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We propose a new robust optimization method for problems with objective functions that may be computed
via numerical simulations and incorporate constraints that need to be feasible under perturbations. The

proposed method iteratively moves along descent directions for the robust problem with nonconvex constraints
and terminates at a robust local minimum. We generalize the algorithm further to model parameter uncertainties.
We demonstrate the practicability of the method in a test application on a nonconvex problem with a polynomial
cost function as well as in a real-world application to the optimization problem of intensity-modulated radiation
therapy for cancer treatment. The method significantly improves the robustness for both designs.
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1. Introduction
In recent years, there has been considerable literature
on robust optimization, which has primarily focused
on convex optimization problems whose objective
functions and constraints were given explicitly and
had specific structure (linear, convex quadratic, conic-
quadratic, and semidefinite) (Ben-Tal and Nemirovski
1998, 2003; Bertsimas and Sim 2003, 2006). In an earlier
paper, we proposed a local search method for solving
unconstrained robust optimization problems, whose
objective functions are given via numerical simulation
and may be nonconvex; see Bertsimas et al. (2009).
In this paper, we extend our approach to solve

constrained robust optimization problems, assuming
that cost and constraints as well as their gradients
are provided. We also consider how the efficiency of
the algorithm can be improved if some constraints
are convex. We first consider problems with only
implementation errors and then extend our approach
to admit cases with implementation and parameter
uncertainties.
The rest of the paper is structured as follows: In §2 a

brief review on unconstrained robust nonconvex opti-
mization along with the necessary definitions are pro-
vided. In §3, the robust local search, as we proposed
in Bertsimas et al. (2009), is generalized to handle
constrained optimization problems with implementa-
tion errors. We also explore how the efficiency of the
algorithm can be improved if some of the constraints
are convex. In §4, we further generalize the algo-
rithm to admit problems with implementation and
parameter uncertainties. In §5, we discuss an applica-
tion involving a polynomial cost function to develop

intuition. We show that the robust local search can
be more efficient when the simplicity of constraints
are exploited. In §6 we report on an application in
an actual health-care problem in intensity-modulated
radiation therapy for cancer treatment. This problem
has 85 decision variables and is highly nonconvex.

2. Review on Robust Nonconvex
Optimization

In this section, we review the robust nonconvex opti-
mization for problems with implementation errors,
as we introduced in Bertsimas et al. (2009, 2007). We
discuss the notion of the descent direction for the
robust problem, which is a vector that points away
from all the worst implementation errors. Conse-
quently, a robust local minimum is a solution at which
no such direction can be found.

2.1. Problem Definition
The nominal cost function, possibly nonconvex, is de-
noted by f �x�, where x ∈�n is the design vector. The
nominal optimization problem is

min
x

f �x�� (1)

In general, there are two common forms of pertur-
bations: (1) implementation errors, which are caused in
an imperfect realization of the desired decision vari-
ables x; and (2) parameter uncertainties, which are due
to modeling errors during the problem definition, such
as noise. Note that our discussion on parameter errors
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in §4 also extends to other sources of errors, such as
deviations between a computer simulation and the
underlying model (e.g., numerical noise) or the dif-
ference between the computer model and the meta-
model, as discussed by Stinstra and den Hertog
(2007). For ease of exposition, we first introduce
a robust optimization method for implementation
errors only, as they may occur during the fabrication
process.
When implementing x, additive implementation er-

rors �x ∈ �n may be introduced due to an imperfect
realization process, resulting in a design x+�x. Here,
�x is assumed to reside within an uncertainty set

� �= {�x ∈�n
∣∣��x�2 ≤ �

}
� (2)

Note that � > 0 is a scalar describing the size of per-
turbation against which the design needs to be pro-
tected. Although our approach applies to other norms
��x�p ≤ � in (2) (p being a positive integer, including
p = �), we present the case of p = 2. We seek a robust
design x by minimizing the worst-case cost

g�x� �=max
�x∈�

f �x+ �x�� (3)

The worst-case cost g�x� is the maximum possible cost
of implementing x due to an error �x ∈ �. Thus, the
robust optimization problem is given through

min
x

g�x� ≡min
x

max
�x∈�

f �x+ �x�� (4)

In other words, the robust optimization method seeks
to minimize the worst-case cost. When implementing
a certain design x = �x, the possible realization due to
implementation errors �x ∈� lies in the set

� �= {x ∣∣�x− �x�2 ≤ �
}
� (5)

We call � the neighborhood of �x; such a neighborhood
is illustrated in Figure 1(a). A design x is a neighbor
of �x if it is in � . Therefore, g��x� is the maximum cost
attained within � . Let �x∗ be one of the worst imple-
mentation errors at �x; �x∗ = argmax�x∈� f ��x + �x�.
Then, g��x� is given by f ��x + �x∗�. Because we seek
to navigate away from all the worst implementa-
tion errors, we define the set of worst implementation
errors at �x as

�∗��x� �=
{
�x∗ ∣∣�x∗ = argmax

�x∈�
f ��x+ �x�

}
� (6)

2.2. Robust Local Search Algorithm
Given the set of worst implementation errors, �∗��x�,
a descent direction can be found efficiently by solving
the following second-order cone program (SOCP):

min
d�	

	

s�t� �d�2 ≤ 1�

d′�x∗ ≤ 	 ∀�x∗ ∈�∗��x��

	 ≤ −
�

(7)

Δx1
*

Δx1

Δx3

Δx2

x1
*

Δx2
*

Δx2
*

Δx2
* Δx3

*

Δx4
*

Δx1

x̂

d

(a) (b)

(c)

x

θmax θmax

d*

x̂

d̃

Γ

Figure 1 A Two-Dimensional Illustration of the Neighborhood; For
a Design �x, All Possible Implementation Errors �x ∈�
Are Contained in the Shaded Circle

Notes. (a) The bold arrow d shows a possible descent direction and thin
arrows �x∗

i represent worst errors. (b) The solid arrow indicates the optimal
direction d∗ that makes the largest possible angle �max = cos−1 �∗ ≥ 90 with
all �x∗. (c) Without knowing all �x∗, the direction d̃ points away from all
�xj ∈�= ��x1� �x2� �x3�, when all x∗

i lie within the cone spanned by �xj .

where 
 is a small positive scalar. A feasible solu-
tion to problem (7), d∗, forms the maximum possi-
ble angle �max with all �x∗. An example is illustrated
in Figure 1(b). This angle is always greater than 90

because of the constraint that 	 ≤ −
 < 0. When 
 is
sufficiently small, and problem (7) is infeasible, �x is a
good estimate of a robust local minimum. Note that
the constraint �d∗�2 = 1 is automatically satisfied if
the problem is feasible. Such a SOCP can be solved
efficiently using both commercial and noncommercial
solvers.
Consequently, if we have an oracle returning �∗�x�,

we can iteratively find descent directions and use
them to update the current iterates. In most real-world
instances, however, we cannot expect to find �x∗.
Therefore, an alternative approach is required. We
argue in Bertsimas et al. (2009) that descent directions
can be found without knowing the worst implemen-
tation errors �x∗ exactly. As illustrated in Figure 1(c),
finding a set � such that all the worst errors �x∗ are
confined to the sector demarcated by �xi ∈ � would
suffice. The set � does not have to be unique. If this
set satisfies condition

�x∗ = ∑
i ��xi∈�

�i�xi� (8)

the cone of descent directions pointing away from
�xi ∈ � is a subset of the cone of directions pointing
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away from �x∗. Because �x∗ usually reside among
designs with nominal costs higher than the rest of the
neighborhood, the following algorithm summarizes a
heuristic strategy for the robust local search.

Algorithm 1.

Step 0. Initialization: Let x1 be an arbitrarily chosen
initial decision vector. Set k �= 1.
Step 1. Neighborhood Exploration: Find �k, a set con-

taining implementation errors �xi indicating where
the highest cost is likely to occur within the neigh-
borhood of xk. For this we conduct multiple gradient
ascent sequences. The results of all function evalua-
tions �x� f �x�� are recorded in a history set � k, com-
bined with all past histories. The set �k includes
elements of � k, which are within the neighborhood
and have highest costs.
Step 2. Robust Local Move:
(i) Solve a SOCP (similar to Problem (7), but with

the set �∗�xk� replaced by set �k); terminate if the
problem is infeasible.

(ii) Set xk+1 �= xk + tkd∗, where d∗ is the optimal
solution to the SOCP.

(iii) Set k �= k + 1. Go to Step 1.

Bertsimas et al. (2009) provide a detailed discus-
sion on the actual implementation. Next, we general-
ize this robust local search algorithm to problems with
constraints.

3. Constrained Problem Under
Implementation Errors

3.1. Problem Definition
Consider the nominal optimization problem

min
x

f �x�

s�t� hj �x� ≤ 0 ∀ j�
(9)

where the objective function and the constraints may
be nonconvex. To find a design that is robust against
implementation errors �x, we formulate the robust
problem

min
x

max
�x∈�

f �x+ �x�

s�t� max
�x∈�

hj�x+ �x� ≤ 0 ∀ j�
(10)

where the uncertainty set � is given by

� �= {�x ∈�n
∣∣��x�2 ≤ �

}
� (11)

A design is robust if, and only if, no constraints are
violated for any errors in �. Of all the robust designs,
we seek one with the lowest worst-case cost g�x�.
When a design �x is implemented with errors in �, the
realized design falls within the neighborhood

� �= {x ∣∣�x− �x�2 ≤ �
}
� (12)

d

Δx
Δx

x
x

x = x + Δx

h2(x) > 0

h1(x) > 0

θmax θmax

Γ
ˆ

ˆ

Figure 2 A Two-Dimensional Illustration of the Neighborhood � in the
Design Space x

Notes. The shaded regions contain designs violating the constraints
hj �x	 > 0. Note that h1 is a convex constraint but not h2.

Figure 2 illustrates the neighborhood � of a design �x
along with the constraints. �x is robust if, and only if,
none of its neighbors violates any constraints. Equiv-
alently, there is no overlap between the neighborhood
of �x and the shaded regions hj�x� > 0 in Figure 2.

3.2. Robust Local Search for Problems
with Constraints

When constraints do not come into play in the vicin-
ity of the neighborhood of �x, the worst-case cost can
be reduced iteratively, using the robust local search
algorithm for the unconstrained problem as discussed
in §2. The additional procedures for the robust local
search algorithm that are required when constraints
are present are as follows:
(1) Neighborhood search. To determine if there are

neighbors violating constraint hj , the constraint max-
imization problem

max
�x∈�

hj��x+ �x� (13)

is solved using multiple gradient ascents from differ-
ent starting designs. Gradient ascents are used because
problem (13) is not a convex optimization problem,
in general. We shall consider in §3.3 the case where
hj is an explicitly given convex function, and conse-
quently, problem (13) can be solved using more effi-
cient techniques. If a neighbor has a constraint value
exceeding zero, for any constraint, it is recorded in a
history set �.
(2) Check feasibility under perturbations. If �x has

neighbors in the history set �, then it is not feasible
under perturbations. Otherwise, the algorithm treats
�x as feasible under perturbations.
(3a) Robust local move if �x is not feasible under pertur-

bations. Because constraint violations are more impor-
tant than cost considerations, and because we want the
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algorithm to operate within the feasible region of the
robust problem, nominal cost is ignored when neigh-
bors violating constraints are encountered. To ensure
that the new neighborhood does not contain neighbors
in �, an update step along a direction d∗

feas is taken.
This is illustrated in Figure 3(a). Here, d∗

feas makes the
largest possible angle with all the vectors yi − �x. Such
a d∗

feas can be found by solving the SOCP:

min
d�	

	

s�t� �d�2 ≤ 1�

d′
(

yi − �x
�yi − �x�2

)
≤ 	 ∀yi ∈��

	 ≤ −
�

(14)

d*
feas

(a)

(b)

x̂

y2

y1

y3 y4
y5

xy

y

x x

x

d*

Figure 3 A Two-Dimensional Illustration of the Robust Local Move
Notes. (a) When �x is nonrobust, the upper shaded regions contain
constraint-violating designs, including infeasible neighbors yi . Vector d∗

feas
points away from all yi . (b) When �x is robust, xi denotes a bad neighbor
with high nominal cost, while yi denotes an infeasible neighbor lying just
outside the neighborhood. The circle with the broken circumference denotes
the updated neighborhood.

As shown in Figure 3(a), a sufficiently large step along
d∗
feas yields a robust design.
(3b) Robust local move if �x is feasible under pertur-

bations. When �x is feasible under perturbations, the
update step is similar to that for an unconstrained
problem, as in §2. However, ignoring designs that vio-
late constraints and lie just beyond the neighborhood
might lead to a nonrobust design. This issue is taken
into account when determining an update direc-
tion d∗

cost, as illustrated in Figure 3(b). This update
direction d∗

cost can be found by solving the SOCP:

min
d�	

	

s�t� �d�2 ≤ 1�

d′
(

xi − �x
�xi − �x�2

)
≤ 	 ∀xi ∈��

d′
(

yi − �x
�yi − �x�2

)
≤ 	 ∀yi ∈�+�

	 ≤ −
�

(15)

where � contains neighbors with the highest cost
within the neighborhood, and �+ is the set of known
infeasible designs lying in the slightly enlarged neigh-
borhood �+,

�+ �= {x ∣∣�x− �x�2 ≤ �1+ ��
}
� (16)

 being a small positive scalar for designs that lie just
beyond the neighborhood, as illustrated in Figure 3(b).
Since �x is robust, there are no infeasible designs in the
neighborhood � . Therefore, all infeasible designs in
�+ lie at a distance between � and �1+ �� .
Termination Criteria. We shall first define the ro-

bust local minimum for a problem with constraints.
Definition 1. x∗ is a robust local minimum for the

problem with constraints if the following conditions
apply:
(i) Feasible under perturbations: x∗ remains feasible

under perturbations,

hj�x
∗ + �x� ≤ 0 ∀ j� ∀�x ∈�� and (17)

(ii) No descent direction: There are no improving
directions d∗

cost at x
∗.

Given the above definition, we can only terminate
at Step (3b), where x∗ is feasible under perturbations.
Furthermore, for there to be no direction d∗

cost at x∗,
it must be surrounded by neighbors with high cost
and infeasible designs in �+.

3.3. Enhancements When Constraints Are Convex
In this section, we review the case when hi is explicitly
given as a convex function. If problem (13) is convex,
it can be solved with techniques that are more effi-
cient than multiple gradient ascents. Table 1 summa-
rizes the required procedures for solving problem (13).
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Table 1 Algorithms to Solve Problem (13)

hi �x	 Problem (13) Required computation

a′x+ b a′�x+ 
�a�2 + b ≤ 0 Solve LP
x′Qx+ 2b′x+ c, Single-trust region One SDP in the worst

Q symmetric problem case
−hi is convex Convex problem One gradient ascent

For symmetric constraints, the resulting single-trust
region problem can be expressed as max�x∈� �x′Q�x+
2�Qx̂+b�′�x+ x̂Q′x̂+ 2b′x̂+ c. The possible improve-
ments to the robust local search are as follows:
(1) Neighborhood search. Solve problem (13) with the

corresponding method of Table 1 instead of multi-
ple gradient ascents to improve the computational
efficiency.
(2) Check feasibility under perturbations. If hrob

j ��x� ≡
max�x∈� hj��x + �x� > 0, �x not feasible under pertur-
bations.
(3) Robust local move. To warrant that all designs

in the new neighborhood are feasible, the direction
should be chosen such that it points away from the
infeasible regions. The corresponding vectors describ-
ing the closest points in hrob

j ��x� are given by �xh
rob
j ��x�

as illustrated in Figure 4. Therefore, d has to satisfy

d′
feas�xh

rob
j ��x� < 	��xh

rob
j ��x��2

and
d′
cost�xh

rob
j ��x� < 	��xh

rob
j ��x��2

in SOCP (14) and SOCP (15), respectively. Note that
�xh

rob
j ��x� = �xh��x+�x∗

j �, which can be evaluated easily.

x̂

y1

y2

∇xhrob(x)

(A)

(B)

(C)

d*
feas

ˆ

Figure 4 A Two-Dimensional Illustration of the Neighborhood When
One of the Violated Constraints Is a Linear Function

Notes. (A) denotes the infeasible region. Because �x has neighbors in
region (A), �x lies in the infeasible region of its robust counterpart (B).
yi denotes neighbors that violate a nonconvex constraint, shown in
region (C). d∗

feas denotes a direction that would reduce the infeasible region
within the neighborhood and points away from the gradient of the robust
counterpart and all bad neighbors yi . The dashed circle represents the
updated neighborhood.

In particular, if hj is a linear constraint, then hrob
j �x�

= a′x + ��a�2 + b ≤ 0 is the same for all x. Conse-
quently, we can replace the constraint

max
�x∈�

hj�x+ �x� =max
�x∈�

a′�x+ �x� ≤ 0

with its robust counterpart hrob
j �x�. Here, hrob

j �x� is a
constraint on x without any uncertainties, as illus-
trated in Figure 4.

3.4. Constrained Robust Local Search Algorithm
In this section, we use the methods outlined in §§3.2
and 3.3 to formalize the overall algorithm:

Algorithm2 [ConstrainedRobustLocal Search].

Step 0. Initialization: Set k �= 1. Let x1 be an arbitrary
decision vector.
Step 1. Neighborhood Search:
(i) Find neighbors with high cost through n + 1

gradient ascent sequences, where n is the dimension
of x. Record all evaluated neighbors and their costs in
a history set � k, together with � k−1.

(ii) Let � be the set of constraints to the convex
constraint maximization problem (13) that are convex.
Find optimizer �x∗

j and the highest constraint value
hrob

j �xk� for all j ∈ � , according to the methods listed
in Table 1. Let �� ⊆ � be the set of constraints that are
violated under perturbations.

(iii) For every constraint j � � , find infeasible
neighbors by applying n+1 gradient ascent sequences
on problem (13), with �x = xk. Record all infeasible
neighbors in a history set �k, together with set �k−1.

Step 2. Check Feasibility Under Perturbations: xk is not
feasible under perturbations if either �k or �� is not
empty.
Step 3. Robust Local Move:
(i) If xk is not feasible under perturbations, solve

SOCP (14) with additional constraints d′
feas�xh

rob
j �xk� <

	��xh
rob
j �xk��2 for all j ∈ �� . Find direction d∗

feas and set
xk+1 �= xk+1 + tkd∗

feas.
(ii) If xk is feasible under perturbations, solve

SOCP (15) to find a direction d∗
cost. Set x

k+1 �= xk+1 +
tkd∗

feas. If no direction d∗
cost exists, reduce the size of �;

if the size is below a threshold, terminate.

In Steps 3(i) and 3(ii), tk is the minimum distance
chosen such that the undesirable designs are excluded
from the neighborhood of the new iterate xk+1. Find-
ing tk requires solving a simple geometric problem.
For more details, refer to Bertsimas et al. (2009).

4. Generalization to Include
Parameter Uncertainties

4.1. Problem Definition
Consider the nominal problem

min
x

f �x� �p�

s�t� hj �x� �p� ≤ 0 ∀ j�
(18)
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where �p ∈ �m is a coefficient vector of the prob-
lem parameters. For our purpose, we can restrict �p
to parameters with perturbations only. For example,
if problem (18) is given by

min
x

4x3
1 + x2

2 + 2x2
1x2

s�t� 3x2
1 + 5x2

2 ≤ 20�

then we can extract

x=
(

x1
x2

)
and �p=

⎛
⎜⎜⎜⎜⎜⎜⎝

4
1
2
3
5
20

⎞
⎟⎟⎟⎟⎟⎟⎠

�

Note that uncertainties can even be present in the
exponent, e.g., 3 in the monomial 4x3

1.
In addition to implementation errors, there can be

perturbations �p in parameters �p as well. The true,
but unknown, parameter p can then be expressed as
�p + �p. To protect the design against both types of
perturbations, we formulate the robust problem

min
x

max
�z∈�

f �x+ �x� �p+ �p�

s�t� max
�z∈�

hj�x+ �x� �p+ �p� ≤ 0 ∀ j�
(19)

where �z = (�x
�p

)
. Here, �z lies within the uncertainty

set

� = {
�z ∈�n+m

∣∣��z�2 ≤ �
}
� (20)

where � > 0 is a scalar describing the size of pertur-
bations we want to protect the design against. Similar
to problem (10), a design is robust only if no con-
straints are violated under the perturbations. Among
these robust designs, we seek to minimize the worst-
case cost

g�x� �=max
�z∈�

f �x+ �x� �p+ �p�� (21)

4.2. Generalized Constrained Robust
Local Search Algorithm

Problem (19) is equivalent to the following problem
with implementation errors only:

min
z

max
�z∈�

f �z+ �z�

s�t� max
�z∈�

hj�z+ �z� ≤ 0 ∀ j�

p= �p�

(22)

where z = (x
p

)
. The idea behind generalizing the

constrained robust local search algorithm is analo-
gous to the approach described in §2 for the uncon-
strained problem, discussed in Bertsimas et al. (2009).

Consequently, the necessary modifications to Algo-
rithm 2 are as follows:
(1) Neighborhood search. Given �x, ẑ = (�x

�p
)

is the
decision vector. Therefore, the neighborhood can be
described as

� �={z∣∣�z− ẑ�2≤�
}=
{(

x

p

)∣∣∣∣∣
∥∥∥∥∥
(
x−�x
p−�p

)∥∥∥∥∥
2

≤�

}
� (23)

(2) Robust local move. Let d∗ = (d∗
x

d∗
p

)
be an update

direction in the z space. Because p is not a decision
vector but a given system parameter, the algorithm has
to ensure that p= �p is satisfied at every iterate. Thus,
d∗

p = 0.
When finding the update direction, the condi-

tion dp = 0 must be included in either SOCP (14)
or SOCP (15) along with the feasibility constraints
d′�xh

rob
j ��x� < 	��xh

rob
j ��x��2. As discussed earlier,

we seek a direction d that points away from the worst-
case and infeasible neighbors. We achieve this objec-
tive by maximizing the angle between d and all
worst-case neighbors as well as the angle between d
and the gradient of all constraints. For example, if a
design z is not feasible under perturbations, the SOCP
is given by

min
d=�dx�dp��	

	

s�t� �d�2 ≤ 1�

d′�zi − ẑ� ≤ 	�zi − ẑ�2 ∀yi ∈��

d′�zh
rob
j �ẑ� < 	��zh

rob
j �ẑ��2 ∀ j ∈ ���

dp = 0�

	 ≤ −
�

Here, �k is the set of infeasible designs in the neigh-
borhood. Since the p-component of d is zero, this
problem reduces to

min
dx�	

	

s�t� �dx�2 ≤ 1�

d′
x�xi − �x� ≤ 	�zi − ẑ�2 ∀yi ∈��

d′
x�xh

rob
j �ẑ� < 	��zh

rob
j �ẑ��2 ∀ j ∈ ���

	 ≤ −
�

(24)

A similar approach is carried out for the case where
z is robust. Consequently, both d∗

feas and d∗
cost satisfy

p= �p at every iteration. This is illustrated in Figure 5.
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ẑ

y
y

yy

y

d*

d*

p = p

ẑ

y2

y1

z1 z2

z3

p

x

(a) z is not robustˆ

(b) z is robustˆ

p = p

Figure 5 A Two-Dimensional Illustration of the Robust Local Move for
Problems with Both Implementation Errors and Parameter
Uncertainties

Notes. The neighborhood spans the z = �x�p	 space: (a) the constrained
counterpart of Figure 3(a), and (b) the constrained counterpart of Fig-
ure 3(b). Note that the direction found must lie within the hyperplanes
p= �p.

Now we have arrived at the constrained robust
local search algorithm for problem (19) with both
implementation errors and parameter uncertainties:

Algorithm 3 [Generalized Constrained Robust

Local Search].

Step 0. Initialization: Set k �= 1. Let x1 be an arbitrary
initial decision vector.
Step 1. Neighborhood Search: Same as Step 1 in Algo-

rithm 2, but over the neighborhood (23).
Step 2. Check Feasibility Under Perturbations: zk, and

equivalently xk, is feasible under perturbations, if �k

and �� k are empty.

Step 3. Robust Local Move:
(i) If zk is not feasible under perturbations, find

a direction d∗
feas by solving SOCP (24) with ẑ= zk. Set

zk+1 �= zk+1 + tkd∗
feas.

(ii) If x is feasible under perturbations, solve the
SOCP:

min
dx�	

	

s�t� �dx�2 ≤ 1�

d′
x�xi − xk� ≤ 	

∥∥∥∥∥
(
xi − xk

pi − �p

)∥∥∥∥∥
2

∀zi ∈�k� zi =
(
xi

pi

)
�

d′
x

(
xi − xk

)≤ 	

∥∥∥∥∥
(
xi − xk

pi − �p

)∥∥∥∥∥
2

∀yi ∈�k
+� yi =

(
xi

pi

)
�

d′
x�xh

rob
j �zk� < 	��zh

rob
j �zk��2 ∀ j ∈ ��+�

	 ≤ −
�

(25)

to find a direction d∗
cost. �k

+ is the set of infeasible
designs in the enlarged neighborhood � k

+ as in Equa-
tion (16). ��+ is the set of constraints that are not vio-
lated in the neighborhood of �x but are violated in the
slightly enlarged neighborhood �+. Set zk+1 �= zk+1 +
tkd∗

feas. If no direction d∗
cost exists, reduce the size of �;

if the size is below a threshold, terminate.

We have finished introducing the robust local
search method with constraints. In the following sec-
tions, we will present two applications that showcase
the performance of this method.

5. Application I: Problem with
Polynomial Cost Function and
Constraints

5.1. Problem Description
The first problem is sufficiently simple so as to devel-
op intuition into the algorithm. Consider the nominal
problem

min
x�y

fpoly�x�y�

s�t� h1�x�y� ≤ 0�

h2�x�y� ≤ 0�

(26)

where

fpoly�x�y� = 2x6 − 12�2x5 + 21�2x4 + 6�2x − 6�4x3 − 4�7x2

+y6−11y5+43�3y4−10y−74�8y3+56�9y2

−4�1xy − 0�1y2x2 + 0�4y2x + 0�4x2y�
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h1�x�y� = �x − 1�5�4 + �y − 1�5�4 − 10�125�

h2�x�y� = −�2�5− x�3 − �y + 1�5�3 + 15�75�

Given implementation errors � = (
�x
�y

)
such that

���2 ≤ 0�5, the robust problem is

min
x�y

max
���2≤0�5

fpoly�x + �x�y + �y�

s�t� max
���2≤0�5

h1�x + �x�y + �y� ≤ 0�

max
���2≤0�5

h2�x + �x�y + �y� ≤ 0�

(27)

To the best of our knowledge, there are no practical
ways to solve such a robust problem, given today’s
technology (see Lasserre 2006). If the relaxation
method for polynomial optimization problems is used,
as in Henrion and Lasserre (2003), problem (27) leads
to a large polynomial semidefinite program (SDP)
problem, which cannot yet be solved in practice
(see Kojima 2003, Lasserre 2006). In Figure 6, contour
plots of the nominal and the estimated worst-case cost
surface along with their local and global extrema are
shown to generate intuition for the performance of the
robust optimization method. The computation takes
less than 10 minutes on an Intel Xeon 3.4 GHz to ter-
minate, thus it is fast enough for a prototype problem.
Three different initial designs with their respective
neighborhoods are sketched as well.

5.2. Computation Results
For the constrained problem (26), the nonconvex cost
surface and the feasible region are shown in Fig-
ure 6(a). Note that the feasible region is not convex
because h2 is not a convex constraint. Let gpoly�x�y�
be the worst-case cost function given as

gpoly�x�y� �= max
���2≤0�5

fpoly�x + �x�y + �y��

Figure 6(b) shows the worst-case cost estimated by
using sampling on the cost surface fpoly. In the robust
problem (27), we seek to find a design that minimizes
gpoly�x�y� such that its neighborhood lies within the
unshaded region. An example of such a design is the
point C in Figure 6(b).
Two separate robust local searches were carried out

from initial designs A and B. The initial design A
exemplifies initial configurations whose neighborhood
contains infeasible designs and is close to a local
minimum. The design B represents only configura-
tions whose neighborhood contains infeasible designs.
Figure 7 shows that in both instances, the algo-
rithm terminated at designs that are feasible under
perturbations and have significantly lower worst-
case costs. However, it converged to different robust
local minima in the two instances, as shown in Fig-
ure 7(c). The presence of multiple robust local min-
ima is not surprising because gpoly�x�y� is nonconvex.
Figure 7(c) also shows that both robust local minima I

(a) Nominal cost

x

y

0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

(b) Estimated worst-case cost

x

y

B

A

C

0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

Figure 6 Contour Plot of (a) The Nominal Cost Function and (b) The
Estimated Worst-Case Cost Function in Application I

Notes. The shaded regions denote designs that violate at least one of the
two constraints, h1 and h2. Although points A and B are feasible, they are not
feasible under perturbations because of their infeasible neighbors. Point C,
on the other hand, remains feasible under perturbations.

and II satisfy the terminating conditions as stated
in §3.2:
(1) Feasible under perturbations. Both their neighbor-

hoods do not overlap with the shaded regions.
(2) No direction d∗

cost found. Both designs are sur-
rounded by bad neighbors and infeasible designs
lying just outside their respective neighborhoods.
Note that for robust local minimum II, the bad neigh-
bors lie on the same contour line even though they
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Figure 7 Performance of the Robust Local Search Algorithm in Application I from Two Different Starting Points, A and B
Notes. The circle marker indicates the starting and the diamond marker the final design. (a) Starting from point A, the algorithm reduces the worst-case cost
and the nominal cost. (b) Starting from point B, the algorithm converges to a different robust solution, which has a significantly larger worst-case cost and
nominal cost. (c) The broken circles sketch the neighborhood of minima. For each minimum, (i) there is no overlap between its neighborhood and the shaded
infeasible regions, and (ii) there is no improving direction because it is surrounded by neighbors of high cost (bold circle) and infeasible designs (bold diamond)
residing just beyond the neighborhood. Two bad neighbors of minimum II (starting from B) share the same cost, since they lie on the same contour line.

are apart, indicating that any further improvement is
restricted by the infeasible neighboring designs.

5.3. When Constraints Are Linear
In §3.3, we argued that the robust local search can be
more efficient if the constraints are explicitly given as
convex functions. To illustrate this, suppose that the
constraints in problem (26) are linear and given by

h1�x�y� = 0�6x − y + 0�17�

h2�x�y� = −16x − y − 3�15�
(28)

As shown in Table 1, the robust counterparts of the
constraints in Equation (28) are

hrob
1 �x�y� = 0�6x − y + 0�17+ 0�5831≤ 0�

hrob
2 �x�y� = −16x − y − 3�15+ 8�0156≤ 0�

(29)

The benefit of using the explicit counterparts in Equa-
tion (29) is that the algorithm terminates in only
96 seconds as opposed to 3,600 seconds when using
the initial linear constraints in Equation (28).

6. Application II: A Problem in
Intensity-Modulated Radiation
Therapy for Cancer Treatment

Radiation therapy is a key component in cancer treat-
ment today. In this form of treatment, ionizing radia-
tion is directed onto cancer cells with the objective of
destroying their DNA and consequently causing cell
death. Unfortunately, healthy and noncancerous cells
are exposed to the destructive radiation as well, since
cancerous tumors are embedded within the patient’s
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Normal
cell

Voxel

Ionizing
radiation

Tumor

Figure 8 Multiple Ionizing Radiation Beams Are Directed at
Cancerous Cells

body. Even though healthy cells can repair them-
selves, an important objective behind the planning
process is to minimize the total radiation received
by the patient (“objective”) while ensuring that the
tumor is subjected to a sufficient level of radiation
(“constraints”).
Most radiation oncologists adopt the technique

of intensity-modulated radiation therapy (IMRT; see
Bortfeld 2006). In IMRT, the dose distribution is con-
trolled by two sets of decisions. First, instead of a sin-
gle beam, multiple beams of radiation from different
angles are directed onto the tumor. This is illustrated
in Figure 8. In the actual treatment, this is accom-
plished using a rotatable oncology system, which can
be varied in angle on a plane perpendicular to the
patient’s length-axis. Furthermore, the beam can be
regarded as assembled by a number of beamlets. By
choosing the beam angles and the beamlet inten-
sities (“decision variables”), it is desirable to make
the treated volume conform as closely as possible
to the target volume, thereby minimizing radiation
dosage to possible organ-at-risk (OAR) and normal tis-
sues. For a detailed introduction to IMRT and various
related techniques, see Bortfeld (2006) and the refer-
ences therein.
The area of simultaneous optimization of beam

intensity and beam angle in IMRT has been studied
in the recent past, mainly by successively selecting a
set of angles from a set of predefined directions and
optimizing the respective beam intensities (Djajaputra
et al. 2003). So far, however, the issue of robustness
has only been addressed for a fixed set of beam angles,
e.g., in Chan et al. (2006). In this work, we address the
issue of robustly optimizing both the beam angles and
the beam intensities—to the best of our knowledge,
for the first time. We apply the presented robust opti-
mization method to a clinically relevant case that has
been downsized due to numerical restrictions.

Optimization Problem. We obtained our optimiza-
tion model through a joint research project with the

Radiation Oncology group of the Massachusetts Gen-
eral Hospital at the Harvard Medical School. In our
model, all affected body tissues are divided into vol-
ume elements called voxels v (see Deasy et al. 2003).
The voxels belong to three sets:
• 	 : set of tumor voxels, with �	 � = 145;
• 
: set of organ-at-risk voxels, with �
� = 42;
• � : set of normal tissue voxels, with �� � = 1�005.

Let the set of all voxels be � . Therefore, � =	 ∪
∪�
and �� � = 1�192; there are a total of 1,192 voxels,
determined by the actual sample case we have used
for this study. Moreover, there are five beams from
five different angles. Each beam is divided into 16
beamlets. Let � ∈�5 denote the vector of beam angles
and let � be the set of beams. In addition, let i be
the set of beamlets b corresponding to beam i, i ∈ � .
Furthermore, let xb

i be the intensity of beamlet b, with
b ∈ i, and let x ∈ �16×5 be the vector of beamlet
intensities,

x= (x11� � � � �x161 �x12� � � � �x165
)′

� (30)

Finally, let Db
v��i� be the absorbed dosage per unit

radiation in voxel v introduced by beamlet b from
beam i. Thus,

∑
i

∑
b Db

v��i�x
b
i denotes the total dosage

deposited in voxel v under a treatment plan ���x�.
The objective is to minimize a weighted sum of the
radiation dosage in all voxels while ensuring that
(1) a minimum dosage lv is delivered to each tumor
voxel v ∈ 	 , and (2) the dosage in each voxel v does
not exceed an upper limit uv. Consequently, the nom-
inal optimization problem is

min
x� �

∑
v∈�

∑
i∈�

∑
b∈i

cvD
b
v��i�x

b
i

s�t�
∑
i∈�

∑
b∈i

Db
v��i�x

b
i ≥ lv ∀v ∈	 �

∑
i∈�

∑
b∈i

Db
v��i�x

b
i ≤ uv ∀v ∈� �

xb
i ≥ 0 ∀ b ∈i� ∀ i ∈��

(31)

where term cv is the penalty of a unit dose in voxel v.
The penalty for a voxel in OAR is set much higher
than the penalty for a voxel in the normal tissue. Note
that if � is given, problem (31) reduces to a linear
program (LP), and the optimal intensities x∗��� can
be found more efficiently. However, the problem is
nonconvex in � because varying a single �i changes
Db

v��i� for all voxel v and for all b ∈i.
Let �′ represent the available discretized beam

angles. To get Db
v��

′�, the values at �′ = 0�2� � � � �358

were derived using CERR, a numerical solver for
radiotherapy research introduced by Deasy et al.
(2003). Subsequently, for a given �̂, Db

v��̂� is obtained
by the linear interpolation

Db
v��̂� = �′ − �̂ + 2

2 · Db
v��

′� + �̂ − �′

2 · Db
v��

′ + 2�� (32)
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where �′ = 2��̂/2�. It is not practical to use the numer-
ical solver to evaluate Db

v��̂� directly during optimiza-
tion because the computation takes too much time.

Model of Uncertainty. When a design ���x) is im-
plemented, the realized design can be erroneous and
take the form �� + ���x ⊗ �1± ��, where ⊗ refers to
an element-wise multiplication. The sources of errors
include equipment limitations, differences in patient’s
posture when measuring and irradiating, and minute
body movements. These perturbations are estimated
to be normally and independently distributed:

b
i ∼� �0�0�01��

��i ∼�
(
0� 1

3
)

�
(33)

Note that by scaling b
i by 0�03, we obtain b

i ∼� �0� 1
3 �,

and hence all components of the vector
(

/0�03
��

)
obey

an � �0� 1
3 � distribution. Under the robust optimization

approach, we define the uncertainty set:

�=
⎧⎨
⎩
⎛
⎝ 

0�03
��

⎞
⎠
∣∣∣∣∣∣
∥∥∥∥∥∥



0�03
��

∥∥∥∥∥∥
2

≤ �

⎫⎬
⎭ � (34)

Given this uncertainty set, the corresponding robust
problem can be expressed as

min
x� �

max
�����∈�

∑
v∈�

∑
i∈�

∑
b∈i

cvD
b
v��i + ��i�x

b
i �1+ b

i �

s�t� min
�����∈�

∑
i∈�

∑
b∈i

Db
v��i + ��i�x

b
i �1+ b

i � ≥ lv

∀v ∈	 �

max
�����∈�

∑
i∈�

∑
b∈i

Db
v��i + ��i�x

b
i �1+ b

i � ≤ uv

∀v ∈� �

xb
i ≥ 0 ∀ b ∈i� ∀ i ∈� �

(35)

Approximating the Robust Problem. Since the
clinical data in Db

v��� are already available for angles
�′ = 0�2�4� � � � �358 with a resolution of �� = ±2,
it is not practical to apply the robust local search on
problem (35) directly. Instead, we approximate the
problem with a formulation that can be evaluated
more efficiently. Because Db

v��i� is obtained through a
linear interpolation, it can be rewritten as

Db
v��i ± ��� ≈ Db

v��i� ± Db
v�� + 2� − Db

v���

2 ��� (36)

where � = 2��i/2�. Db
v���, Db

v�� + 2� are values
obtained from the numerical solver. Note that since
�i ± �� ∈ ���� + 2� for all ��, Equation (36) is exact.

Let ��/���Db
v��i� = �Db

v�� + 2� − Db
v����/2. Then,

Db
v��i +��i�·xb

i ·�1+b
i �

≈
(

Db
v��i�+

�

��
Db

v��i�·��i

)
·xb

i ·�1+b
i �

=Db
v��i�·xb

i +Db
v��i�·xb

i ·b
i +

�

��
Db

v��i�·xb
i ·��i

+ �

��
Db

v��i�·xb
i ·��i ·b

i

≈Db
v��i�·xb

i +Db
v��i�·xb

i ·b
i +

�

��
Db

v��i�·xb
i ·��i� (37)

In the final approximation step, the second-order
terms are dropped. Using Equation (37) repeatedly
leads to

max
�����∈�

∑
v∈�

∑
i∈�

∑
b∈i

cv · Db
v��i + ��i� · xb

i · �1+ b
i �

≈ max
�����∈�

∑
v∈�

∑
i∈�

∑
b∈i

(
cv · Db

v��i� · xb
i + cv · Db

v��i� · xb
i · b

i

+ cv · �

��
Db

v��i� · xb
i · ��i

)

= ∑
v∈�

∑
i∈�

∑
b∈i

cv · Db
v��i� · xb

i

+ max
�����∈�

{∑
i∈�

∑
b∈i

(∑
v∈�

cvD
b
v��i�

)
xb

i 
b
i

+∑
i∈�

(∑
b∈i

(∑
v∈�

cv

�

��
Db

v��i�

)
xb

i

)
��i

}

= ∑
v∈�

∑
i∈�

∑
b∈i

cv · Db
v��i� · xb

i

+ �

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0�03 · ∑
v∈�

cv · D1
v��1� · x1

1

���

0�03 · ∑
v∈�

cv · D16
v ��1� · x16

1

0�03 · ∑
v∈�

cv · D1
v��2� · x1

2

���

0�03 · ∑
v∈�

cv · D16
v ��5� · x16

5

∑
b∈1

∑
v∈�

cv · �

��
Db

v��1� · xb
1

���∑
b∈5

∑
v∈�

cv · �

��
Db

v��5� · xb
5

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

� (38)

Note that the maximum in the second term is deter-
mined via the boundaries of the uncertainty set in
Equation (34). For better reading, the beamlet and
angle components are explicitly written out. Because
all the terms in the constraints are similar to those in
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the objective function, the constraints can be approx-
imated using the same approach. To simplify the
notation, the 2-norm term in Equation (38) will be
represented by∥∥∥∥∥∥∥∥∥

{
0�03 · ∑

v∈�
cv · Db

v��i� · xb
i

}
b� i{∑

b∈1

∑
v∈�

cv · �

��
Db

v��i� · xb
i

}
i

∥∥∥∥∥∥∥∥∥
2

�

Using this procedure, we obtain the nonconvex robust
problem

min
x� �

∑
v∈�

∑
i∈�

∑
b∈i

cv · Db
v��i� · xb

i

+ �

∥∥∥∥∥∥∥∥∥

{
0�03 · ∑

v∈�
cv · Db

v��i� · xb
i

}
b� i{∑

b∈i

∑
v∈�

cv · �

��
Db

v��i� · xb
i

}
i

∥∥∥∥∥∥∥∥∥
2

s�t�
∑
i∈�

∑
b∈i

Db
v��i� · xb

i

− �

∥∥∥∥∥∥∥∥∥

{
0�03 · ∑

v∈�
Db

v��i� · xb
i

}
b� i{∑

b∈i

∑
v∈�

�

��
Db

v��i� · xb
i

}
i

∥∥∥∥∥∥∥∥∥
2

≥ lv

∀v ∈	 �∑
i∈�

∑
b∈i

Db
v��i� · xb

i

+ �

∥∥∥∥∥∥∥∥∥

{
0�03 · ∑

v∈�
Db

v��i� · xb
i

}
b� i{∑

b∈i

∑
v∈�

�

��
Db

v��i� · xb
i

}
i

∥∥∥∥∥∥∥∥∥
2

≤ uv

∀v ∈� �
xb

i ≥ 0 ∀ b ∈i� ∀ i ∈��

(39)

which closely approximates the original robust prob-
lem (35). Note that when � and x are known, the objec-
tive cost and all the constraint values can be computed
efficiently.

6.1. Computation Results
We used the following algorithm to find a large num-
ber of robust designs ��k�xk�, for k = 1�2� � � � �

Algorithm 4 [Algorithm Applied to the IMRT

Problem].

Step 0. Initialization: Let ��0�x0� be the initial design
and let � 0 be the initial value. Set k �= 1.
Step 1. Set �k �= �k−1 + �� , where �� is a small

scalar and can be negative.
Step 2. Find a robust local minimum by applying

Algorithm 2 with
(i) initial design ��k−1�xk−1�, and
(ii) uncertainty set (34) with � = �k.

Step 3. ��k�xk� is the robust local minimum.

Step 4. Set k �= k + 1. Go to Step 1; if k > kmax,
terminate.

For comparison, two initial designs ��0�x0� were
used:
(i) “nominal best,” which is a local minimum of the

nominal problem; and
(ii) “strict interior,” which is a design lying in

the strict interior of the feasible set of the nominal
problem. It is determined by a local minimum to the
following problem:

min
x� �

∑
v∈�

∑
i∈�

∑
b∈i

cvD
b
v��i�x

b
i

s�t�
∑
i∈�

∑
b∈i

Db
v��i�x

b
i ≥ lv + buffer ∀v ∈	 �

∑
i∈�

∑
b∈i

Db
v��i�x

b
i ≤ uv − buffer ∀v ∈� �

xb
i ≥ 0 ∀ b ∈i� ∀ i ∈� �

From the nominal best, Algorithm 4 is applied with
an increasing �k. We choose � 0 = 0 and �� = 0�001
for all k. kmax was set to be 250. It is estimated that
beyond this value a further increase of � would sim-
ply increase the cost without reducing the probability
any further. Because the nominal best is an optimal
solution to the LP, it lies on the extreme point of
the feasible set. Consequently, even small perturba-
tions can violate the constraints. In every iteration of
Algorithm 4, �k is increased slowly. With each new
iteration, the terminating design will remain feasible
under a larger perturbation.
The strict interior design, on the other hand, will

not violate the constraints under larger perturba-
tions because of the buffer introduced. However, this
increased robustness comes with a higher nominal
cost. By evaluating problem (39), the strict interior
was found to satisfy the constraints for � ≤ 0�05.
Thus, we apply Algorithm 4 using this initial design
twice:
(i) � 0 = 0�05 and �� = 0�001, for all k. kmax was set

to 150, and
(ii) � 0 = 0�051 and �� = −0�001, for all k. kmax was

set to 50.
All designs ��k�xk� were assessed for their per-

formance under implementation errors, using 10,000
normally distributed random scenarios, as in Equa-
tion (33).

Pareto Frontiers. In general, an increase in robust-
ness of a design often results in higher cost.
For randomly perturbed cases, the average per-

formance of a plan is the clinically relevant mea-
sure. Therefore, when comparing robust designs, we
look at the mean cost and the probability of vio-
lation. The results for the mean cost are similar to
those of the worst simulated cost. Therefore, we only
report on mean costs. Furthermore, based on empirical
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Figure 9 Pareto Frontiers Attained by Algorithm 4 for Different Initial
Designs: Nominal Best and Strict Interior

Notes. Starting from nominal best, the designs have lower costs when the
required probability of violation is high. When the required probability is low,
however, the designs found from strict interior perform better.

evidence, random sampling is not a good gauge for
the worst-case cost. To get an improved worst-case
cost estimate, multiple gradient ascents are necessary.
However, this is not practical in this context due to the
large number of designs involved.
Because multiple performance measures are con-

sidered, the best designs lie on a Pareto frontier that
reflects the trade-off between these objectives. Figure 9
shows two Pareto frontiers, nominal best and strict
interior, as initial designs. When the probability of
violation is high, the designs found starting from the
nominal best have lower costs. However, if the con-
straints have to be satisfied with a higher probability,
designs found from the strict interior perform better.
Furthermore, the strategy of increasing � slowly in
Algorithm 4 provides trade-offs between robustness
and cost, thus enabling the algorithm to map out
the Pareto frontier in a single sweep, as indicated in
Figure 9.
This Pareto frontier allows clinicians to choose the

best robustly optimized plan based on a desired prob-
ability of violation; e.g., if the organs at risk are not
very critical, this probability might be relaxed to attain
a plan with a lower mean cost, thus delivering less
mean dose to all organs.

Different Modes in a Robust Local Search. The
robust local search has two distinct phases. When iter-
ates are not robust, the search first seeks a robust
design with no consideration of worst-case costs. (See
Step 3(i) in Algorithm 3.) After a robust design has
been found, the algorithm then improves the worst-
case cost until a robust local minimum has been
found. (See Step 3(ii) in Algorithm 3.) These two
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W
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Figure 10 A Typical Robust Local Search Carried Out in Step 2 of
Algorithm 4

Notes. In phase I, the algorithm searches for a robust design without consid-
ering the worst-case cost. Because of the trade-off between cost and feasi-
bility, the worst-case cost increases during this phase. At the end of phase I,
a robust design is found. In phase II, the algorithm improves the worst-case
cost.

phases are illustrated in Figure 10 for a typical robust
local search carried out in Application II. Note that
the algorithm takes around 20 hours on an Intel Xeon
3.4 GHz to terminate.

6.2. Comparison with Convex Robust
Optimization Techniques

When � is fixed, the resulting subproblem is convex.
Therefore, convex robust optimization techniques can
be used even though the robust problem (39) is not
convex. Moreover, the resulting subproblem becomes
a SOCP problem when � is fixed in problem (39).
Therefore, we are able to find a robustly optimized
intensity x∗���. Since all the constraints are addressed,
���x∗���� is a robust design. Thus, the problem
reduces to finding a local minimum �. We use a steep-
est descent algorithm with a finite-difference esti-
mate of the gradients. Jrob��

k� shall denote the cost of
problem (39) for � �= �k. The algorithm can be sum-
marized as follows:

Algorithm 5 [Algorithm Using Convex Tech-

niques in the IMRT Problem].

Step 0. Initialization: Set k �= 1. �1 denotes the initial
design.
Step 1. Obtain xk��k� by
(a) Solving problem (39) with � �= �k.
(b) Setting xk to the optimal solution of the

subproblem.
Step 2. Estimate gradient ��/���Jrob��

k� using finite
differences:

(a) Solve problem (39) with � = �k ± 
 · ei, for all
i ∈ � , where 
 is a small positive scalar and ei is a
unit vector in the ith coordinate.
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(b) For all i ∈� ,

�Jrob
��i

= J ��k + 
ei� − J ��k − 
ei�

2 · 
 �

Step 3. Check terminating condition:
(a) If ��Jrob/���2 is sufficiently small, terminate.

Else, take the steepest descent step

�k+1 �= �k − tk �Jrob
��

�

where tk is a small and diminishing step size.
(b) Set k �= k + 1, go to Step 1.

Unfortunately, Algorithm 5 cannot be implemented
because the subproblem cannot be computed effi-
ciently, even though it is convex. With 1,192 SOCP con-
straints, it takes more than a few hours for CPLEX 9.1
to solve the problem. Given that 11 subproblems are
solved in every iteration and more than a hundred
iterations are carried in each run of Algorithm 5, we
need an alternative subproblem.
Therefore, we refine the definition of the uncertainty

set. Instead of an ellipsoidal uncertainty set (34), which
describes the independently distributed perturbations,
we use the polyhedral uncertainty set

�=

⎧⎪⎨
⎪⎩
⎛
⎝ 

0�03
��

⎞
⎠
∣∣∣∣∣∣
∥∥∥∥∥∥



0�03
��

∥∥∥∥∥∥
p

≤ �

⎫⎪⎬
⎪⎭ � (40)

with norm p = 1 or p = �. The resulting subproblem
becomes

min
x

∑
v∈�

∑
i∈�

∑
b∈i

cv · Db
v��i� · xb

i

+ �

∥∥∥∥∥∥∥∥

{
0�03 · ∑

v∈�
cv · Db

v��i� · xb
i

}
b� i{∑

b∈1

∑
v∈�

cv · �

��
Db

v��i� · xb
i

}
i

∥∥∥∥∥∥∥∥
q

s�t�
∑
i∈�

∑
b∈i

Db
v��i� · xb

i

− �

∥∥∥∥∥∥∥∥∥

{
0�03 · ∑

v∈�
Db

v��i� · xb
i

}
b� i{∑

b∈1

∑
v∈�

�

��
Db

v��i� · xb
i

}
i

∥∥∥∥∥∥∥∥∥
q

≥ lv

∀v ∈	 �

(41)

∑
i∈�

∑
b∈i

Db
v��i� · xb

i

+ �

∥∥∥∥∥∥∥∥∥

{
0�03 · ∑

v∈�
Db

v��i� · xb
i

}
b� i{∑

b∈1

∑
v∈�

�

��
Db

v��i� · xb
i

}
i

∥∥∥∥∥∥∥∥∥
q

≤ uv

∀v ∈� �

xb
i ≥ 0 ∀ b ∈i� ∀ i ∈��
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Figure 11 Pareto Frontiers for the Trade-Off Between Mean Cost and
Probability of Constraint Violation Using the Robust Local
Search (RLS)

Notes. For comparison to convex robust optimization techniques, the norm
in Equation (40) is set to a 1-norm (P1) or an �-norm (Pinf). In the small
figure, which is a magnification of the larger figure for a probability of vio-
lation less than or equal to 10%, we observe that for probability of violation
less than 2%, RLS leads to lower mean costs and lower probability of viola-
tion, whereas for probability of violation above 2%, Pinf is the best solution,
as shown in the larger figure.

where 1/p + 1/q = 1. For p = 1 and p = �, prob-
lem (41) is an LP, which takes less than five seconds
to solve. Note that � is a constant in this formulation.
Now, by replacing the subproblem (39) with prob-
lem (41) every time, Algorithm 5 can be applied to
find a robust local minimum. For a given � , Algo-
rithm 5 takes around one to two hours on an Intel
Xeon 3.4 GHz to terminate.

Computation Results. We found a large number
of robust designs using Algorithm 5 with different
� and starting from nominal best and strict interior.
Figure 11 shows the results for both p = 1 (P1) and
p = � (Pinf). It also illustrates the Pareto frontiers of
all designs that were found under the robust local
search (RLS), P1, and Pinf. When the required prob-
ability of violation is high, the convex techniques,
in particular P1, find better robust designs. For lower
probability, however, the designs found by the robust
local search are better.
Compared to the robust local search, the con-

vex approaches have inherent advantages in optimal
robust designs x∗��� for every �. This explains why
the convex approaches find better designs for a larger
probability of violation. However, the robust local
search is suited for far more general problems because
it does not rely on convexities in subproblems. Never-
theless, its performance is comparable to the convex
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approaches, especially when the required probability
of violation is low.

7. Conclusions
We have generalized the robust local search technique
to handle problems with constraints. The method con-
sists of a neighborhood search and a robust local
move in every iteration. If a new constraint is added
to the problem with n-dimensional uncertainties, n+1
additional gradient ascents are required in the neigh-
borhood search step; i.e., the basic structure of the
algorithm does not change.
The robust local move is also modified to avoid

infeasible neighbors. We apply the algorithm to an
example with a nonconvex objective and nonconvex
constraints. The method finds two robust local min-
ima from different starting points. In both instances,
the worst-case cost is reduced by more than 70%.
When a constraint results in a convex constraint

maximization problem, we show that the gradient
ascents can be replaced with more efficient proce-
dures. This gain in efficiency is demonstrated on a
problem with linear constraints. In this example, the
standard robust local search takes 3,600 seconds to
converge at the robust local minimum. The same min-
imum, however, was obtained in 96 seconds when
the gradient ascents were replaced by the function
evaluation.
The constrained version of the robust local search

requires only a subroutine that provides the con-
straint value as well as the gradient. Because of
this generic assumption, the technique is applicable
to many real-world applications, including noncon-
vex and simulation-based problems. The generality of
the technique is demonstrated on an actual health-
care problem in intensity-modulated radiation ther-
apy for cancer treatment. This application has 85
decision variables and more than a thousand con-
straints. The original treatment plan, found using
optimization without consideration for uncertainties,
proves to always violate the constraints when uncer-
tainties are introduced. Such constraint violations cor-
respond to either an insufficient radiation in the cancer

cells or an unacceptably high radiation dosage in the
normal cells. Using the robust local search, we find
a large number of robust designs using uncertainty
sets of different sizes. By considering the Pareto fron-
tier of these designs, a treatment planner can find
the ideal trade-off between the amount of radiation
introduced and the probability of violating the dosage
requirements.
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