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Nondegenerate Four-Wave  Mixing  in a 
Homogeneously  Broadened Two-Level 
System with Saturating Pump Waves 
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Abstract-The  formulation of phase  conjugation via nondegenerate 
four-wave mixing  in  a  homogeneously  broadened  resonant  medium is 
genetalized to include  saturating  pump waves. An ultrahigh-Q  optical 
fdter  is  predicted,  showing  both gain and  a  bandwidth less than  the 
homogeneous  linewidth of the  atom.  The  dependence of the  filter 
function  on  the  ac  Stark  effect  and on the use of asymmetric  pump 
wave intensities is discussed. In addition,  several  new  phenomena 
are  shown which manifest  themselves  as  a  dip  in  the  degenerate  reflec- 
tivity at  line  center. 

I. INTRODUCTION 

R ECENT authors have discussed the  theoretical  solutions 
to phase conjugation via four-wave  mixing in  resonant 

systems [ l ]  -[SI. The  present  authors first used third-order 
perturbation  theory to study  nondegenerate four-wave  mixing 
in both  homogeneously  broadened [ l ]  and  inhomogeneously 
broadened [2],  [3 J two-level systems.  These solutions showed 
how  an ultrahigh-Q optical filter could be constructed using 
phase conjugation.  This  has  recently  been verified experimen- 
tally  using sodium as the  nonlinear  medium [9]  , [lo]. Satu- 
rating pump waves have been included in the  solutions  of 
several authors  for  both  degenerate [4], [ S I ,  [8] and  non- 
degenerate [6], [7] four-wave  mixing. In the  degenerate case, 
our  solutions  predict  two new phenomena  which, have not 
been  previously  recognized. One  phenomenon is due to the 
relative rates  at  which  the  nonlinear susceptibility and  the 
linear absorption  saturate as a function  of  frequency.  The 
second  phenomenon is a  result of  the  frequency  dependence 
of the  honlinear  susceptibility  in  the presence of  asymmetric 
pump waves. In  the  nondegenerate case, we show  how a narrow 
bandwidth  optical filter with  both gain and a linewidth less 
than  the  homogeneous  linewidth  of  the system can be con- 
structed.  The  important  effects  of  asymmetric  pump wave 
intensities  on  the efficiency and  frequency response of  the 
phase conjugate signal are also shown  for  the first time. 
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Fig. 1. Geometry for nondegenerate four-wave  mixing  (assuming non- 
depleting  pump waves). 

11. SOLVING  THE  DENSITY MATRIX EQUATIONS 

The mixing involves two  intense  counterpropagating  pump 
waves El and E2 of  the same frequency w and  two weak 
counterpropagating waves E3 and E4 with  frequencies w3 and 
w4. The  geometry  of Yariv and  Pepper [ 11 ] shown  in Fig. 1 
is used. 

The fields  are taken as  plane waves: 

Ei(ri, t )  = $Aj(r i )  exp [i(wit - ki r)] t C.C. (1) 

where ti is the distance along kt. We have 

kl + kz = 0, ~ 3 3  t 04 = 20. (2) 

The  resonant  medium is modeled as  a two-level system  which 
is characterized by  a dipole  moment p, an energy splittingfiq, , 
and  longitudinal  and transverse relaxation  times T1 and T 2 ,  
respectively [ 121 . The two-level system is assumed to consist 
of  an ensemble of  stationary  atoms.  The  density  matrix  equa- 
tions are then solved to all orders  in  the  amplitudes  of  the  pump 
waves and to first order  in  the  amplitudes  of  the weak signal 
fields. The  induced  polarizations at  w3 and w4 are given by 

P(w3 2 2 ~ -  w4,k l  . r ) =  - 
4 no3 

C 

* {-icuj(kl . r)A3 t K;(kl . r)Aq* exp [ i ( A k ) z ] }  

X exp [i(d3t - k3 . r)] 

. {-ia4(kl . r)A4 t Kz(kl r)A; exp [i(Ak)z] } 

X exp [i (w4t-  k4 * r)] . (3 )  
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The coupling constants appearing  in ( 3 )  are 

a3(kl . r)  = 
- icyo 

( 6 - v - i )  1 t [ E2(1 A*A t t i 2 )  1 

with 
-ik, .Y -ik, .P A = A , e  t A 2 e  

A*A(2 - iv) 
2E,2(1 - iav)(l  - i6)[1 t i(6 - v)] 

- 

A"A(1 - iv) 
- iav)[~ t i(6 - v)] [I  - i(6 t v)] I 

a$(kl . r)  = 
iao 

[ E:(]  A*A + 6 2 )  I ( 6 t v t i )  I +  

r A*A(2 - iv) 1 
I I 

s=  1 t  [ E:(]  A*A I 
x [ l t  

A *A( 1 - iv) 
E,2(1 - iav)I~ - i(6 t v)] [ I  t i(6 - v)] 3 

and  where 6 = (o - w 0 ) T 2  is the normalized detuning  of  the 
pump  frequency  from line center, v = (w4 - o ) T 2  is the  nor- 
malized detuning of the signal frequency  from  the  pump 
frequency, a = T l / T 2 ,  E: =K2/T lT2 /*2  is the  line-center 
saturation  intensity, a. = 4np2ANoT2ko/2Jz is the  line-center 
homogeneous-broadening  absorption  coefficient of the  subject 
gas, ko is the  magnitude  of  the wave number  at  frequency w o ,  
and A k  = 2(w4 - wj/c. 

The coupling coefficients have a dc spatial component as 
well as high-frequency spatial components  due  to  the A*A 
term in each coupling  coefficient. Only the  dc  component of 
the  coupling coefficients is phase matched  and,  therefore, of 
any  importance in the  coupled  mode  equations. Defining 

A ,  = 1 ~ , l e " 1  A ,  = ~ ~ , l e ' " z  

we obtain 

A * A = I 1  t 1 2  t 2 a c o s  (x t 9)  
E: 

(71 

with x = 2kl . r and 9 = f i 2  - 9, .  The k2 dependence in (7 )  
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has been eliminated by using (2).  

K~ by integrating over x: 
We can  now determine  the  dc spatial component  of ai and 

0. = - 12n .j(X) dx 

' 2n [ 2 n  

27r 

IC.= - K~(x) dx.  ( 8 )  

The values of  the coupling constants  are  determined  from (8) 
by numerical integration  on  the IBM 370/3032 computer. 
Analytic expressions for these  integrals have been given by 
several authors  for degenerate  four-wave  mixing [4], [5] and 
nondegenerate four-wave  mixing [ 6 ] ,  [7] in the case of equal 
intensity  pump waves. Our numerical results agree with  the 
analytic expressions;  however, our paper presents  a new analy- 
sis of  the  solutions which yield several phenomena  that have 
not previously been predicted.  For  pump waves of  different 
intensity, Dunning and  Steel [8] present an analytic  solution 
for  the degenerate  case, but  do  not analyze the  frequency 
dependence of the reflectivity. The  frequency analysis  yields 
the  phenomenon  that is predicted in this  work.  For  the  non- 
degenerate  case, the  solutions we present have not previously 
been reported. 
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111. COUPLED MODE EQUATIONS 
The values of ai and ~i calculated  in (8) can now be used in 

I -  

the  coupled  mode  equations 

- a3A3 t i ~ ; A z  exp [ i ( A k ) z ]  d A 3  

dZ E 

dA: 21 - .- 

- = -azAz t ~ K ~ A ~  exp [ - i (Ak)z ]  . 
dZ 

(9) 

The  solutions to  the above equations describe the  evolution  of 
waves A and A:.  

We will study  the  dependence  of  the  reflected signal on  the 
various parameters  such as frequency, linear absorption,  and 
pump  intensity  for  the case of  a single input wave Az(0 )  with -30 0 

A 3 ( L )  = 0.  The reflectivity R is defined as 8 

R 1~3(0)12/1~4(0)12 

with its  solution given by 

(10)  Fig. 2. Reflectivity versus the pump detuning 6 for a,& = 60 and I = 
100. The curve is normalized to unity at its maxima. 

R = (  
K :  { 1 - exp [ i ( ~ ,  - s,)L] } 

i {Sl - S2  exp [i(S1 - S 2 ) L ] }  t a3 {exp [i(S, - S2)L]  - 1)  ;2 
where 

SI = ( - i /2 ) (a3  - a: t ink) t ( I / ~ ) [ ~ K ; K ~  - (a3 f G)2 
t ( A / c ) ~  t 2ink(a3 +a:)] 1'2 

S 2  = (-i/2)(a3 - a: f iAk)  - ( 1 / 2 ) [ 4 ~ S K 4  - (a3 t 
t (Ak)2  t 2ink(Cr3 t a:)] V2.  (1 2 )  

Firs:  we  will investigate the degenerate case and discuss 
several new phenomena which are  predicted  by  our  solution 
for R .  This will be followed  by  an analysis of  the  nondegen- 
erate case and  a discussion of  a variety of  interesting  phenomena 
associated with  it. 

IV. DEGENERATE FOUR-WAVE MIXING 
The first new phenomenon  predicted is a  dip in the degen- 

erate ( u  = 0) reflectivity at 6 = 0 when R is plotted versus 6 .  
This is  shown  in Fig. 2 where R is plotted versus 6 for I =  €00, 
T1/T2  = 1/2 ,  and aoL = 60 with I = I l  = I2 for  the case of 
equal intensity  pump waves. The curve is normalized to  unity 
at  its  maximum. As explained below,  the  magnitude  of  the 
dip increases as a. increases. 

To explain this  phenomenon, recall that  the reflectivity R 
can be approximated [ 2 ]  by 

R x IK3LI2(1 - e ) /4&L2 -2ClRL 2 
( 1 3 )  

with 2aR = Re (a3 t a:) for R < 1. In the  degenerate case, 
K 3 = K 4 3 K .  For small a R L < l ,  R ~ ( K L ( ~ ,  but  for large 
~ R L  > 1, R x I K / ~ ~ R  1 2 .  Now I K I  and CVR both  peak  at 6 = 0, 
but  suppose  that O ~ R  is a  more  sharply  peaked  function  than 
I K I .  If at  6 = o ,  aRL is larger than  unity, t h e n R x  I K / ~ R I ' .  

As 161 is  increased,  the reflectivity will initially increase be- 
cause aR will decrease faster  than I K I .  Eventually, 161 will 
increase to the  point  that aRL < 1, implying that R = J K L ~ ~ ,  
and R will then decrease with increasing 161. The  net result 
will be a  dip  at 6 = 0 whose magnitude  depends  both  on  the 
relative dependences of K and aR on 6 and  the value of CYRL 

at 6 = 0. The  important  criterion  for observing a  dip is that 
a~ be more  sharply  peaked  than K around 6 = 0. 

In Fig. 3 ,  I K I  and CXR are both  plotted versus 6 for I = 100. 
The  curves are  both normalized to  unity  at 6 = 0. In  the  satu- 
rated regime, aR is more  sharply  peaked  than J K J ,  and  the 
differences  in the responses  increases with I .  Therefore, we 
would expect t o  see the  dips  shown  in Fig. 2. 

The  second new phenomenon  predicted is a  dip in the reflec- 
tivity at  6 = 0 due to an  asymmetry in the  pump wave intensi- 
ties. This is shown in Fig. 4 where the reflectivity R is plotted 
versus 6 for various values of I , .  The  product I ,  . I 2  = lo4 is 
kept  constant  and aoL = 1 .  The curves are  normalized  to  unity 
for Il = 100  and 6 = 0. As the  asymmetry in the  amplitudes 
of the  pump waves increases, we observe a decrease in  the 
amplitude  of R and  a  dip  at 6 = 0. We have chosen aoL = 1 
to distinguish  this phenomenon  from  the pre,vious one  by 
ensuring that  we are  in the regime where R x ~ K L  1 2 .  

V. NONDEGENERATE  FOUR-WAVE MIXING 
Having considered  the  degenerate case, we  will now  study 

the  nondegenerate case, u # 0. First we demonstrate  that  a 
narrow  bandwidth  optical filter  can  be constructed using non- 
degenerate four-wave  mixing  in the  saturated regime. Using 
aoL = 65, T , / T 2  = 1/2,  and 6 = 8, Fig. 5 shows  the reflectivity 
plotted versus u for I = 36. For  this  choice of 6 ,  the value of I 
used corresponds to a  maximum value of  the reflectivity at  
u = 0. Fig. 5 demonstrates  that  this process  can  yield an  optical 
filter whose bandwidth  depends  on  the inverse of  the  lifetime 
T2,  but  which can be  narrowed even more  by  operating  in  the 
gain regime and  taking advantage of  the  exponential  dependence 
of R on ~ i .  If we choose T2 = 32 ns,  the FWHM bandwidth  of 
the filter is 4 MHz.  By comparison,  the  homogeneous line- 
width of the  transition is 10 MHz for  this value of T 2 .  When 
operated in the  unsaturated regime [ 1 1 ,  the filter's bandwidth 
would then be limited  by  the  homogenebus  linewidth. How- 
ever, with  the use of  saturating  pump waves to achieve  gain, 
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Fig. 4. Reflectivity versus the  pump  detuning 6 for several values of 
Z1 with  the  product ZI = lo4. The curves are  normalized to 
unity at  6 = O'andZI = 100. 

- 2.5 0 2.5 
v 

Fig. 5. Reflectivity versus the signal detuning u for Z = 36  with 6 = 8 
and aoL = 65. 

the filter  has a  subhomogeneous  bandwidth as shown  in Fig. 5. 
Having demonstrated  the  filter  concept, we spend  the remain- 
der of  the  section discussing the ac Stark  effect. 

To simplify the discussion, we can define  a normalized Rabi 
frequency 

Assume that  the  strong  pump waves at  frequency w cause the 
ac Stark  effect. We would then  expect  a resonance in  the 
reflectivity R when v = 0 ,  f v R  as well as the usual resonances 
at fS. The case v = 0 corresponds to  the signal waves and 
pump waves all being resonant  with  one  transition, while the 
cases v = -+VR correspond  to  the  situation  in  which each of 
the  four waves is resonant  with  a  different  transition. This is 
better  illustrated in Fig. 6 where the energy levels of  the  two- 
level system  in  the presence of strong  pump waves are  shown. 
The  strong  pump waves cause a  splitting &ag in both  the 
ground  state  and  the  excited  state. This  figure  shows the case 
w4 = o + fig, a 3  = 0 - .fig, which implies a resonance  at 

To relate  the  Rabi  frequency to  the  pump wave amplitude 
in the case of four-wave  mixing, we consider equal  amplitude 
pump waves. From (5) and  the  definition  of E:, we have 

v = v R .  

1+12 = ?[1  +COS(X+6)]. 

Now, the  most  probable value of  a  cosine is at  its  maximum  or 
minimum so we can  expect  the right side of (1 5) to have either 
0 or  4I/a as its  most probable value. Since 0 results  in no 
Stark splitting, we expect  the  Stark  splitting to be such  that 

Having described the  Stark  effect, we now  consider the calcu- 
lated reflectivity and  compare  it to  our  model. 

Considering the case of  equal  intensity  pump waves first, we 
chose the  parameters  to be ol,L = 1 ,  I = 100,  and T l / T 2  = 1/2. 
Fig. 7 shows the reflectivity R versus v for 6 = 8. In  this  plot, 
we observe a peak at v = 0 and -+S as well as the  sidebands  due 
to  the  ac  Stark  effect  at v = k29.12.  The basic structure  has 
been  observed in  recent  experiments using sodium as the  non- 
linear medium [ 101 . The value calculated  from (16) for VR = 
29.39 agrees very well with  the observed  value. We have also 
compared  the  position  of  the side  peaks to vR as a  function of 
6 and T l / T 2  and also obtain good agreement.  A similar dis- 
cussion has  been  presented  by  Harter  and  Boyd  [7]  for  the 
case of equal amplitude  pump waves. However, they do not 
consider the  important  effect an asymmetry in the  pump wave 
amplitudes  has on the reflectivity, an  effect which manifests 
itself in  the new phenomenon  presented  in this section. 

For  the case of pump waves of different  intensity, Fig. 8 
shows R plotted versus v for I I  = 400, I2 = 25, I ,  . I 2  = lo4, 
6 = 0, and  the  other  parameters unchanged from  the previous 
figure. As Il increases, the  amplitude of the  central peak 
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Fig. 6 .  Energy  levels of the two-level  system in  the presence of strong 
pump waves. 

U 

Fig. 7. Reflectivity  versus  signal  detuning v for 6 = 8  and I = 100. 
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Fig. 8. Reflectivity  versus  signal  detuning v for 11 = 400 and I 2  = 25 
with 6 = 0. 

diminishes. This peak then  splits  into  two peaks  whose  separa- 
tion increases with I , .  

We can  understand this double-peaked  structure in each side- 
band by recalling (7) ,  which gives the  standing wave pattern 
for  pump wave intensity.  In  the case of  asymmetric  pump 
wave amplitudes,  this  equation results  in a  modification  of 
(15) to  

Again using the  fact  that  the cosine function has  k1  as its  most 
probable value, we expect  that  the  normalized  Rabi  frequency 
VR is given by 

Defining vR to be the positive root,  the resonances occur  at 
v = k v R ,  with vR being double valued. Taking  the case II = 
400 andl,  = 25,  this gives vR = 21.21 and 35.36, which agrees 
very well with  the  position  of  the  sidebands which are observed 
in  Fig. 8 at v = 22.23  and 34.72. The observed  peaks coincide 
quite closely with  the resonances expected  from  the calculated 
values of vR.  

VI. CONCLUSION 
This paper has  presented  a general solution  for  nondegenerate 

four-wave  mixing in a  homogeneously  broadened two-level 
system  including the effect of  saturating  pump waves. In  the 
degenerate case,  the analysis predicts several new features in 
the  frequency  dependence  of  the reflectivity. The  first is a  dip 
in the reflectivity at line center  due to the relative power- 
broadened  linewidths  of  the linear absorption  coefficient  and 
the  nonlinear  (third-order)  susceptibility.  The  second  interest- 
ing phenomenon also manifested itself as a  dip  in  the reflec- 
tivity  at  line center.  The  dip results from  the  dependence  of 
the  nonlinear  coupling  coefficient IC on  the  asymmetry in the 
pump wave amplitudes. 

In  the  nondegenerate case, we presented  the  dependence of 
the  reflection  coefficient  on  the signal detuning v .  We demon- 
strated  a  narrow  bandwidth  optical filter  which has  an effi- 
ciency  greater than  unity  and  a  bandwidth less than  the 
homogeneous  linewidth. We considered  in detail  the ac Stark 
effect  and how it generates sidebands  in the filter response 
whose location  depends  on  the  pump wave intensities.  This 
could  be used to  construct  a  tunable  filter which  utilizes this 
effect to  control  the  frequency  of  the  central  bandpass  of  the 
filter. As a  spectroscopic tool, we could use the  location  of 
the  Rabi  sidebands as a measure of  the  dipole  moment of the 
atom. 
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Dispersion-Induced Instability in C 
Laser Oscillators 

MONICA L. MINDEN AND LEE W. CASPERSON, MEMBER, IEEE 

Abstract-A CW-pumped laser with a short  photon cavity lifetime 
may  show an unstable  output  in the form of spontaneous pulsations or 
noise. In this paper,  a model is developed which reconciles  previous 
studies  of  unstable behavior in homogeneously and inhomogeneously 
broadened lasers. Specific regions of  instability are predicted  for  xenon 
lasers, and it is concluded that some degree of inhomogeneous  broaden- 
ing makes the instability much  more  likely to be observed. 

I 
I. INTRODUCTION 

T has  been  shown  that  strong dispersion about  an oscillating 
laser mode can cause the  mode  to split into a number of sub- 

modes,  each  of which satisfies the  same oscillation condition 
as the original mode [ l ]  . Beating between  the  modes  can 
result  in unstable  operation  or  the  generation  of  spontaneous 
pulses and is,  in  a  sense,  a form  of self-mode-locking. How- 
ever, the  repetition  rate  of  the pulses is related to  the cavity 
losses and  to  the  fundamental  lifetimes  and  Iinewidths of the 
laser medium  rather  than to  the  empty cavity mode spacing. 

Manuscript received March 24,  1981;revised May 24,1982. 
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The existence of such pulsations has  been demonstrated  in 
experiments  with 3.5 1 Dm xenon lasers [2] -[4]  and in direct 
numerical integration  of  the semiclassical laser equations [5] . 
Similar and  perhaps  related periodic pulsation  effects have 
been  observed in several other laser systems. In COz, for 
example,  spontaneous pulsations are well known,  but  they 
have  been attributed to transverse mode  beating [6] or  to a 
saturable  absorption mechanism [ 7 ] .  Intense  but  aperiodic 
fluctuations have also been observed in high gain 3.39 prn 
helium-neon  lasers [ 3  J , [8] . 

Conditions  under  which semiclassical instabilities  may  occur 
have been given in  many places,  including [ 1 ] , [ 91 - [ 131 . One 
general condition  for  instability  that  has been obtained  in these 
analyses can be written  approximately as 

t, < (27rAvh)-l (1) 

where t, is the  photon  lifetime within the cavity and Avh is 
the  homogeneous  linewidth. Each of  the studies,  however, 
has  incorporated  certain simplifying assumptions which make 
further  comparison  of results somewhat  difficult. Risken and 
Nummedal [ 101 explored self-pulsing  in homogeneously  broad- 
ened lasers using the  assumption  that  the  population  relaxation 
phenomena can be characterized by a single decay rate. Yaku- 
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