-
esting that n; (T'(¢;)) is defined as a subordinator w.r.t. ¢;.

3 Gamma and Compound Poisson Subordinators

In [15], the authors discussed the use of a-stable subordinators and inverted-beta subordinators. In
this section we study applications of Gamma and Compound Poisson subordinators in constructing
nonconvex penalty functions. We establish an interesting connection of these two subordinators with
nonconvex logarithmic (LOG) and exponential (EXP) penalties. Particularly, these two penalties are
the Laplace exponents of the two subordinators, respectively.

3.1 The LOG penalty and Gamma Subordinator
The log-penalty function is defined by
1
P([b]) =  log (apl+1), a,v>0. 3)

Clearly, ¥(]b]) is a Bernstein function of |b| on (0, c0). Thus, it is the Laplace exponent of a subor-
dinator. In particular, we have the following theorem.

Theorem 2 Let 1)(s) be defined by (3) with s = |b|. Then,

%log (as-i—l) = /OOO [1 — exp(—su)]v(du),

where the Lévy measure v is

v(du) = % exp(—u/a)du.

Furthermore,
exp(—tih(s)) = (as+1)""7 = /OOO exp(—sT'(t))p(T'(t))dT(t),

where {T'(t) : t > 0} is a Gamma subordination and each T (t) has density

e

p(T(E) =) = st esp(-a” )




As we see, T'(t) follows Gamma distribution Ga(7'(¢)|¢/~, ). Thus, the {T'(¢t) : ¢ > 0} is called
the Gamma subordinator.

We also note that the corresponding pseudo-prior is

exp(—tu([b])) = (alb+1) ™" /OOO L(b]0,T(t)"")T () p(T(t))dT(t).

Furthermore, if ¢ > 7, we can form the pseudo-prior as a proper distribution, which is the mixture
of L(b|0,T(t)~!) with Gamma distribution Ga(T'(t)|y~*t—1, ).

3.2 The EXP Penalty and Compound Poisson Subordinator

We call {K(t),t > 0} a Poisson process of intensity A > 0 if K takes values in N U {0} and each
K (t) ~ Po(K(t)|At), namely,

t k
P(K(t)=k) = %e*”, fork=0,1,2,...

Let {Z(k) : k € N} be a sequence of i.i.d. random real variables from common law 7z and let K be

a Poisson process of intensity \ that is independent of all the Z (k). Then T'(t) = Z(K (1)) +--- +
Z(K(t)) fort > 0 follows a compound Poisson distribution (denoted T'(t) ~ Po(T(t)|At, nz)). We
then call {T'(t) : t > 0} the compound Poisson process. It is well known that Poisson processes are
subordinators. A compound Poisson process is a subordinator if and only if the Z (k) are nonnegative
random variables [16].

In this section we employ the compound Poisson process to explore the EXP penalty, which is

B(B)) = %(1 ~exp(—alp])), ay > 0. 4

It is easily seen that ¢(|b|) is a Bernstein function of |b| on (0, c0). Moreover, we have

Theorem 3 Let 1)(s) be defined by (4) where |b| = s. Then

(s) = / [t~ exp(—su)u(du)

with the Lévy measure v(du) = v~ 10, (u)du. Furthermore,

exp(—ti(s)) = / " exp(—sT(8) P(T(1))dT(1),

where {T(t) : t > 0} is a compound Poisson subordinator, each T(t) ~ Po(T'(t)|t/7, (")), and
0.(+) is the Dirac Delta measure.

Note that [, (1— exp(—a|b|))db = 0o, s0 v~ *(1 — exp(—«|b])) is an improper prior of b.

As we see, there are two parameters « and -y in both LOG and EXP penalties. Usually, for the LOG
penalty ones set v = log(1 + «), because the corresponding (]b|) goes from ||b]|; to ||b]|o, as «
varying from 0 to co. In the same reason, ones set ¥ = 1— exp(—a) for the EXP penalty. Thus, «
(or ) measures the sparseness. It makes sense to set « as & = p (i.e., the dimension of the input
vector) in the following experiments. Interestingly, the following theorem shows a limiting property
of the subordinators.

Theorem 4 Assume that o > 0 and v > 0.
(1) Ify =log(1+a), then lima_so Ga(T(t)|t/7, ) % 6,(T(t)).
@) Ify =1— e, then lima_,o Po(T(£)[t/, 60 () - 6(T(t)).

In this section we have an interesting connection between the LOG and EXP penalties based on
the relationship between the Gamma and compound Poisson subordinators. Subordinators help



us establish a direct connection between the tuning hyperparameters ¢; and the latent variables 7,
(T'(t;)). However, when we implement the MAP estimation, it is challenging how to select these
tuning hyperparameters. Recently, Palmer et al. [14] considered the application of concave conju-
gates in developing variational EM algorithms for non-Gaussian latent variable models. In the next
section we rederive the nonconvex LOG and EXP penalties via concave conjugate. This derivation
is able to deal with the challenge.

4 A View of Concave Conjugate
Our derivation for the LOG and EXP penalties is based on the Kullback-Leibler (KL) distance.

Given two nonnegative vectors a = (ag,...,a,)’ ands = (s1,...,s,)T, the KL distance between
them is

Z a;log —faj +55,

where 0log 3 = 0. It is well known that KL(a, s) > 0 and KL(a,s) = 0 if and only if a = s, but
typically KL(a s) # KL(s, a).

Theorem 5 Let a = (ay,...,a,)" be a nonnegative vector and |b| = (|by], ..., |by|)*. Then,

i 1
Z ) Z Y Jog (alb;|+1) = min {wT|b| + ~KL(a, w)}

Jj=1
when w; = aj/( 1), and
Y a
Zw 1b;1) ézl 1~ exp(—oafty])] = min {w"b| + “KL(w,a)}
3=

when w; = a; exp(—alb;]).

When setting a; = £¢;, we readily see the LOG and EXP penalties. Thus, Theorem 5 illustrates

a very interesting connection between the LOG and EXP penalties. Since KL(a, w) is strictly

convex in either w or a, the LOG and EXP penalties are respectively the concave conjugates of
—a 'KL(a,w) and —a " 'KL(w,a).

The construction method for the nonconvex penalties provides us with a new approach for solv-
ing the corresponding penalized regression model. In particular, to solve the nonconvex penalized
regression problem:

s Y
min {/(b,2) £ 3lly = XbJ3 + 3 a0} } )

we equivalently formulate it as

. .1 9 T 1
min { min {5 ly — Xb[3 + w” bl + —D(w.a)} } ©)

Here D(w,a) is either KL(a, w) or KL(w, a). Moreover, we are also interested in adaptive esti-
mation of a in solving the problem (6). Accordingly, we develop a new training algorithm, which
consists of two steps.

We are given initial values w(®), e.g., w(©) = (1,...,1)7. After the kth estimates (b(*), a(¥)) of
(b, a) are obtained, the (k+1)th iteration of the algorithm is defined as follows.

The first step calculates w(*) via
P
w) = argmin { Zwﬂb;k)\ + lD(w,a(k))}.
w>0 = «

Particular, w§k) = a( )/(1 + a\b( |) in LOG, while w§k) = a;«k) eXp(—a|b§.k)|) in EXP.



The second step then calculates (b(*+1) a(k+1)) yia

1 1
(b*+, a+) = axgmin { [ly ~ XbJj3 + bl"w® + - D(w®,a)}.
b, a

Note that given w(*), b and a are independent. Thus, this step can be partitioned into two parts.
Namely, at*+1) = w(¥) and

1 P
(k+1) _ n 4 Zllv — 2 (OIS
b = argénln {2“}’ Xb|5 + g w; |b]|}.

j=1

Recall that the LOG and EXP penalties are differentiable and strictly concave in || on [0, o). Thus,
the above algorithm enjoys the same convergence property of the LLA was studied by Zou and Li
[23] (see Theorem 1 and Proposition 1 therein).

S Experimental Analysis

We conduct experimental analysis of our algorithms with LOG and EXP given in the previous sec-
tion. We also implement the Lasso, adaptive Lasso (adLasso) and MCP-based methods. All these
methods are solved by the coordinate descent algorithm. For LOD and EXP algorithms, we fix
« = p (the dimension of the input vector), and set w(®) = w1 where w is selected by using cross-
validation and 1 is the vector of ones. For Lasso, AdLasso and MCP, we use cross-validation to
select the tunning parameters (A in Lasso, A and v in AdLasso and MCP).

In this simulation example, we use a data model as follow
y=x'b+ o€

where € ~ N(0, 1), and b is a 200-dimension vector with only 10 non-zeros such that b; = bygo4+; =
0.2¢, ¢+ = 1,...,5. Each data point x is sampled from a multivariate normal distribution with zero
mean and covariance matrix X = {0.7 |i_j|}1§i’j§200. We choose o such that the Signal-to-Noise
Ratio (SNR), which is defined as

vbTYb

SNR = ~— =,
ag

is a specified value. Our experiment is performed on n = 100 and two different SNR values. We

generate N = 1000 test data for each test. Let b denote the solution given by each algorithm. The
Standardized Prediction Error (SPE) is defined as

Siv i (yi — xI'b)?

SPE =
No?2

and the Feature Selection Error (FSE) is proportion of coefficients in b which is correctly set to zero
or non-zero based on true b.

Figure 1 reports the average results over 20 repeats. From the figure, we see that both the LOG and
EXP outperform the other methods in prediction accuracy and sparseness in most cases. Our meth-
ods usually takes about 10 iterations to get convergence. Thus, our methods are computationally
more efficient than the AdLasso and MCP.

In the second experiment, we apply our methods to regression problems on four datasets from UCI
Machine Learning Repository and the cookie (Near-Infrared (NIR) Spectroscopy of Biscuit Doughs)
dataset [7]. For the four UCI datasets, we randomly select 70% of the data for training and the rest
for test, and repeat this process for 20 times. We report the mean and standard deviation of the Root
Mean Square Error (RMSE) and the model sparsity (proportion of zero coefficients in the model)
in Tables 1 and 2. For the NIR dataset, we follow the steup for the original dataset: 40 instances
for training and 32 instances for test. We form four different datasets for the four responses (“fat”,
“sucrose”, “dry flour” and “water”) in the experiment, and report the RMSE on the test set and
the model sparsity in Table 3. We can see that all the methods are competitive in both prediction
accuracy. But the nonconvex LOG, EXP and MCP have strong ability in feature selection.



05880

i i
[ © @ (e

SPE

L0

@ ®

@ (@

“FSE”

SNR =3.0

Figure 1: Box-and-whisker plots of SPE and FSE results. Here (a), (b), (c), (d), (e) are for LOG,

EXP, Lasso, AdLasso, and MCP, respectively
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Table 1: Root Mean Square Error on Real datasets

Abalone Housing Pyrim Triazines
LOG 2.207(£0.077)  4.880(+0.405) 0.138(£0.032) 0.156(£0.018)
EXP 2.208(£0.077) 4.883(£0.405) 0.130(£0.033)  0.153(%0.020)
Lasso 2.208(£0.078) 4.886(£0.414) 0.118(£+0.035) 0.146(+0.017)
AdLasso  2.208(+0.078) 4.887(£0.413) 0.127(£0.028) 0.146(£0.017)
MCP 2.209(£0.078) 4.889(£0.412) 0.122(4+0.036) 0.148(+0.017)
Table 2: Sparsity on Real datasets
Abalone Housing Pyrim Triazines

LOG 12.50(+0.00) 11.54(£5.70) 57.22(£35.32) 68.17(£31.19)

EXP 10.63(£4.46) 8.08(£5.15)  88.15(£5.69)  76.25(£21.84)

Lasso 1.88(£4.46)  3.08(£5.10)  36.48(£24.52) 62.08(+14.65)

AdLasso  8.75(£5.73)  8.07(£7.08)  34.62(£28.81) 63.58(£15.18)

MCP 12.50(+0.00) 11.54(£6.66) 41.48(%23.88) 73.00(£18.77)

Table 3: Root Mean Square Error and Sparsity on Real datasets NIR

NIR(fat) NIR(sucrose) NIR(dry flour) NIR(water)
RMSE Sparsity RMSE Sparsity RMSE Sparsity RMSE Sparsity
LOG 0.334  99.14 1.45 98.71 0992 99.71 0.400  98.14
EXP 0.307 97.29 1.47 97.71 0.908  98.86 0484 94.14
Lasso 0.437  68.86 2.54 53.43 0.785  92.29 0.378  65.57
AdLasso 0.835  88.14 222 86.14 0.862 99.14 0.407  85.86
MCP 0943 94.14 2.07 95.43 0.839 99.71 0.504  96.29

6 Conclusion

In this paper we have introduced subordinators of Lévy processes into the definition of nonconvex
penalties. This leads us to a Bayesian nonparametric approach for constructing sparsity-inducing
penalties. In particular, we have illustrated the construction of the LOG and EXP penalties. Along
this line, it would be interesting to investigate other penalty functions via subordinators and compare
the performance of these penalties. We will conduct a comprehensive study in the future work.
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