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Abstract

Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes

(Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense

against viral infections in humans. This granule-exocytosis pathway subsumes a well-estab-

lished mechanism in which target cell death is induced upon perforin-mediated entry of

Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, how-

ever, a growing body of evidence demonstrated that Gzms also inhibit viral replication and

potential reactivation in cell death–independent manners. For example, Gzms can induce

proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular

trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review,

we summarize current evidence for the noncytotoxic mechanisms and roles by which killer

cells can use Gzms to combat viral infections, and we discuss the potential thereof for the

development of novel therapies.

Introduction

Cytotoxic lymphocytes (CLs), including natural killer (NK) cells, NKT cells, γδ TCR cells, and

cytotoxic T lymphocytes (CTLs), represent the major defense force against viral infections.

They secrete pro-inflammatory cytokines, particularly interferons (IFNs), to induce a systemic

antiviral state, and they can mediate target cell death by producing serine proteases (granzymes

(Gzms)) and pore-forming proteins, including perforin. Gzms and perforin are expressed in

granules inside all CL subtypes and secreted by fusion of these granules with the cell mem-

brane. CL subsets express different levels of each Gzm, which are prone to change upon CL dif-

ferentiation and activation, pointing to their distinct roles in immune responses [1,2]. Upon

cognate binding and CL activation, Gzms are released into the immunological synapse

between CL and the target cell. Perforin pores help Gzms to enter the target cell [2,3], after

which they can cleave proteins, e.g., involved in apoptosis, cytokine response, and/or the viral

or host cell life cycle. The mechanism underlying perforin-mediated Gzm entry is debatable.

Gzms can enter host cells through perforin pores in the plasma membrane and/or Gzms, and

perforin can enter target cells via (receptor-mediated) endo/pinocytosis after which perforin

plays a yet to be established role in liberating Gzms from endosomes [3,4]. Gzms can also exist
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outside cells in the extracellular microenvironment likely through leakage from the immuno-

logical synapse [5]. Alternatively, these extracellular Gzms can also derive from expression and

secretion by CLs or other cells, including monocytes, macrophages, dendritic cells (DCs), mast

cells, or basophils [6]. Extracellular Gzms have been demonstrated to play roles in matrix

remodeling, wound healing, and augmenting inflammation and cytokine response [6]. Mecha-

nistically, the latter can occur through cleavage of membrane receptors [7] or via cleavage of

substrates inside target cells [6,8]. How these extracellular Gzms enter the target cell cytoplasm

largely remains unknown, although cell surface heparin sulfate proteoglycans and endocytosis

receptors have been suggested [9].

Presently, 5 different Gzms have been described in humans: GzmA, GzmB, GzmH, GzmK,

and GzmM. GzmA and GzmB have been studied more extensively than the other Gzms,

which are therefore often referred to as orphan Gzms [2,10]. Despite their high sequence

homology (approximately 40%), Gzms differ in their primary substrate specificity [1], thus

providing CLs with various and redundant strategies to combat the wide range of viral infec-

tions. GzmA and GzmK cleave substrates after Arg or Lys (trypsin-like), GzmB after Asp or

Glu (chymotrypsin-like), GzmH after Tyr or Phe (chymotrypsin-like), and GzmM after Leu or

Met (elastase-like).

Currently, cytotoxicity is considered to be the main antiviral function of all Gzms and espe-

cially of GzmB. Studies have shown that all human Gzms are capable of inducing target cell

death; however, the cytotoxic potential of GzmA and the orphan Gzms has been highly

debated [11–13]. Even highly cytotoxic GzmB can be essential to control viral infection with-

out inducing apoptosis in infected cells [14]. How virus-infected cells escape apoptosis is still

largely unknown but is likely the result of virus-mediated up-regulation or de novo expression

of (viral) proteins that inhibit intracellular apoptosis pathways. [13,15]. Emerging evidence has

shown that Gzm-mediated proteolysis of viral/host cell proteins can inhibit viral replication

independently of cell death pathways (Table 1), a topic that has not been reviewed in the past

decade. With this strategy, CLs can prohibit viral infection or suppress reactivation in latently

infected cells [14,16]. Furthermore, Gzms can induce pro-inflammatory cytokine release sup-

porting the antiviral immune response (Fig 1). In this review, an overview of the currently

known noncytotoxic roles and potential therapeutic applications of Gzms in viral infections is

provided.

Granzymes target viral proteins crucial for replication

Andrade and colleagues provided the first evidence of GzmH-mediated antiviral activity by

cleavage of 2 adenoviral proteins: adenoviral DNA-binding protein (DBP) and GzmB-inhibi-

tor 100K assembly protein [72]. DBP is abundantly present in adenovirus-infected cells and is

essential for viral DNA replication. Furthermore, it has been associated with virion assembly

and early and late viral gene expression [73,88]. Both GzmH and GzmB are able to inactivate

DBP; however, GzmB cleaves much later during cytotoxic-mediated cell death than GzmH.

Cells infected with mutant adenovirus encoding GzmH-resistant DBP initially demonstrated

decreased DBP cleavage and higher viral loads post-killing compared to wild type. Later on,

DBP was degraded by GzmB and viral loads subsequently decreased [72]. This could be

explained by progressive inactivation of GzmB inhibitors, such as adenovirus 100K assembly

protein [89]. This adenoviral protein is involved in multiple essential viral processes, such as

viral assembly, inhibition of cellular translation, and activation of late viral translation [74,75].

Inactivation of 100K assembly protein by GzmH allows for the gradual recovery of GzmB

activity [72], demonstrating the synergistic and redundant roles of Gzms to combat adenovirus

infection.
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Table 1. Validated Gzm substrates affecting viral replication upon cleavage.

Validated Gzm substrate Gzm subtype Noncytotoxic function during viral infection

Host proteins
hnRNP A1 A [17] Splicing inhibition [17], viral transcription and translation [18]

hnRNP A2/B1 A [17] Transcription regulation [19], alternative splicing [20], viral

RNA replication [21]

hnRNP C1/C2 A, B [17] Viral RNA replication [22,23]

hnRNP-K All human Gzms

[24]

Transcription regulation [25–28], IE product expression [29],

splicing inhibition, virion release [30]

hnRNP-U A, B [17] Promote immunity [31]

La B, H [32] Viral translation [33,34]

eIF4G3 B [35] Viral translation [35]

RNA polymerase II B [36] Transcription, influenza virus replication [37]

B23/Nucleophosmin/

numatrin

B [38], M [39] Nuclear import, viral transcription, and virion assembly [40,41]

Topoisomerase I B [36] Reverse transcription [42]

Topoisomerase IIalpha M [43] Reverse transcription [44]

SET (SET-complex) A [45], K [46] Prevent autointegration [47], early gene transcription [48]

APE1 (SET-complex) A [49], K [50] Prevent autointegration [47]

HMG2 (SET-complex) A [51], K [46] Prevent autointegration [47]

Ku70 A [52], B [36] Retroviral DNA integration [53]

DNA-PK B [36,54] Retroviral DNA integration [53]

PARP-1 A, B [55] Viral replication [56,57]

Histone H1 A [58] Stimulate/inhibit viral replication [59,60]

Lamin B A, B [61] Viral replication [62]

Importin α1 K [63] Nuclear import [64]

Importin β K [63] Nuclear import [64]

α-tubulin B [65,66], M [67] Intracellular transport of viruses [68]

β-tubulin K [69] Intracellular transport of viruses [68]

Filamin A B [70] Arrangement of actin cytoskeleton [71]

Viral
Adenovirus DBP B, H [72] DNA replication, transcription, mRNA stability, virus assembly

[73]

GzmB-inhibitor 100K

assembly protein

B, H [72] Capsid assembly, GzmB inhibition [74,75]

pp71 M [76] Viral replication, latency [76,77]

Hbx protein H [78] Viral replication [78,79]

HCMV IE1/2 protein All 5 human

Gzms [16]

Viral replication, latency [80–82]

HSV-1 ICP4 B [14] [83] Early and late gene expression [84]

HSV-1 ICP27 B [83] Late gene expression [85]

VZV ORF4 B [83] Early and late gene expression [86], latency [87]

VZV ORF62 B [83] Early and late gene expression [86]

DBP, DNA-binding protein; Gzm, granzyme; Hbx, hepatitis B virus x; HCMV, human cytomegalovirus; hnRNP,

heterogeneous nuclear ribonucleoprotein; HSV-1, herpes simplex virus type I; IE, immediate early; ORF, open

reading frame; PARP-1, poly(adenosine 50-diphosphate [ADP]-ribose) polymerase-1; pp71, phosphoprotein 71;

VZV, varicella zoster virus.

https://doi.org/10.1371/journal.ppat.1009818.t001
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GzmH was also proposed to play an important part in hepatitis B virus (HBV) replication

and clearance without the induction of apoptosis. Once activated, GzmH disrupted HBV

DNA replication in infected cells, while viral RNA synthesis remained unaffected. Further-

more, GzmH inhibitors abolished viral clearance, which is in concordance with a very low

Fig 1. Schematic overview of the noncytotoxic functions of Gzms in viral infection. CLs secrete perforin and Gzms into the immunological synapse. Perforin

pores mediate Gzm entry in the target cell (1). Gzms cleave and (in)activate viral proteins (2) and host cell proteins inside the cytoplasm and the nucleus

necessary for viral entry (3), replication, protein synthesis, virion assembly (4), and viral release (5). CLs and also other cell types (e.g., macrophages) can directly

secrete Gzms in the microenvironment. These extracellular Gzms can induce pro-inflammatory cytokine release by multiple cell types, such as monocytes,

macrophages, DCs, mast cells, fibroblasts, and epithelial cells, further supporting the antiviral immune response (6). Created with BioRender.com. CL, cytotoxic

lymphocyte; DC, dendritic cell; Gzm, granzyme.

https://doi.org/10.1371/journal.ppat.1009818.g001
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GzmH expression observed in chronic HBV carriers [78]. The effect of GzmH was suggested

to be caused by cleavage of the viral HBx protein, a multifunctional regulator essential for viral

replication [79]. GzmH colocalizes with HBx protein intracellularly and cleaves it at a highly

conserved site. HBx-deficient HBV caused infections with low viral replication rates, which

were resistant to lymphokine activated killer (LAK) cell- or GzmH-mediated viral clearance

[78]. These results are in line with the hypothesis that GzmH-mediated proteolysis of HBx pro-

tein plays a vital part in controlling HBV infection.

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects

and can provoke serious illness in immunocompromised patients. It can maintain a lifelong

latent infection controlled by CLs secreting IFN-γ and Gzms. It has recently been shown that

the killing capacity of HCMV-specific CTLs is low [90], suggesting that noncytotoxic processes

play a rather important role for CL-mediated control of HCMV infection [16]. Recent studies

have demonstrated that Gzms can influence HCMV replication independently of IFN-γ or cell

death by directly and indirectly targeting the HCMV major immediate-early (MIE) gene prod-

ucts IE1 and IE2. These viral nuclear phoshoproteins play essential roles in initiating viral rep-

lication: IE2-deficient HCMV is noninfectious, and IE gene regulation has been associated

with latency [80–82]. All human Gzms can directly inactivate IE1 and/or IE2 through cleavage

at multiple specific sites [16]. Furthermore, GzmM can indirectly regulate IE expression by

cleaving HCMV tegument phosphoprotein 71 (pp71).

During HCMV infection, the host cell protein Daxx silences the MIE promoter (MIEP),

thus generating an intrinsic immune defense. However, HCMV pp71 translocates to the

nucleus to degrade Daxx, thereby alleviating MIEP suppression. GzmM-mediated cleavage

of pp71 blocks its ability to fight MIEP inhibition [76]. This is in line with the observation that

GzmM-deficient mice are more susceptible to MCMV infection with higher viral burden [91].

Additionally, a relation between pp71 and latency has been suggested [13]. HCMV causes a

latent infection in incompletely differentiated cells unable to accumulate pp71 in the nucleus,

which is essential for the inactivation of Daxx. Reactivation occurs upon further differentiation

toward a state with nuclear pp71 accumulation [13,77]. The redundancy with which human

Gzms inhibit HCMV IE expression and function suggests that they employ important roles in

controlling the HCMV infection.

Similar to HCMV, the alphaherpesviruses, such as herpes simplex virus type I (HSV-1) and

varicella zoster virus (VZV), are known for their long periods of latent infection. During latent

HSV-1 infection, CTLs surround infected neuronal cells and release GzmB without inducing

neuronal damage [92]. GzmB- or perforin-deficient mice showed higher viral loads 14 days

postinfection, indicating unstable latency, which returned to wild-type levels after, respec-

tively, 20 or 34 to 36 days postinfection. This proposes a noncytotoxic role for GzmB in regu-

lating HSV-1 infection. GzmB can directly cleave ICP4 [14], an HSV-1 immediate early (IE)

protein required for early and late viral gene expression [84]. Also ICP27, an HSV-1 IE protein

essential for late viral gene expression [85], can be cleaved by GzmB [83]. However, the biolog-

ical relevance of the cleavage of ICP4 and ICP27 still needs further investigation. VZV is genet-

ically similar to HSV-1 [93], but GzmB-expressing CTLs are in close proximity to VZV-

infected cells only during active [94] but not latent infection [92]. GzmB is capable of cleaving

the following VZV IE proteins: open reading frame (ORF) 4 and ORF62 (analogs of HSV-1

ICP27 and ICP4, respectively) [83]. ORF4 and ORF62 act in concert to transactivate early and

late VZV genes, thereby playing crucial parts in viral replication [86]. In addition, ORF4 is

essential to establish latent infection [87] and is capable of inhibiting NK cell–mediated killing,

independent of its cleavage by GzmB [83]. Thus, GzmM is suggested to contribute to control-

ling alphaherpesvirus infection, although evidence under physiological conditions is still

required.

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009818 September 16, 2021 5 / 19

https://doi.org/10.1371/journal.ppat.1009818


Granzymes target host proteins to influence/halt viral replication

The antiviral defense of Gzms is largely directed at host cell proteins hijacked by viruses, as

viruses rely on the host cell’s machinery to replicate. Proteomic studies revealed large amounts

of candidate Gzm substrates, although evidence for their inactivation by Gzms under physio-

logical conditions is present only for a minority. In the past, research was mostly focused on

the cytotoxic effects of their inactivation. However, many validated Gzm substrates play

important roles in viral replication, suggesting that their inactivation could also have noncyto-

toxic antiviral effects. In the following section, we provide an overview of all host cell proteins

that represent validated Gzm substrates with a potential to influence viral replication after

cleavage (Table 1).

Multifunctional host proteins involved in RNA metabolism

The majority of Gzm substrates are RNA/DNA binding proteins that are predominantly

nuclear or can move toward the nucleus [17] and require nucleic acid binding for efficient

cleavage [95]. This fits with the fact that Gzms can accumulate in the nucleus of target cells

[96,97]. These substrates are often implicated in RNA metabolism, as underlined by the lack of

nuclear export of newly transcribed RNA and disruption of pre-mRNA splicing in GzmA-

treated cells [17]. This can serve as a vital antiviral weapon, as the viral life cycle of both DNA

and RNA viruses rely heavily on this machinery. Below, we will discuss the multifunctional

proteins, which have been most extensively studied in this regard.

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large family of RNA-binding

proteins (RBPs) involved in almost all steps of mRNA maturation [98] of which 6 isoforms are

validated Gzm substrates [17,24]. Notably, all human Gzms can directly cleave the functional

DNA/RNA binding domain of hnRNP K, and all, but GzmA, do so in living cells [24]. hnRNP

K is a multifunctional protein involved in tumorogenesis whose normal cellular functions can

be altered by interaction with DNA/RNA, IE, and core proteins of diverse viruses [99]. Inacti-

vation of hnRNP K adds to the aforementioned redundant targetting of HCMV IE machinery

by Gzms to reduce viral replication. For instance, hnRNP K–deficient fibroblasts infected with

HCMV showed decreased levels of pan-Gzm substrate IE2 protein and subsequently lower

viral loads compared to wild type. This is most likely caused by the crucial role of hnRNP K

binding to IE mRNA for translation. Interestingly, hnRNP K–RNA binding is also required

for the degradation of hnRNP K by Gzms, indicating a possible strategy to restrict the inhibi-

tion of replication to infected cells [29]. Additionally, hnRNP K binds to HBV DNA and the 50

UTR of enterovirus 71 RNA and alters viral replication, as demonstrated by decreased viral

loads upon lower hnRNP K expression [100,101]. During human immunodeficiency virus

(HIV) infection, hnRNP K enhances viral transcription by forming a complex, including the

Nef protein, to stimulate the viral transactivator Tat [25]. Furthermore, hnRNP K forms a

complex with the GzmB substrate HSV-1 ICP27 (IE63), p32, and casein kinase 2 (ck2), which

is suggested to inhibit splicing. This could contribute to host cell shutoff and redirection of

nuclear transport to mostly intronless viral transcripts [102,103]. While hnRNP K knockdown

did not affect HSV-1 DNA replication or transcript maturation, it significantly reduced virion

release needed for viral propagation [30]. Human herpes virus 6 (HHV-6) IE2 protein also

interacts with hnRNP K and ck2 [104], suggesting a role in HHV-6 viral life cycle. Addition-

ally, the abundant African swine fever virus (ASFV) IE protein p30 causes nuclear redistribu-

tion of hnRNP K upon complexation and decreases cellular transcription [28]. Interaction of

hnRNP K with the core proteins of hepatitic C virus (HCV) and dengue virus (DENV) has

been suggested to diminish its inhibitory effects on transcription regulation, thereby disrupt-

ing its normal cellular functions to stimulate viral pathogenesis [26,27].
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Other hnRNP isoforms are not as excessively targetted by different human Gzms. hnRNP

A1, A2/B1, C1/C2, and U are all validated direct GzmA substrates, while GzmB cleaves

hnRNP C1/C2 and U directly and hnRNP A1 and A2/B1 only through caspase activation [17].

hnRNP A1 is one of the most abundantly expressed multifunctional hnRNPs [105]. Overex-

pressed GzmA-resistant hnRNP A1 inhibits cell death and rescues splicing in cells treated with

GzmA [17], suggesting an important role for hnRNP A1 in GzmA-induced cell death and

splicing inhibition. Besides, hnRNP A1 influences viral replication by interacting with the

nucleocapsid proteins of coronaviruses (SARS coronavirus, mouse hepatitis virus (MHV), and

porcine epidemic diarrhea virus (PEDV)) [18]. It also binds to the 50 UTR of the alphavirus

prototype Sindbis virus, resulting into marked decreased viral RNA synthesis upon hnRNP A1

knockdown [106]. The effects of Gzms on the functions of hnRNPs A2/B1 and C1/C2 remain

to be validated but are also potentially antiviral as these hnRNPs are critical for the life cycle of

numerous viruses, particularly through interaction with viral proteins [19,21–23]. For exam-

ple, HCMV IE2 protein interacts with hnRNP A2/B1 and stimulates its expression leading to

cell proliferation and inhibition of apoptosis [20]. On the other hand, Gzm-mediated cleavage

of hnRNP U is unlikely to have antiviral effects, as hnRNP U was suggested to promote immu-

nity by activating antiviral enhancers [31].

La protein is also a multifunctional protein involved in RNA metabolism, as well as a major

autoantigen associated with systematic autoimmune disease [107]. Moreover, it is required for

the initiation of internal ribosome entry site (IRES)-mediated translation of viral gene prod-

ucts in cells infected with various viruses, including poliovirus, HIV1, encephalomyocarditis

virus (EMCV), HCV, and coxsackievirus B3 [33,34]. La protein is cleaved by GzmB, GzmH,

and caspases during CL killing. GzmH-induced truncated La 1–364 loses its nuclear localisa-

tion and has a dominant-negative effect on HCV-IRES mediated translation. Interestingly,

phosphorylation of La at serine 366 inactivates its transcriptional function and makes it resis-

tant to GzmH cleaving due to steric hindrance [32,108].

Eukaryotic initiation factor 4 gamma 3 (eIF4G3) is another host protein that is involved in

viral translation and can be cleaved by GzmB. GzmB treatment of vaccinia virus (VV)-infected

Jurkat cells decreased VV particle synthesis and eIF4G3 levels independently of caspase activ-

ity. VV particle production could partially be restored by expression of GzmB-resistant

eIF4G3, but not wild-type eIF4G3, marking the importance of GzmB-mediated cleavage of

eIF4G3 in halting viral protein synthesis [35].

Less is known about cleavage of RNA-synthesizing enzymes by Gzms. Two large subunits

of RNA polymerase II can be cleaved by GzmB in intact cells [36], of which the biological rele-

vance remains to be investigated. RNA polymerase II inactivation could inhibit transcription

of DNA viruses and affect influenza viral replication by disrupting its interaction with viral

RNA-dependent RNA polymerase required for the initiation of viral replication [37].

Nucleolar host proteins

The nucleolus undergoes morphological and molecular modifications during infection with

various viruses, which is important for numerous steps in the viral life cycle [109]. Nucleolar

Gzm substrates nucleolin, nucleophosmin (B23), and fibrillarin are delocalized during viral

infection. Nucleolin relocates most drastically, while being crucial for the regulation of nucleo-

lar integrity and viral replication [36,109,110]. However, evidence of Gzm cleavage under

physiological circumstances has only been found for B23, which is directly inactivated by

GzmB and GzmM during Gzm-mediated killing of tumor cells [38,39]. The delocalization of

B23 during adenovirus infection is facilitated by adenoviral protein V, and the knockdown of

B23 reduces viral replication [41]. To add on, B23 is up-regulated during viral infection and
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stimulates the replication of viruses such as HIV, HBV, HCV, HDV, and HPV by influencing

nuclear import, viral genome transcription, and virion assembly [40]. Gzm cleavage of B23

could therefore have a range of noncytotoxic repressing effects on viral infections.

DNA repair machinery and retroviral DNA incorporation

Multiple host cell proteins important for DNA repair have been associated with Gzm-medi-

ated apoptosis (topoisomerase IIalpha, SET complex, Ku70, DNA-PK, and PARP-1) [11,43].

Moreover, Gzm-mediated inactivation could also induce noncytotoxic effects as the DNA

repair machinery is relevant for retroviral DNA incorporation and synthesis. For instance,

reverse transcription of retroviral HIV-1 RNA into double-stranded DNA requires the pres-

ence of GzmB-substrate topoisomerase I [36,42] and GzmM-substrate topoisomerase II iso-

forms with the latter promoting RNA–DNA hybrids [43,44].

The viral DNA binds to the preintegration complex (PIC). For the transcribed retroviral

DNA to be integrated in chromosomes, 30 processing must occur to create reactive CAOH-30

ends. However, CAOH-30 ends are prone to attack sites within the viral DNA itself instead of

the host DNA, resulting into suicidal autointegration [47]. The SET complex is a DNA repair

complex containing 3 GzmA and GzmK substrates (SET, APE1, and HMGB2) that moves

toward the nucleus during oxidative stress [11,69]. It inhibits autointegration by binding to the

PIC. Consequently, knockdown of SET components leads to reduced HIV-1 chromosomal

integration and viral replication [47]. Furthermore, the SET complex is involved in early gene

transcription of adenovirus and DNA replication of adeno-associated virus [48,111].

The last step of retroviral DNA integration comprises joining of the 50 end of viral DNA

and the chromosome. HIV-1 integrase was suggested to interact with Ku70, thereby recruiting

the DNA-PK complex to the integration site and subsequently stimulating the gap repair

through nonhomologous end joining (NHEJ) [53]. Ku70 and DNA-PK are DNA repair pro-

teins that can be cleaved during CL killing by GzmA and GzmB and exclusively GzmB, respec-

tively [36,52,54]. Knockdown of Ku70 reduced HIV-1 postintegrational repair and viral

replication [53,112], but the necessity of DNA-PK for HIV-1 integration has been debated

[113–115].

Poly(adenosine 50-diphosphate [ADP]-ribose) polymerase-1 (PARP-1), a single- and dou-

ble-stranded DNA damage sensor, can be cleaved by GzmB in the nuclear localization signal

and was proven to be inactivated by GzmA during CL attack [55]. It may compete with Ku70

to bind to double-stranded breaks for an alternative NHEJ pathway [116]; however, its impor-

tance in retroviral integration is controversial [115,117]. Moreover, PARP-1 showed opposing

effects on viral replication: Its inhibition resulted in decreased HIV and John Cunningham

(JC) virus DNA replication [56,57], while its activity has also been reported to repress retrovi-

ral transcription and lytic replication of oncogenic gammaherpesviruses [118,119]. To con-

clude, Gzms could have significant effects on retroviral integration and viral replication

through targetting the DNA repair machinery; however, further research remains necessary.

Host DNA replication machinery

Also, proteins involved in host DNA replication are degraded by Gzms. For instance, GzmA

can disrupt the nuclear envelope through cleavage of lamins (A/C, B) and open up chromatins

through histone H1 cleavage and removal of the tails of core histones [58,61]. This is para-

mount for Gzm-mediated cell death [15], however, these substrates have also been implicated

in viral replication. For example, lamin B1 knockout mouse embryonic fibroblasts showed dra-

matically lower viral loads upon HSV infection compared to wild type [62]. In contrast, his-

tone H1 has been suggested to stimulate or inhibit replication of different viruses [59,60], and
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lamin A/C was reported to be a key regulator in Th1 differentation upon VV and Leishmania
major infection [120]. Therefore, the effect of Gzm cleavage of aforementioned substrates on

viral replication is debatable and requires further research.

Host proteins and intracellular viral transport

Finally, the intracellular transport of viral proteins is struck by Gzms through host protein tar-

geting. Unlike many other RNA viruses, influenza A virus replicates inside the nucleus.

Nuclear import of nucleoprotein (NP) and viral RNA polymerase subunits (PB1, PB2, and PA)

is accomplished through interaction with host importin α/β dimers or a transport receptor

related to importin β (β-importin Ran binding protein 5) [64]. GzmK cleaves the interaction

domains of both importin α1 (Impα1) and importin β (Impβ) during CL killing, which dis-

rupts their dimerization. Treatment of prepermeabilized Hela cells with recombinant Myc-NP

and GzmK-truncated Impα1 (tImpα1) and Impβ (tImpβ) showed that nuclear import of NP

was disrupted. Plus, tImpα1 and tImpβ could not rescue influenza polymerase activity in T293

cells with double knockdown of Impα1 and Impβ. Additionally, LAK cell–mediated clearance

of influenza virus could be alleviated by GzmK inhibition, showing the importance of GzmK

in reducing viral replication [63]. Moreover, the transport of viral particles to replication sites

and their release demands an intact microtubule network comprised of polymerized α/β-tubu-

lin heterodimers [68]. GzmB and GzmM can degrade α-tubulin, and GzmK cleaves β-tubulin

during CL-mediated killing, leading to enhanced polymerization rates and aberrant microtu-

bule networks [65–67,69]. Thereby, Gzms might delay viral propagation. Finally, GzmB was

suggested to affect the arrangement of membrane proteins anchored in the cytoskeleton,

which has been related to viral infection, by cleaving the actin filament cross-linking protein

filamin A [70,71].

Granzymes induce pro-inflammatory cytokine release

Besides specifically targeting viral/host proteins in infected cells, Gzms can also fight viral

infections in a noncytotoxic manner through stimulation of (immune) cells. Recent research

shows that all human Gzms, besides GzmH, can induce pro-inflammatory cytokine release,

thus generating an antiviral immune response. Their role in inflammation is in line with the

elevated levels of extracellular Gzms found in viral infections and other inflammatory diseases

[6]. Moreover, perforin-deficient mice and patients suffering from mutations in the perforin

gene, i.e., familial hemophagocytic lymphohistiocytosis, show enhanced cytokine response

[121]. The following section portrays the relation between Gzms and the inflammatory in vitro

and in vivo effects regarding viral infections for human GzmA, GzmB, GzmK, and GzmM.

GzmA

Circulating plasma levels of GzmA are significantly elevated in patients infected with viruses

such as Epstein–Barr virus (EBV), HIV-1, and chikungunya virus (CHIKV) [122,123]. This

was also witnessed in mice infected with CHIKV and mouse models of zika virus (ZIKV) and

DENV infections. Mice treated with GzmA inhibitor Serpinb6b showed drastically less foot

swelling upon CHIKV infection. To add on, reduced foot swelling and NK and T cell infiltra-

tion was seen in GzmA−/− mice upon CHIKV infection with unchanged viral loads [124].

This proposes GzmA inhibition as a therapeutic strategy in fighting CHIKV-induced arthritis

[124]. Furthermore, injection of recombinant mGzmA can induce edema and neutrophil infil-

tration in mice. Although the exact mechanism of extracellular GzmA’s pro-inflammatory

function in vivo remains unclear, protease-activated receptor (PAR)-1 and PAR-2 might be

involved. Foot swelling induced by recombinant mGzmA or CHIKV in mice could be
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diminished by PAR-1 and PAR-2 antagonists or the PAR-1 antagonist, Vorapaxor, respec-

tively [123].

Recombinant hGzmA can directly stimulate pro-inflammatory cytokine release by several

cell types in vitro. Extracellular GzmA induces the release of IL-8 by epithelial cells, IL-6 and

IL-8 by fibroblasts, and IL-1β, tumor necrosis factor alpha (TNF-α), IL-6, and IL-8 by primary

human monocytes [6,8]. These reactions are dependent on the catalytic activity of GzmA and

enhanced when GzmA is delivered intracellularly. This indicates that GzmA’s proteolytic

activity stimulates signaling and that the GzmA substrates responsible for the induction of

these cytokines are most likely localized inside the cell [6]. Active, but not inactive, mGzmA

can also stimulate IL-1β release by lipopolysaccharide (LPS)-preactivated primary mouse mac-

rophages [8]. Although mGzmA can cleave and activate pro-IL-β in vitro [125], another study

failed to reproduce these results with hGzmA [8]. IL-β maturation was suggested not to be

caused by GzmA directly, but through involvement of the inflammasome, as caspase-1 inhibi-

tors could diminish GzmA-mediated cytokine release by monocytes [8]. Furthermore,

hGzmA potentiates cytokine release by primary human monocytes induced by a Toll-like

receptor (TLR)-2 agonist or the bacterial TLR-4 agonist LPS, independently of catalytic activ-

ity. In contrast to earlier studies, GzmA alone failed to generate cytokine secretion by mono-

cytes [126]. Whether viral TLR-2 or TLR-4 agonists, such as viral glycoproteins, also show this

synergy with GzmA remains to be investigated.

Finally, extracellular GzmA can form the bridge between the innate immune system and

the adaptive immune system by enhancing DC function. Recombinant GzmA stimulates phe-

notypic maturation and type I IFN release by plasmacytoid DCs (pDCs) and conventional

DCs (cDCs) via the TLR9-MyD88 pathway. Large T cell responses were seen in mice vacci-

nated with antigen and GzmA, while pDC-depleted or IFN-α/βR-KO mice had a reduced T

cell response after vaccination. This supports the importance of IFN-α producing pDCs in T

cell activation and presents GzmA as a possible vaccine adjuvant [127].

GzmB

Less is known about the inflammatory effects of GzmB, which is predominantly recognized for

its cytotoxicity. GzmB levels in EBV and HIV-1 patients’ plasma and rheumatoid arthritis

patients’ synovial fluid are elevated, although consistently lower than GzmA levels [122]. In

vitro studies on GzmB’s cytokine inducing capacities are limited. hGzmB is unable to induce

IL-6 and IL-8 production by Hela cells or HUVECs directly and can only potentiate LPS-medi-

ated TNF-α release by human monocytes. On the other hand, it can convert pro-IL-18 into

active IL-18 in vitro and ex vivo, similarly to caspase-1 but with slower kinetics. Additionally,

it can cleave the 31 kDa precursor of IL-1α, thereby increasing its biological activity, as demon-

strated in vitro and in a mouse model [6]. To conclude, GzmB’s pro-inflammatory role is

largely based on cytokine processing instead of initiation.

GzmK

GzmK shows comparable inflammatory responses to GzmA. Similarly, extracellular hGzmK

induces IL-6 and IL-8 release by fibroblasts, while the release of chemokine MCP-1 has also

been reported [7]. This is dependent on GzmK’s catalytic activity as well as its intracellular

delivery, and it involves cleavage of PAR1. Furthermore, like GzmA, active recombinant

mGzmK stimulates IL-1β production by LPS-preactivated macrophages [6]. IL-1 signaling is

crucial to fight lymphocytic choriomeningitis virus (LCMV) infection, as shown by the signifi-

cant decrease of LCMV elimination in mice treated with IL-1 receptor antagonist, anakinra,

with unaffected T cell inactivation [128]. This could explain the redundant roles of different
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Gzms in IL-1 maturation. However, GzmA-GzmB–deficient mice and their CLs, expressing

mostly GzmK with little proapoptotic activity, as well as GzmK-deficient mice could all control

LCMV infection [128,129]. This suggests that the noncytotoxic roles of GzmK can contribute

to the immune response against LCMV, but are not essential. Additionally, hGzmK works syn-

ergistically with TLR-4 agonist LPS to generate TNF-α, IL-6, and IL-8 release by monocytes,

independently of proteolytic activity as observed with GzmA [130]. In vivo results showed that

GzmK−/− mice also exhibit reduced foot swelling following CHIKV infection, although less

drastically than GzmA−/− mice [124].

GzmM

Research into the inflammatory functions of GzmM has mostly been focused on bacterial

infections. However, a recent study showed that GzmM levels were elevated in the synovial

fluid of RA patients, which correlated with high local cytokine levels. Furthermore, hGzmM

could trigger IFN-λ1 (IL29) release by human fibroblasts, completely dependent on its catalytic

activity [131]. This could bestow potential antiviral effects to GzmM as type III IFNs, such as

IFN-λ1, play crucial roles in restricting replication of various viruses in vitro and in vivo [132].

Furthermore, GzmM colocalizes with MIP-1α in the cytotoxic vesicles of human NK cells [6].

The chemoattractant protein MIP-1α stimulates inflammation by recruiting monocytes, NK

cells, neutrophils, and antigen-specific T and B cells. MIP-1α–deficient mice showed delayed

clearance of some viral infections, including influenza virus, but mostly decreased inflamma-

tion-mediated damage upon viral infection [133]. NK cells and macrophages isolated from the

livers of GzmM-deficient and LPS-challenged mice showed less MIP-1α secretion than wild

type. This suggests a role for GzmM to increase local MIP-1α secretion upon bacterial infec-

tion [6]. It remains to be investigated if viral infections lead to similar results and which mech-

anism is involved.

Conclusions and potential therapeutic consequences

The fight against viruses is an enormous topical challenge with worldwide impact. Viral infec-

tions can spread rapidly and have devastating consequences, especially in immunocompro-

mised patients, while effective treatment against numerous viruses is still lacking.

Understanding how the healthy immune system controls viral infections can aid in the devel-

opment of future therapies. Emerging evidence shows that killer cells use Gzms in viral infec-

tions not only to kill target cells, but also to employ multiple noncytotoxic functions. These

noncytotoxic functions are likely relevant when viruses employ inhibitors of (Gzm-induced)

apoptosis and/or during the attack of immune privileged sites such as neurons. Cleavage of

some of these Gzm substrates have been directly demonstrated to affect viral replication in

vivo. For example, Gzm-mediated inactivation of the substrates adenovirus DBP and host cell

proteins La protein and eIF4G3 is directly proven to decrease viral replication, translation, or

viral particle synthesis [32,35,72]. Many other validated Gzm substrates play vital roles in viral

replication, although more research is often required to confirm the noncytotoxic antiviral

effects of Gzm-mediated inactivation in physiological settings. The growing list of these Gzm

substrates marks potential therapeutic targets. However, attacking host cell proteins hijacked

by viruses might impose problems as these proteins also play crucial roles in uninfected cells.

This challenge illustrates the potential of targeted therapy. In the recent years, GzmB has been

extensively studied as an immunotoxin in relation to targeted cancer therapy. Specific delivery

of GzmB in cancer cells has been achieved, for instance, by genetic fusion with an antibody

moiety or a derivative of natural ligands binding surface cell proteins or receptors. GzmB inhi-

bition by serpin B9 (PI-9) and the binding of highly basic GzmB to the extracellular matrix are
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other obstacles in GzmB therapy. Promising solutions for these problems involve mutating the

GzmB–PI-9 interaction site and basic surface amino acids, respectively [134,135]. It would be

interesting to investigate whether similar tactics can be used in relation to viral infections.

Therapeutic strategies can also be based on the immunostimulatory effects of Gzms. For

example, GzmA could be added to vaccines to increase their effectiveness by stimulating the

innate immune system, as mentioned before [127]. On the other hand, Gzm inhibitors may be

powerful remedies against the damage bestowed by inflammation seen in viral infections. As

described afore, GzmA inhibition could repress CHIKV-mediated arthritis [124], and GzmM

might also contribute to inflammation-mediated damage [6,133]. The paradoxical conse-

quences of Gzms’ pro-inflammatory effects during viral infections emphasize the importance

of extensive in vitro and in vivo studies on the matter.

To conclude, cytotoxic cells use Gzms to play important noncytotoxic roles in the fight

against viral infections, by cleaving viral/host proteins essential for viral replication and gener-

ating an antiviral immune response. This information provides a better understanding of the

natural antiviral defense and proposes future therapeutic strategies.
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