Electronic Supplementary Information

Noncovalent Interactions in Halogenated Ionic Liquids: Theoretical Study and Crystallographic Implications

Haiying Li,^{*a*} Yunxiang Lu,^{*a*} Weihong Wu, Yingtao Liu,^{*b*} Changjun Peng,^{*a*} Honglai Liu,^{*a*} and Weiliang Zhu^{*b*}

^a Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China. E-mail: yxlu@ecust.edu.cn

^b Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

The results of the CSD search:

1. Halogen subsituents in the 2 position (15 crystal structures)

ALOKIW: Angew. Chem. Int. Ed., 2011, 50, 1845.

ALOKOC: Angew. Chem. Int. Ed., 2011, 50, 1845.

XB (C-Br···Br⁻): $R(Br···Br⁻) = 3.2 \text{ Å}; \ \angle(C-Br···Br⁻) = 174.2^{\circ}$

ALOLAP: Angew. Chem. Int. Ed., 2,011, 50, 1845

XB (C–Br···F): $R(Br···F) = 3.1 \text{ Å}; \ \angle(C-Br···F) = 160.0^{\circ}$

ASAZAW: Z. Naturforsch. B: Chem. Sci., 2011, 66, 545

AXEFOY: Z. Anorg. Allg. Chem., 2004, 630, 495

XB (C–Cl···Cl): R(Cl···Cl) = 3.2 Å; \angle (C–Cl···Cl) = 161.9°

AYEHOB: Z. Naturforsch. B: Chem. Sci., 2004, 59, 129.

XB (C–Br···O): $R(Br···O) = 2.9 \text{ Å}; \angle (C-Br···O) = 153.9^{\circ}$

EHENIO: Z. Anorg. Allg. Chem., 2002, 628, 2251.

XB (C–Cl···O): R(Cl···O) = 2.8 Å; \angle (C–Cl···O) = 180.0°

FAJCID: Dalton. Trans., 2004, 3909

XB (C–I···I):
$$R(I···I) = 3.4 \text{ Å}; \angle (C-I···I) = 177.9^{\circ}$$

FALCIF: Z. Anorg. Allg. Chem., 2004, 630, 2054

XB (C–Br···O): $R(Br···O) = 3.0 \text{ Å}; \ \angle(C-Br···O) = 159.1^{\circ}$

GAZQIH: Inorg. Chim. Acta., 198, 273, 175.

XB (C–I···Br): $R(I···Br) = 3.3 \text{ Å}; \angle (C-I···Br) = 163.2^{\circ}$

HABNAB: Angew. Chem. Int. Ed., 2010, 49, 5322

XB (C-Br···Br⁻): $R(Br···Br⁻) = 3.3 \text{ Å}; \ \angle(C-Br···Br⁻) = 172.6^{\circ}$

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

HILMEU: Z. Naturforsch. B: Chem. Sci., 1998, 53, 720

POXMUL: Chem. Commun., 2009, 2475.

QIVPOB: Inorg. Chem., 2007, 46, 8594.

XB (C–Cl···Cl): R(Cl···Cl) = 3.2 Å; \angle (C–Cl···Cl) = 165.2°

ITUPAP: Angew. Chem. Int. Ed., 2011, 50, 7187.

 F_3C-SO_3

XB (C–I···O): $R(I···O) = 3.2 \text{ Å}; \ \angle(C-I···O) = 174.2^{\circ}$

2. Halogen substituents in the 4 or 5 position (10 crystal structures)

EJEMAI: Appl. Organomet. Chem., 2010, 24, 781.

XB (C–Cl···Br[–]): R(Cl···Br[–]) = 3.2 Å; \angle (C–Cl···Br[–]) = 166.9°

PUZZIU: X-ray. Str. Anal. Online., 2010, 26, 39.

XB (C–I···F): $R(I···F) = 3.1 \text{ Å}; \ \angle(C-I···F) = 174.9^{\circ}$

$$R(I - F) = 3.2 \text{ Å}; \ \angle (C - I - F) = 159.6^{\circ}$$

VURKUP: Solid. State. Sci., 2010, 12, 783.

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$$

XB (C–Br···O): $R(Br···O) = 3.2 \text{ Å}; \ \angle(C-Br···O) = 147.8^{\circ}$

VURLAW: Solid. State. Sci., 2010, 12, 783.

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

XB (C–I···O): $R(I···O) = 2.9 \text{ Å}; \ \angle(C-I···O) = 171.4^{\circ}$

$$R(I...O) = 2.9 \text{ Å}; \ \angle(C-I...O) = 174.3^{\circ}$$

$$R(I...O) = 2.9 \text{ Å}; \ \angle(C-I...O) = 171.4^{\circ}$$

$$R(I...O) = 2.9 \text{ Å}; \ \angle(C-I...O) = 174.4^{\circ}$$

VUSNIH: X-ray. Str. Anal. Online., 2010, 26, 31.

XB (C-Br···I⁻): $R(Br···I⁻) = 3.6 \text{ Å}; \angle (C-Br···I⁻) = 175.6^{\circ}$

$$R(\text{Br}\cdots\Gamma) = 3.6 \text{ Å}; \ \angle(\text{C}-\text{Br}\cdots\Gamma) = 171.5^{\circ}$$

WOMYED: J. Med. Chem., 2008, 51, 1577.

XB (C–Cl··· Γ): R(Cl··· Γ) = 3.6 Å; \angle (C–Cl··· Γ) = 168.5°

$$R(\text{Cl}\cdots\Gamma) = 3.6 \text{ Å}; \ \angle(\text{C}-\text{Cl}\cdots\Gamma) = 155.0^{\circ}$$

YOXWAK: Chem. Lett., 2009, 38, 402.

XB (C-Br···Br⁻): $R(Br···Br⁻) = 3.2 \text{ Å}; \ \angle(C-Br···Br⁻) = 174.7^{\circ}$

$$R(Br...Br] = 3.2 \text{ Å}; \ \angle(C-Br...Br] = 168.8^{\circ}$$

CUPPEJ: Chem. Eur. J., 2009, 15, 9375.

DUVCIG: ACA Abstr. Papers (Winter), 1986, 14, 62.

FUDFUG: Z. Anorg. Allg. Chem., 2009, 635, 1036.

XB (C–Cl···Cl): R(Cl···Cl) = 3.3 Å; \angle (C–Cl···Cl) = 161.8°

Atoms	1		2		3		4		5	
/Groups	MK	Chelpg	MK	Chelpg	MK	Chelpg	МК	Chelpg	MK	Chelpg
N_1	0.238	0.173	0.299	0.190	0.347	0.213	-0.390	0.198	0.500	0.216
C_2	-0.146	-0.123	-0.214	-0.073	-0.319	-0.175	0.312	-0.134	-0.372	-0.123
N_3	0.225	0.173	0.299	0.190	0.347	0.213	-0.390	0.198	0.488	0.215
C_4	-0.182	-0.126	-0.194	-0.124	-0.202	-0.123	0.010	-0.057	-0.290	-0.12
C ₅	-0.188	-0.126	-0.194	-0.124	-0.202	-0.123	0.010	-0.057	-0.299	-0.119
$H/X(C_2)$	0.227	0.214	0.210	0.195	0.293	0.289	0.254	0.197	0.230	0.178
$H/X(C_4)$	0.236	0.199	0.228	0.190	0.223	0.182	0.243	0.136	0.247	0.202
$H/X(C_5)$	0.237	0.199	0.228	0.190	0.223	0.182	0.243	0.136	0.248	0.202
C2-H/X	0.081	0.091	-0.004	0.122	-0.026	0.114	0.566	0.063	-0.142	0.055
C ₄ -H/X	0.054	0.372	0.034	0.380	0.570	0.395	0.253	0.334	0.735	0.417
C ₅ -H/X	0.049	0.073	0.034	0.066	0.021	0.059	0.253	0.079	-0.042	0.082

Table S1 Selected MK and Chelpg charges of atoms and groups for the cations 1-5.^a

^{*a*}All values are given in a.u. The atomic labels are given in Fig. 1.

 Table S2 Observed XBs in retrieved crystal structures of organic salts

Codes	Acceptors	Donors	Distances (Å)	Angles (°)
ALOKOC	Br	$Br(C^2)$	3.2	174.2
ALOLAP	F	$Br(C^2)$	3.1	160.6
AXEFOY	Cl	$Cl(C^2)$	3.2	161.9
AYEHOB	0	$Br(C^2)$	2.9	153.9
EHENIO	0	$Cl(C^2)$	2.8	180.0
FAJCID	Ι	$I(C^2)$	3.4	177.9
FALCIF	0	$Br(C^2)$	3.0	159.1
GAZQIH	Br	$I(C^2)$	3.3	163.2
HABNAB	Br	$Br(C^2)$	3.3	172.6
ITUPAP	0	$I(C^2)$	2.8	168.7

QIVPOB	Cl	$Cl(C^2)$	3.2	165.2
EJEMAI	Br	$Cl(C^4/C^5)$	3.2	166.9
FUDFUG	Cl	$Cl(C^4/C^5)$	3.3	161.8
DUZZUI	F	$t(c^{4}/c^{5})$	3.1	174.9
PUZZIU	F	$I(U/U^{*})$	3.2	159.6
	0	$P_{r}(C^{4}/C^{5})$	3.0	165.7
VURKUP	0	Br(C/C)	3.0	165.6
			2.9	171.4
	0	$I(C^{4}/C^{5})$	2.9	174.3
V UKLAW	0	I(C /C)	2.9	171.4
			2.9	174.4
VUSNILI	т	$Pr(C^{4}/C^{5})$	3.6	175.6
VUSINIH	1	BI(C/C)	3.6	171.5
WOMVED	т	$C1(C^{4}/C^{5})$	3.6	168.5
WOWLED	1		3.6	155.0
VOXWAK	Br	$Br(C^{4}/C^{5})$	3.2	174.7
IOAWAK	DI		3.2	168.8

Fig. S1 Optimized geometries of the cations 1-5 at the B3LYP level of theory. Distances in angstroms.

Fig. S2 Other optimized geometries of two ion pairs at the B3LYP level of theory. Distances in angstroms and angles in degrees.