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Nondeterministic Chaos, and the Two-fold Singularity in Piecewise Smooth

Flows∗

Alessandro Colombo† and Mike R. Jeffrey‡

Abstract. A vector field is piecewise smooth if its value jumps across a hypersurface, and a two-fold singularity
is a point where the flow is tangent to the hypersurface from both sides. Two-folds are generic in
piecewise smooth systems of three or more dimensions. We derive the local dynamics of all possible
two-folds in three dimensions, including nonlinear effects around certain bifurcations, finding that
they admit a flow exhibiting chaotic but nondeterministic dynamics. In cases where the flow passes
through the two-fold, upon reaching the singularity it is unique in neither forward nor backward
time, meaning the causal link between inward and outward dynamics is severed. In one scenario
this occurs recurrently. The resulting flow makes repeated, but nonperiodic, excursions from the
singularity, whose path and amplitude is not determined by previous excursions. We show that this
behavior is robust and has many of the properties associated with chaos. Local geometry reveals
that the chaotic behavior can be eliminated by varying a single parameter: the angular jump of the
vector field across the two-fold.

Key words. two-fold, sliding, Filippov, nondeterminism, chaos, bifurcation

AMS subject classifications. 34C23, 37G10, 37G35

DOI. 10.1137/100801846

1. Introduction. Piecewise smooth vector fields have appeared throughout the history of
dynamical systems as models of mechanical and electronic devices (e.g., [1]) and, more recently,
have seen growing use in fields such as ecology, economics, and neuroscience. Their spreading
use has naturally been accompanied by interest in their generic mathematical and dynamical
properties, which have been the subject of a number of recent books (e.g., [10,18,22,32]). Their
dynamics were formalized by Filippov [14], using differential inclusions (set-valued differential
equations; see [3]) to overcome the problem of indefiniteness of the vector field on the surfaces
of discontinuity.

Although two-dimensional piecewise smooth systems are now rather well understood (see,
for example, [14, 21]), a general understanding of dynamics in three or more dimensions is
crucially obstructed by the appearance of the so-called two-fold singularity [30]. The two-fold
is a simple topological singularity that is generic in piecewise smooth systems with three or
more dimensions. This implies that it may well be commonplace in systems of a piecewise
smooth nature. Contrarily, two-folds are neither well known nor well understood, with regard
to either the theory of their dynamics or the frequency of their appearance in physical systems.
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424 ALESSANDRO COLOMBO AND MIKE R. JEFFREY

Figure 1. Dynamics at a switching manifold in a three-dimensional piecewise smooth system. The vector

field switches between f+ and f−. An orbit meeting the manifold may either: (i) cross through it, (ii) reach

it in finite time and then follow the sliding vector field fs, or (iii) escape it in finite time, though it may slide

along the manifold for some time before escaping.

The purpose of this paper is to present, in an organic and consistent framework, all existing
results regarding the local dynamics near the two-fold. This also includes some novel results
about particular forms of the two-fold that reveal its role in the sudden onset of periodic orbits
and recurrent nondeterministic dynamics.

The two-fold was already well defined in [14]. In a piecewise smooth vector field, disconti-
nuities are assumed to occur across a hypersurface called the switching manifold. Since it is a
hypersurface, we can speak of the manifold as locally having two sides, and generically there
may exist points where the vector field is quadratically tangent to one side of the manifold
or the other. We call such a tangency a fold, because in the projection along the flow the
switching manifold has a simple fold. This assumes the system to be at least two-dimensional.
In higher dimensions there may generically exist points where two folds intersect transversely,
so that the vector field is tangent to both sides of the manifold, and this simple object is a
two-fold. A two-fold is an important organizing center because it brings together all of the
basic forms of dynamics possible in a piecewise smooth system. Filippov [14] described three
basic forms of dynamics that would occur at a switching manifold: crossing, sliding, and es-
caping, depending on the orientation of the vector field either side of the switching manifold,
as illustrated in Figure 1. Crossing, shown in Figure 1(i), occurs where the component of the
vector field normal to the switching manifold has the same direction on both sides. In the two
other cases the normal component of the vector field switches direction, so that the vector
field is either directed towards the switching manifold, giving sliding as in (ii), or is directed
away from the manifold, giving escaping as in (iii).

At a fold (see Figure 2) the vector field on one side of the switching manifold changes its
normal direction, forming a boundary between crossing regions and sliding or escaping regions.
At a two-fold, the vector fields either side of the manifold both change their normal direction,
meaning that regions of all three dynamical behaviors—crossing, sliding, and escaping—meet,
and their boundaries intersect to form the singularity.

Escaping dynamics (see Figure 1(iii)) is typically neglected on the basis that it simply
constitutes a time-reversal of sliding, and that escaping regions cannot be reached by a sys-
tem in forward time, making consequences of forward time nonuniqueness in these regions
irrelevant [10, 11, 27]. This assumption is incorrect at a two-fold, which can channel sliding
dynamics into the escaping region. This gives whole families of orbits robust access to regions
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Figure 2. Tangencies in a piecewise smooth system, showing: (i) a visible fold, (ii) an invisible fold; these
form the boundaries between sliding (shaded) and crossing (unshaded) (reverse arrows to replace sliding with
escaping). (iii) Folds associated with the upper and lower fields cross to form a two-fold, where both vector fields
are tangent to the switching manifold (in the case illustrated, both folds are invisible).

of phase space that are infinitely repelling. This counterintuitive dynamical behavior, noticed
in Filippov’s seminal work [14], seems to have been overlooked ever since, though a similar
effect was discovered in the framework of nonstandard analysis [4] as the so-called canard
phenomenon. Canards are now a popular topic in singular perturbation theory [13,28], with
numerous applications, of which a few examples are in neuron modelling [24], chemical dy-
namics [6, 26], gas pressure dynamics [5], and ecology [9]. Despite qualitative similarities in
these approaches, their connection to the two-fold is as poorly understood as the two-fold
itself. These connections are not the subject of this paper, and we restrict our interest to
understanding the two-fold in the context of generic piecewise smooth dynamical systems.

The study of dynamics around a two-fold has been mainly limited to a lowest order
approximation in three dimensions [14,16,29,30]. Such local analysis reveals how an initially
smooth flow far from a discontinuity can evolve toward a state where its forward evolution
is set-valued. In this paper we review these results and extend them by carrying out a
comprehensive analysis of the nonlinear behavior of two-folds in three dimensions. In so
doing, we determine the invariant sets that are present near the two-fold and decode their
complex dynamics.

In section 2 we define the two-fold singularity and its three types. We discuss the first of
these, the invisible two-fold, or Teixeira singularity, in detail in section 3; we analyze its sliding
and crossing dynamics separately in sections 3.1 and 3.2, using them to reconstruct the full
system in sections 3.3 and 3.4. We briefly discuss the other forms, the visible (short for visible-
visible) two-fold in section 4, and the visible-invisible two-fold in section 5, with a remark
on their bifurcations in section 6. In section 7 we numerically simulate some particularly
interesting dynamics predicted in section 3, with some closing remarks in section 8.

2. The three flavors of two-fold. Consider a three-dimensional piecewise smooth system
of ordinary differential equations

(2.1) ẋ = f+(x) when h(x) > 0, ẋ = f−(x) when h(x) < 0,

where the dot denotes differentiation with respect to time t ∈ R and where h(x) is a regular
scalar function of the state vector x = (x0, x1, x2) ∈ R

3. For simplicity we set h(x) = x0, since
any piecewise smooth system, in a region where h(x) = 0 defines a manifold, can be put into
this form through the appropriate change of variables [14,30]. Then, x0 = 0 is the switching
manifold. Following Filippov’s definition [14], the solution of (2.1) at the switching manifold



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

426 ALESSANDRO COLOMBO AND MIKE R. JEFFREY

includes all solutions of the differential inclusion

(2.2) ẋ ∈ f := f− + λ(f+ − f−),

where λ = 0 when h(x) < 0, λ = 1 when h(x) > 0, and λ ∈ [0, 1] when h(x) = 0, so that
f is a set-valued convex combination of f+ and f− where h(x) = 0. In practice, when the
components of f+ and f− normal to the switching manifold have opposite direction, f admits
a solution that lies on the switching manifold and satisfies the system given by

(2.3) ẋ = f s(x) when x0 = 0,

where the sliding vector field, f s, is defined as

(2.4) f s = f− +
Lf−h

Lf−h− Lf+h
(f+ − f−).

The symbol Lf denotes the Lie derivative along the flow of a field f , given by Lf = f ·∇ = ẋ· d
dx
.

Let L2
f denote the second Lie derivative L2

f = (Lf )
2. The dynamics in a general piecewise

smooth system is then a composite of the dynamics of f+, f−, and f s. We make the following
distinctions.

Definition of orbits and flow. An orbit segment is any smooth path x = x(t) satisfying
(2.2), entirely contained in one of the regions {x : h(x) > 0}, {x : h(x) < 0}, or {x : h(x) =
0}. An orbit is any continuous path x(t) that satisfies (2.2), formed by concatenating orbit
segments. The flow of (2.2) through a point x̂ at time t is given by all points x(t + τ) with
x(τ) = x̂ for some τ ∈ R, x(t) satisfying (2.2). In the following, by the flow we mean the flow
of (2.2) unless otherwise stated.

An important consequence of this definition is that the flow through a point x̂ in a sliding
region is not unique, because x̂ always belongs to a one-parameter family of orbits (unless it is
an equilibrium). For example, the six orbits shown in Figure 1(ii) each overlap in the sliding
region, so through any point x̂ on the overlap the flow is nonunique; the same applies to the
six orbits shown in Figure 1(iii).

Now let us assume that both f+ and f− have quadratic contact with the switching man-
ifold at the origin, that is,

Lf+h(0) = 0 and L2

f+h(0) $= 0,(2.5a)

Lf−h(0) = 0 and L2

f−
h(0) $= 0.(2.5b)

Let us also require that neither f+ nor f− has equilibria near the origin,

(2.6) f+ $= 0 and f− $= 0,

and that the pair of curves given by Lf+h = 0 and Lf−h = 0 on h = 0 intersect transversely
at the origin,

(2.7) det
(

∇h(0), ∇Lf+h(0), ∇Lf−h(0)
)

$= 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONDETERMINISTIC CHAOS AND THE TWO-FOLD 427

A point satisfying either (2.5a) or (2.5b) on x0 = 0 is a fold. A point satisfying both conditions
(2.5), and also satisfying the nondegeneracy conditions (2.6)–(2.7), is a two-fold.

The sign of the second Lie derivative determines whether a fold is visible, meaning the
vector field curves away from the switching manifold because L2

f+h(0) > 0 or L2

f−
h(0) < 0, or

invisible, meaning the vector field curves towards the switching manifold becauseL2

f+h(0) < 0
or L2

f−
h(0) > 0. These are illustrated in Figure 2(i) and (ii). If at least one fold is visible, the

dynamics is relatively easy to analyze, and these cases, which we call the visible and visible-
invisible two-folds, are discussed in sections 4–5. If both folds are invisible, then the flows of
f+ and f− both map orbits repeatedly back to the switching manifold, and the dynamics is
rather more rich, earning this invisible two-fold the distinguished name of a Teixeira singularity
(after the author of [30], who brought this singularity to prominence). Therefore the Teixeira
singularity is our main subject of interest.

3. The Teixeira singularity. In this section we begin by summarizing a linear approxima-
tion of the Teixeira singularity previously studied in [14,16,30]. In particular, (3.1)–(3.6) and
(3.8)–(3.11) summarize results obtained in [16]. In the remainder of section 3 we introduce
higher order terms to the approximation, which unfold the bifurcation found in [16].

Following on from section 2, local to a two-fold where L2

f+h(0) < 0 and L2

f−
h(0) > 0,

the system (2.1) can be simplified by two changes of variables and a time rescaling. (For a
lengthier description than we give below, see [16].) First, given (2.7), we can make a smooth
coordinate transformation that places the folds associated with f− and f+ along the x1 and
x2 axes, respectively. Then, by rescaling x1 and x2, and rescaling time separately above and
below the switching manifold—this changes the speed of the trajectories of f+ and f− but
preserves both of their phase portraits as well as that of f s—we arrive at the local form near
the origin:

f+ =





−x1 +O(x0, ‖x1, x2‖
2)

1 +O(‖x‖)
V + +O(‖x‖)



 ,(3.1a)

f− =





x2 +O(x0, ‖x1, x2‖
2)

V − +O(‖x‖)
1 +O(‖x‖)



 ,(3.1b)

where V ± are real constants. Geometrically, V + (respectively, V −) measures the cotan-
gent of the angle θ+ (θ−) between the vector field f+ (f−) and its fold line Lf+h|x0=0 = 0
(Lf−h|x0=0 = 0). These can be retrieved for a general vector field at a Teixeira singularity
from the formulae

V + = cot θ+ =
Lf+Lf−h

√

−(L2

f+h)(L
2

f−
h)

,(3.2a)

V − = cot θ− =
−Lf−Lf+h

√

−(L2

f+h)(L
2

f−
h)

,(3.2b)

evaluated at the two-fold.
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Figure 3. Dynamics near a Teixeira singularity: (i) orbits outside the switching manifold curve around
the folds and cross the manifold in CR1 and CR2, (ii) phase portraits of the sliding dynamics. At the origin
the sliding vector field fs is set-valued, with elements pointing into the escaping region ES when V +V − > 1
and V +, V − < 0. In this case a one-parameter family of orbits intersects the origin along a unique direction
(an eigenvector of f̃s from (3.4)). In all other cases the set-valued fs has elements which point into the sliding
region SL, and only a single orbit that intersects the singularity.

The dynamics of (3.1) is illustrated in Figure 3(i) and is at first glance very simple. The
flow of f+ maps initial points from the region {x0 = 0, x1 < 0} to the region {x0 = 0, x1 > 0},
affecting a reflection φ+ in the plane x1 = 0 along the direction (0, 1, V +) + O(‖x‖). Like-
wise, the flow of f− maps initial points from the region {x0 = 0, x2 < 0} to the region
{x0 = 0, x2 > 0}, affecting a reflection φ− in the plane x2 = 0 along the direction (0, V −, 1) +
O(‖x‖).

The switching manifold is divided into quadrants as illustrated in Figure 3: the sliding

region {x0 = 0, x1 > 0, x2 > 0} (SL in Figure 3), the escaping region {x0 = 0, x1 < 0, x2 < 0}
(ES in Figure 3), and the crossing regions {x0 = 0, x1x2 < 0} (CR1 and CR2 in Figure 3),
separated by the folds. In each crossing region, CR1 and CR2, the dynamics can be analyzed
by a second return map, the concatenation of the maps φ+ and φ−. A sequence of crossings
will terminate in forward time if it maps into the sliding region SL, where both f+ and f−

point toward the switching manifold. Conversely it has initial points in the escaping region
ES, where both vector fields point away from the manifold.

Through CR1 and CR2 the flow is continuous and invertible, but orbits have vertices where
they traverse the switching manifold. The flow through any point in SL is defined uniquely
in forward time and contains a segment of sliding, but in reverse time it consists of an infinite
number of orbits arriving from x0 > 0 and x0 < 0, and hence the flow is set-valued in reverse
time. In ES the flow is defined uniquely in reverse time, but in forward time it is set-valued,
generating an infinity of orbits that escape into x0 > 0 and x0 < 0.

Thus we can study the flow around the singularity in terms of two dynamical systems on
the switching manifold: (i) continuous-time dynamics of sliding orbit segments, which are so-
lutions of f s in SL and ES and which live in the two-dimensional switching manifold, and (ii)
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discrete-time dynamics of crossing orbit segments, which wind around the singularity inducing
a return map on the switching manifold. In the next two sections we analyze these separately
and can restrict our analysis to the x1-x2 plane. We reassemble the three-dimensional dynam-
ics in section 3.3.

3.1. Dynamics in the sliding and escaping regions. Evaluating (3.1) at x0 = 0, and
substituting into (2.4), we obtain the explicit expression for the sliding vector field:

(3.3) f s =













0

V −x1 + x2 +O(‖x1, x2‖
2)

d(x)
x1 + V +x2 +O(‖x1, x2‖

2)

d(x)













,

where d(x) = x1+x2+O(‖x1, x2‖
2). This vector field is undefined at the origin since, f+ and

f− both being tangent to the switching manifold at 0, all vectors in their convex combination
are tangent to the switching manifold. To overcome this, following [14,30], we define a planar
regularized vector field, f̃ s, by multiplying f s by d(x) and omitting the trivial x0 component,

(3.4) f̃ s(x1, x2) =

(

V − 1
1 V +

)(

x1
x2

)

+O(‖x1, x2‖
2).

Because d(x) > 0 in SL and d(x) < 0 in ES, f̃ s and f s have the same phase portrait in the
SL, but the same phase portrait with time reversed in ES. Additionally, because d(0) = 0, f̃ s

has an equilibrium at the origin, where (3.3) is not well defined. These facts are vital to take
into account when translating the dynamics of f̃ s into those of the original vector field f s.
The equilibrium of f̃ s at the origin has eigenvalues

(3.5) µ± =
1

2

(

V + + V −

±

√

(V + − V −)2 + 4

)

,

and the associated eigenvectors are

(3.6)

(

µ± − V +

1

)

.

If the eigenvalue µi has negative (respectively, positive) real part, we say it and its associated
eigenvector are stable (unstable). Some simple calculations show that one eigenvector lies
always in SL and ES, and the other lies in CR1 and CR2; they can never be tangent to either
of the folds since this would correspond to a cubic tangency of f+ or f− at the origin (called
a cusp point), excluded by (2.5). In particular,

(i) if V +, V − < 0 and V +V − > 1, both eigenvectors are stable;
(ii) if V +V − < 1, the eigenvector in SL/ES is unstable and the other is stable;
(iii) if V +, V − > 0 and V +V − > 1, both eigenvectors are unstable.
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Figure 4. An illustration of nondeterminism at the Teixeira singularity. Orbits which are initially smooth

evolve toward a switching manifold, eventually enter the sliding region SL, and evolve toward the singularity.

Open sets of initial conditions thus evolve through the singularity in finite time and are ejected as a one-

parameter family of orbits in the escaping region ES.

Moreover, when the eigenvector in SL/ES is stable, it is associated with the weak stable
eigenvalue, so that sliding orbit segments are asymptotically attracted to it as they approach
the singularity.

The different cases are illustrated in Figure 3(ii). Referring to the definition of orbits and

flow in section 2, the phase portraits in Figure 3(ii) imply that in case (i) orbits cross the
singularity from SL to ES, while in cases (ii)–(iii) orbits cross from ES to SL. In each case orbits
cross the two-fold singularity in finite time. In case (i) in particular, orbits with an initial
interval of smooth evolution away from the discontinuity can enter SL and evolve toward the
singularity (Figure 4), whereupon their forward evolution is multivalued. Importantly, such
orbits reach the singularity in finite time, and as they cross it all information about their
initial conditions is lost. By this mechanism, forward time uniqueness is lost for orbits that
converge on the singularity. One purpose of the present paper is to reveal the dynamical
implications of this often overlooked loss of uniqueness.

We can determine whether f s is structurally stable by considering f̃ s. The Jacobian
of (3.4) at 0 is singular when V +V − = 1, and a quick inspection of (3.1) shows that this
corresponds to f+ and f− being antiparallel (if V +, V − < 0) or parallel (if V +, V − > 0)
at the origin. The eigenvector (−V +, 1), associated with µ

−
= 0, always points into SL if

V +, V − < 0 and into one of the crossing regions CR1 or CR2 if V +, V − > 0. Only the case
when V +, V − < 0 results in a structurally unstable phase portrait of the sliding vector field
when V +V − = 1. In this case, the behavior of the orbits of f̃ s around the origin is captured
by the dynamics in the one-dimensional center manifold with Taylor expansion

(3.7) u̇ = (V +V −

− 1)u+ a2u
2 +O(u3),

which exhibits a transcritical bifurcation at V +V − = 1 (details about this normal form are
given in Appendix A). Notice that, for f s, this means that there exists a single equilibrium
that crosses the singularity when V +V − = 1, changing stability in the process. Since equi-
libria of the sliding vector field f s are not zeros of f+ or of f−, they are commonly called
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Figure 5. The complete catalogue of local dynamics around a Teixeira singularity when p = V +V −

− 1 " 0
is obtained by composing the possible phase portraits of sliding (s1), (s2), and crossing (c1), (c2s,u), (c3s,u).
(s1), (s2) show the two possible phase portraits in the sliding and escaping regions SL and ES as the bifurcation
parameter p changes sign. (c1), (c2s,u), (c3s,u) depict the intersections of orbits with the crossing regions CR1

and CR2 as p changes sign. (These are derived from the unfoldings in [12].) The crossing maps in (c2s) and
(c3s) have a stable fixed point of node and focus type, respectively, while the dual cases in (c2u) and (c3u) have
unstable fixed points. Altogether, composing cases (s1), (s2) with cases (c1), (c2s,u), (c3s,u), ten qualitatively
different portraits are obtained.

pseudoequilibria [15]. Assuming that the positive u semiaxis lies in SL, the pseudoequilibrium
of f s is one of the following:

(s1) if a2 > 0 in (3.7), a saddle in ES for V +V − > 1 and V +, V − < 0, becoming a stable
node in SL when V +V − < 1 or V +, V − > 0;

(s2) if a2 < 0 in (3.7), a saddle in SL for V +V − > 1 and V +, V − < 0, becoming an unstable
node in ES when V +V − < 1 or V +, V − > 0.

These are illustrated in Figure 5.

3.2. Dynamics in the crossing regions. In the crossing regions CR1 and CR2, orbit
segments of f+ and f− induce maps φ+ and φ− from the switching manifold to itself, across
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the folds. The vector fields (3.1) truncated to lowest order are easily integrated to obtain the
maps

φ̃+ : R− ×R "→ R
+ × R =

(

−1 0
−2V + 1

)(

x1
x2

)

+ O(‖x1, x2‖
2)(3.8a)

and

φ̃− : R× R
− "→ R× R

+ =

(

1 −2V −

0 −1

)(

x1
x2

)

+ O(‖x1, x2‖
2).(3.8b)

The full maps φ+ and φ−, whose Taylor expansions to the third order are reported in Appendix
B, are then retrieved as generic perturbations of these, by imposing that they preserve the
corresponding fold lines and are involutions (since a map in the neighborhood of a fold is an
involution; see, e.g., [2]).

To understand the dynamics of orbits that wind around the singularity, crossing through
CR1 and CR2, we can study their Poincaré map from a crossing region (either CR1 or CR2)
back to itself; this map is obtained as a composition of φ+ and φ−. Let us consider the map
φ = φ+◦φ− (similar arguments follow if we choose instead the map φ−◦φ+). The domain of φ
is the set D ⊆ CR1 such that φ−(D) ⊆ CR2. Orbits with initial conditions in D cross through
CR2 and return to CR1 or SL. The complement of D in CR1 consists of initial conditions that
are mapped into SL by φ−. This implies that D lies between the negative x2 axis and the
preimage of the positive x2 axis under the map φ−; since φ− is an involution, the preimage is
a curve given by φ−(x1 = 0, x2 > 0). The Poincaré map thus obtained is

(3.9) φ :

(

x1
x2

)

"→

(

−1 2V −

−2V + 4V +V − − 1

)(

x1
x2

)

+O(‖x1, x2‖
2).

This map has a fixed point at the origin, with eigenvalues

(3.10) λ± = 2V +V − − 1± 2
√

V +V −(V +V − − 1).

When V +V − > 1 or V +V − < 0 the fixed point is of saddle type. When 0 < V +V − < 1 it is a
center, with complex conjugate eigenvalues on the unit circle. The corresponding eigenvectors
are

(3.11)

(

2V −

1 + λ±

)

.

As long as V +V − < 1 or V +, V − > 0, it was proved in [16] that all orbits sufficiently close
to the singularity reach SL after a finite number of crossings. A bifurcation of the crossing
dynamics occurs when V +V − = 1 and V +, V − < 0. At the bifurcation, the Jacobian of
the Poincaré map at the origin is nonsemisimple (nondiagonalizable) and has two eigenvalues
equal to 1. As a consequence of φ+ and φ− being involutions, this corresponds to a degenerate
1:1 resonance bifurcation of the map. Near the bifurcation, the map can be reduced to the
normal form

(3.12)
u1 "→ u1 + u2 +O(‖u‖4),
u2 "→ 4pu1 + (1 + 4p)u2 +B11u1u2 +B30u

3
1 +B21u

2
1u2 +B03u

3
2 +O(‖u‖4),
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with

(3.13) p = V +V − − 1,

through a series of changes of variables and parameters which are reported in Appendix C.
At the bifurcation and at the origin, the u1 axis lies along the vector direction (V −, 1), the
singular eigenvector of the Jacobian of φ, and the positive direction of u1 points into CR2,
while the u2 axis is tangent to the x1 axis in the original coordinates. The normal form has
a fixed point at the origin for all values of p, while two more fixed points, located at

(3.14) u1 = ±2

√

−
p

B30

, u2 = 0,

emerge when −p/B30 becomes positive. The positivity of the eigenvalues (3.10) implies that
the negative u1 axis intersects CR1 and lies inside the domain of the Poincaré map φ, implying
that the fixed point at u1 = −2

√

−p/B30 corresponds to a crossing periodic orbit near the
singularity. The eigenvalues of this fixed point are

(3.15) 1−B11

√

−
p

B30

±

√

−
p

B30

(8B30 +B2
11) +O(p).

Depending on the values of B11 and B30, the following are possible:
(c1) if B30 > 0, the two eigenvalues are real, one positive and one negative;
(c2) if B30 < 0 and |8B30| < B2

11, both eigenvalues are real, inside the unit circle ifB11 > 0,
outside the unit circle otherwise;

(c3) if B30 < 0 and |8B30| > B2
11, the eigenvalues are complex conjugate, inside the unit

circle if B11 > 0, outside otherwise.
The orbits of map (3.12) are approximated, for p = 0, by the unit-time shift of a flow

which is equivalent to

(3.16)

ν̇1 = ν1 +O(‖ν‖4),

ν̇2 = B11ν1ν2 +B30ν
3
1 +

(

B2
11

2
+B21 − 3B30

)

ν21ν2 +O(‖ν‖4),

as explained in Appendix D. This degenerate (codimension-three) Bogdanov–Takens normal
form is discussed in [19], and it is unfolded in three parameters in [12]. In our case, changing
p around 0, we explore a one-dimensional curve of parameters through the three-dimensional
unfolding. In [12] the cases (c1), (c2), (c3) are called respectively the saddle, elliptic, and
focus cases, after the topological type of the origin when p = 0. Overall, cases (c1), (c2), (c3)
give rise to the following bifurcation scenarios of the crossing dynamics in a neighborhood of
the origin:

(c1) For p > 0 the singularity is a saddle of the map φ. For p < 0 a saddle cycle emerges
from the singularity, and the singularity is a center of the map φ.

(c2) For p < 0 the singularity is a center of the map φ. For p > 0 a node cycle emerges from
the singularity, and the singularity is a saddle of the map φ. At p = 0 the crossing
map at the singularity can exhibit an elliptic sector (a region within which every orbit
converges on the singularity both forward and backward in time).
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(c3) For p < 0 the singularity is a center of the map φ. For p > 0 a focus cycle emerges
from the singularity, and the singularity is a saddle of the map φ.

Caution must be taken in studying the dynamics of the system (2.1), since the map (3.12)
applies only on the domain D ⊂ CR1 (described above (3.9)), from which orbits return to
CR1. Finally, some issues remain unaddressed regarding the invariant sets and the structural
stability of crossing dynamics. The bifurcations that must occur at the transition between
scenarios (c1) and (c3), for p near 0 suggest the existence of other structures, e.g., quasiperiodic
orbits, that may emerge as p crosses 0. Also, as we have seen, when p < 0 the map (3.9) is a
(nonlinear) rotation from ES to SL. A structurally unstable scenario occurs when the image
of the border of ES under φ (or multiple iterations of φ) is tangent to the border of SL. This
is associated with a change in the number of iterations it takes to map points from the border
of ES into SL. This issue is the subject of ongoing study.

3.3. Reassembling the Teixeira singularity. Once the dynamics of both the sliding, the
escaping, and the crossing regions have been decoded, they can be stitched together to obtain
the overall portrait of orbits around the singularity. The dynamics in SL is completely de-
scribed in section 3.1 and can be of only two types, (s1) and (s2) in Figure 5, depending on the
sign of parameter a2 in (3.7). The dynamics in CR1 and CR2 is derived directly from the map
(3.12). The changes of variables that place the generic Poincaré map (3.9) in the form (3.12)
ensures that, for p sufficiently close to 0, the positive u1 axis lies strictly inside the domain D

of the map φ. Hence both the origin and the negative solution of (3.14) are fixed points of the
Poincaré map. In particular, in terms of the dynamics of system (2.1), the origin is a limit
point (backward or forward in time) of crossing orbits, while the solution (3.14) corresponds
to a crossing cycle whose type (focus/node/saddle, stable/unstable) depends, as we have seen
in section 3.2, on the coefficients B30 and B11 of the normal form.

Combining all of these considerations, we can sketch the crossing orbits of system (2.1)
(or rather of their intersections with the switching manifold) as in Figure 5, cases (c1)–(c3).
The depicted phase portraits are obtained by taking the dynamics of map (3.12), restricted
to CR1, and reflected in the line x1 = x2. In cases (c2) and (c3) Figures 5 the map contains a
node or focus, which can be either stable ((c2s) and (c3s)) or unstable ((c2u) and (c3u)). The
complete dynamics around the Teixeira singularity is obtained by stitching together any one
of the portraits (s1), (s2) for the sliding dynamics, with any one of the portraits (c1)–(c3) for
the crossing dynamics, for a grand total of ten qualitatively different phase portraits.

It should be remarked that, although we derived the crossing dynamics from generic forms
for the maps φ± in section 3.2, the crossing dynamics can be derived directly by integrating
a local series expansion of the vector fields f±, allowing them to be compared directly to the
sliding vector field f s. From the (lengthy) expressions obtained for φ±, no conditions have
been found that prohibit any of the ten possible combinations of sliding portraits (s1), (s2),
with crossing portraits (c1)–(c3). Indeed, in Table 7.1 of section 7 we give examples that
exhibit each one of the ten possible portraits.

A number of interesting qualitative features of the dynamics can now be directly inferred
from Figure 5. For p < 0, the crossing dynamics near the singularity is similar in each case
(c1)–(c3), in that a finite number of crossings take orbits from ES to SL. Once they reach SL,
the vector fields in (s1)–(s2) come into effect, and for p < 0 these show that all orbits evolve
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Figure 6. Composite of the sliding portrait (s1) and the crossing portrait (c3u) in Figure 5. For p < 0 all
orbits reach the sliding region, and a crossing orbit is illustrated. For p > 0 this system has an invariant set
near the singularity, generated by the forward evolution of the hatched region in ES. The limit cycle (fixed point
of the map φ) is shown.

away from the singularity, either converging toward a pseudonode in (s1), or leaving the local
neighborhood in (s2).

For p > 0, however, (c1) is fundamentally different from (c2) and (c3). In (c1), crossing
orbits leave the neighborhood of the singularity in either forward or backward time, and
importantly, no crossing orbits exist locally that pass from ES to SL. In (c2) and (c3), there
always exist crossing orbits that can locally pass from ES to SL. The crossing map contains a
fixed point of node or focus type. If the fixed point is stable ((c2s) or (c3s)), then all crossing
orbits that emerge from ES sufficiently close to the singularity converge toward the fixed point.
If the fixed point is unstable ((c2u) or (c3u)), then all crossing orbits sufficiently close to the
singularity will reach SL in finite time.

Clearly p > 0 produces richer crossing dynamics than p < 0, but when the associated
sliding dynamics is taken into account, the full implications of the Teixeira singularity become
apparent. In (s1) and (s2), for p > 0, all sliding orbits sufficiently near the singularity pass from
SL to ES. In (s2), sliding orbits asymptotic to the unstable manifold of a pseudosaddle either
approach the singularity in finite time or leave the local neighborhood. In (s1), however,
all local sliding orbits converge on the singularity in finite time. The path followed by an
orbit that enters ES through the singularity is then not uniquely determined, as explained in
section 3.1.

3.4. Nondeterministic chaos. A particularly interesting case is revealed if we take the
crossing portraits (c2u) or (c3u) and combine them with the sliding portrait (s1), as exemplified
in Figure 6 and the following result.

Proposition 3.1. If a system exhibits a Teixeira singularity with the crossing portraits (c2u)
or (c3u) with p > 0, and the sliding portrait (s1), then locally

- all crossing orbits reach SL, with the exception of the unstable limit cycle,

- all sliding orbits reach ES via the singularity, and therefore

- all orbits visit the singularity recurrently.
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The forward time evolution from the singularity is set-valued, however, and therefore
nondeterministic. We can characterize this behavior by saying that the system exhibits a
nondeterministic form of chaos. The term “nondeterministic chaos” has previously appeared
in [8] in a somewhat different setting, though referring to a similar loss of uniqueness in which
an infinity of orbits recurrently pass through a single point in finite time. To properly define
this unfamiliar notion, we can begin from the definition of deterministic chaos available in
many standard texts. The definition provided in [23] is as follows.

Definition 3.2. A flow ψ is chaotic on a compact invariant set X if ψ is transitive and

exhibits sensitive dependence on X.

Indeed, the system described in Proposition 3.1 has an invariant setX near the singularity,
generated by the forward evolution of the region in ES enclosed by the folds and the unstable
manifold of the pseudosaddle (including the pseudosaddle; see hatched region in Figure 6).
To define transitivity and sensitivity to initial conditions, we adapt the definition given in [23]
to apply to a set-valued flow. First, as in [23], we say the following.

Definition 3.3. A flow ψ is topologically transitive on an invariant set X if for every pair

of nonempty open sets U and V in X there is a t > 0 such that ψt(U) ∩ V "= ∅.

This is satisfied by the system described in Proposition 3.1 since any point x ∈ U reaches
the singularity in finite time when its forward evolution generates the whole setX. Then, the
definition of sensitivity in [23] is adapted to apply to a set-valued flow as follows.

Definition 3.4. Let Bε(x) be a ball of radius ε centered on x. A set-valued flow ψ exhibits

sensitive dependence on an invariant set X if there is a fixed r such that for each x ∈ X and

any ε > 0 there is a nearby y ∈ Bε(x) ∩X such that the diameter of ψt(x) ∪ ψt(y) is greater

than r for some t ≥ 0.

The only difference between this definition and that in [23] is that it uses the diameter
of ψt(x) ∪ ψt(y) instead of the distance ‖ψt(x) − ψt(y)‖. The two definitions coincide for
single-valued flows, making this a natural extension for a set-valued flow. For our set-valued
flow, the forward evolution of any point in X generates the whole invariant set after crossing
the singularity, the flow in Proposition 3.1 exhibits sensitive dependence on initial conditions,
and X is a nondeterministic chaotic set.

In section 7 we simulate a system exhibiting nondeterministic chaos and provide examples
of systems exhibiting of all other types of Teixeira singularity. Now, for completeness, we turn
to the description of the other possible types of two-fold.

4. The visible two-fold. A vector field with transversely intersecting visible folds generi-
cally satisfies (2.5)–(2.7), with L2

f−
h < 0 < L2

f+h at their intersection, which is then a visible

two-fold. This is illustrated in Figure 7(i) and has the local form

f+ =





−x1 +O(x0, ‖x1, x2‖
2)

−1 +O(‖x‖)
−V + +O(‖x‖)



 ,(4.1a)

f− =





x2 +O(x0, ‖x1, x2‖
2)

−V − +O(‖x‖)
−1 +O(‖x‖)



 .(4.1b)
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Figure 7. Dynamics near a visible two-fold: (i) orbits outside the switching manifold curve away from the
folds, (ii) phase portraits of the sliding dynamics. At the origin the sliding vector field fs is set-valued, with
elements pointing into the sliding region SL when V +V − > 1 and V +, V − < 0. In this case a one-parameter
family of orbits intersects the origin along a unique direction (an eigenvector of the regularization f̃s of fs).
In all other cases the set-valued fs has elements which point into SL and only a single orbit that intersects the
singularity.

The parameters V + and V − can be retrieved for a general vector field at a visible two-fold
as

V + =
−Lf+Lf−h

√

−(L2

f+h)(L
2

f−
h)

,(4.2a)

V − =
Lf−Lf+h

√

−(L2

f+h)(L
2

f−
h)

.(4.2b)

Crossing dynamics in this case are trivial, since all crossing orbits leave the neighborhood of
the singularity (see Figure 7(i)). Sliding dynamics can be understood by the same means as
in section 3.2. In this case, the equilibrium at the origin in the regularized vector field f̃ s has
eigenvalues

(4.3) µ± = −

1

2

(

V + + V −

±

√

(V +
− V −)2 + 4

)

(the negative of (3.5)), while the associated eigenvectors are

(4.4)

(

µ± + V +

−1

)

(the same as (3.6)). Thus, sliding dynamics is the same as at the Teixeira singularity (in-
visible two-fold), but with time-reversed (Figure 7(ii)). This time-reversal has an important
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Figure 8. Dynamics near a visible-invisible two-fold: (i) orbits outside the switching manifold curve away
from the manifold at one fold and toward it at the other; (ii) phase portraits of the sliding dynamics. The
singularity in each of SL and ES is intersected by two orbits if V +V − > 1 and V +, V − > 0, a one-parameter
family of orbits if V +V − < 1 and V + + V − > 2, and no orbits otherwise. As in previous cases, the orbits
intersect the singularity along the eigenvectors of f̃s (the regularization of fs), and the sliding vector field fs

is set-valued (not shown) at the singularity.

implication for the complexity of the local dynamics. Similarly to the Teixeira singularity, a
pseudoequilibrium crosses between SL and ES when V +V − = 1 with V +, V − < 0. However,
whereas at a Teixeira singularity a one-parameter family of orbits in SL can intersect the
singularity, at a visible two-fold only a single orbit in SL can intersect the singularity. In any
event, all trajectories evolve away from the singularity into the upper or lower vector fields,
leaving the switching manifold either from a visible fold or from ES. As shown in [14], the
portraits in Figure 7(ii) are all the structurally stable cases near the singularity.

5. The visible-invisible two-fold. A vector field with transversely intersecting visible and
invisible folds generically satisfies (2.5)–(2.7), with (L2

f−
h)(L2

f+h) > 0 at the singularity, which

is then a visible-invisible two-fold. This is illustrated in Figure 8(i) and has the local form

f+ =





−x1 +O(x0, ‖x1, x2‖
2)

1 +O(‖x‖)
V + +O(‖x‖)



 ,(5.1a)

f− =





x2 +O(x0, ‖x1, x2‖
2)

−V − +O(‖x‖)
−1 +O(‖x‖)



 .(5.1b)
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The parameters V + and V − can be retrieved for a general vector field at a visible-invisible
two-fold as

V + =
Lf+Lf−h

√

(L2

f+h)(L
2

f−
h)

,(5.2a)

V − =
Lf−Lf+h

√

(L2

f+h)(L
2

f−
h)

(5.2b)

(note that for this case there is no “−” sign inside the square root). The presence of a visible
fold prevents the onset of recurring crossing dynamics around the singularity. Concerning
sliding dynamics (Figure 8(ii)), the equilibrium at the origin of the regularized vector field f̃ s

has eigenvalues

(5.3) µ± =
1

2

(

V +
− V − ±

√

(V + + V −)2 − 4

)

,

while the associated eigenvectors are

(5.4)

(

µ± − V +

−1

)

.

The eigenvalues are imaginary when |V + + V −| < 2 and real otherwise. When V + + V − < 2,
regardless of whether V +V − > 1 or V +V − < 1 (in the former case f̃ s has a saddle, in the
latter f̃ s has a focus), orbits flow around the singularity, entering SL and ES from one fold and
exiting from the other. Less trivial dynamics appears when V + + V − > 2. The eigenvalues
are real, and both eigenvectors point toward SL or ES. When V +V − = 1, an eigenvalue goes
to 0. In this case f̃ s has a one-dimensional center manifold (see Appendix E) with dynamics

(5.5) u̇ = (V +V −

− 1)u+ a2u
2 +O(u3).

As V +V − passes through unity with V +, V − > 0, a pseudoequilibrium crosses the singularity
along the singular eigenvector. The structural stability of the orbits in Figure 3 depends on
the composition of the sliding/escaping portraits with the map φ+. As shown in [14], this
subdivides Figure 3(ii) into 11 regions of structurally different dynamics, depending on the
sequences of escaping-crossing-sliding that families of orbits can undergo. As a final remark,
inspection of the wedge V +V − < 1, V + + V − > 2, V − > V + in Figure 3(ii) may suggest the
possibility of nondeterministic chaos if φ+ maps escaping orbits emerging from the singularity
to sliding orbits entering the singularity. A short calculation from (5.1), however, shows that,
locally, the direction of φ+ does not allow this.

6. A remark on sliding bifurcations and invariant manifolds. Although the local behavior
of the visible and visible-invisible two-folds is less complex than that of the Teixeira singularity,
it can have striking implications for global dynamics. First, we see in Figures 7 and 8 that
orbits do exist crossing the two-fold from the sliding to escaping regions. This is locally less
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interesting because all orbits eventually depart the neighborhood of the two-fold, leaving the
switching manifold via a visible fold. This same reasoning, however, means that the local
sliding dynamics will interact with the global dynamics. It is then known that one-parameter
families of orbits can undergo so-called catastrophic sliding bifurcations, introduced in [17]. In
these bifurcations, for example, periodic orbits can be suddenly destroyed through encounter
with a visible or visible-invisible two-fold. This occurs when they cross the two-fold from SL
to ES, so the local geometry is provided by the vector fields in sections 4–5. In some cases, for
example in Figure 8 with V +V − < 1, V ++V − > 2, V + < V −, these bifurcations are likely to
be associated with nondeterministic chaotic dynamics on a global scale. Also, codimension-
one invariant manifolds in n-dimensional systems can generically contain visible or visible-
invisible two-folds where they intersect a switching manifold, and the three-dimensional case
was discussed in [7]. Again, their local behavior is provided by the analysis above.

7. Numerical simulations. The lowest order approximation to the Teixeira singularity
analyzed in [16] revealed an interesting bifurcation, in the form of an invariant nonsmooth
diabolo (an invariant double cone with a crease at the switching manifold) that self-annihilates
through a loss of hyperbolicity. The higher order analysis in this paper fully unveils this bi-
furcation’s intriguing nonlinear behavior, depicted in Figure 5. A compellingly peculiar case,
as we have seen in section 3.3, is obtained by combining the sliding portrait from Figure 5(s1)
with the crossing portrait from Figure 5(c3u), obtained by taking (2.4) and (3.9) with coef-
ficients B11 > 0, B30 < 0, |8B30| > B2

11, and a2 > 0, as p = V +V −

− 1 changes sign. When
p > 0, this scenario exhibits a nondeterministic chaotic set: the sliding dynamics channels
orbits from SL to ES, with all information on initial data lost at the singularity, while the
crossing dynamics provides a mechanism for reinjection to SL. Thus the local neighborhood
is recurrently visited by orbits ejected from the singularity, and their history is lost with each
visit. Orbits are unique in neither forward nor backward time, but, by varying a parameter
through the nonsmooth diabolo bifurcation, the system can be controlled toward the benign
case (p < 0). A numerical example of this case is provided by the following system:

f+ =





−3 −1 0
−1 −3 0
0 1 −2









x0
x1
x2



+





0
1
V +



 ,(7.1a)

f− =





3 0 1
0 −2 0
1 0 3









x0
x1
x2



+





0
V −

1



 ,(7.1b)

with a switching manifold x0 = 0. The sliding and crossing normal forms (3.7) and (3.12)
at the nonsmooth diabolo bifurcation for this system have coefficients B11 = −16, B30 =
−1662.93, a2 = 61.4, when V + = −5 and V − = −1/5, thus falling into case (s1)-(c3u) of the
Teixeira singularity. In Figure 9, we have simulated the system using the software Matlab,
with a piecewise smooth numerical integrator [27] for V + = −5.01 and V − = −1/5, thus
p = V +V −

− 1 = 0.002. Because we are close to the bifurcation (|V +V −

− 1| " 1 with
V +, V − < 0), the vector fields above and below the switching manifold are almost antiparallel
at the origin. This causes strong squashing of orbits toward a plane transverse to the switching
manifold, observable in Figure 9(i) and also seen from the crossing points in Figure 9(ii). Here
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Figure 9. Simulation of system (7.1) with V + = −5.01 and V − = −1/5, exhibiting a pseudoequi-
librium in ES and an unstable focus cycle. (i) A single orbit originating near ES, with initial conditions
(10−20,−10−6,−10−6), winds around the singularity and reaches SL, then is attracted toward the singularity
and back into ES. (ii) Intersections of the orbit with the switching manifold. The pseudoequilibrium in ES and
the crossing points of the focus cycle are highlighted in bold.

Figure 10. Magnification of Figure 9(ii) near the origin. As the orbit departs from its initial condition
near the singularity, its crossing points lie (approximately) along a line through the origin, and the orbit’s last
crossing point lies in the lower right corner of CR1. The orbit’s entry point into SL is seen, followed by its
sliding trajectory towards the singularity. A pseudoequilibrium is shown in ES (red dot).

the dynamics in the direction transverse to this plane cannot be resolved; in particular, the
orbit’s evolution in SL cannot be seen. We resolve the orbits in the following two figures.

Figure 10 presents a simple magnification of the Poincaré map from Figure 9(ii) around
the singularity. The line of points emanating from the origin are the crossing points of the
orbit as it leaves the neighborhood of the singularity. After the last crossing (lower right
corner of CR1), the orbit is seen to impact SL toward the top of the figure, evolve via an
almost straight path toward the point (x1, x2) ! (0.00025, 0.00005), then to the singularity.
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Figure 11. A magnification of Figure 9, making a linear coordinate change in the x1-x2 plane and stretching
the positive x0 axis by a factor of 20. In (i) the orbit can now be seen, crossing repeatedly through the switching
manifold and surrounding the focus cycle (depicted in red). In (ii), the orbit’s crossing points are seen to form
a butterfly shape around the two (red) crossing points of the focus cycle.

From the simulation we confirm that the orbit reaches the singularity in time t ! 0.48 after
reaching SL. At this time the integrator fails to work, since the orbit is entering ES where its
evolution becomes non-unique.

Figure 11 presents the orbits in Figure 9 under a linear coordinate change in the x1-x2,
plane. We have also stretched the coordinate x0 by a factor of 20 above the switching manifold
only. A single orbit is shown, whose initial point is at (10−20,−10−6,−10−6), which lies a small
distance from the singularity and above ES. The orbit winds around the singularity a large
number of times and eventually maps into the interior of SL, from where it is inevitably pulled
into the singularity as shown in Figure 10. This is consistent with the phase portraits predicted
in case (s1)-(c3) and illustrated in Figure 6. Upon reaching the singularity, the system can
follow any one of an infinite number of trajectories, independent of the orbit’s history. This
therefore demonstrates that the predicted conditions for nondeterministic chaos exist. We now
show that this behavior can be tamed by varying the parameter p. We change V + to the value
−4.99, for which p = V +V −

− 1 = −0.002. This system is simulated in Figure 12(i), with a
rescaling in (ii) (the same scaling as in Figure 11(ii)) to resolve the fine structure of the orbits.
A single orbit is shown and has the same initial condition as in Figure 9. The orbit winds
around the singularity a large number of times and reaches SL. In this case the sliding orbit
is repelled from the singularity along a visibly straight path, as can be seen in Figure 12(i).
The orbit terminates at a pseudoequilibrium, which can be seen at the edge of SL.

It is easy to confirm (as reported in [16, 17]) that trajectories of the truncated leading
order system in (3.1) are curves (x0(t), x1(t), x2(t)) whose coordinates satisfy

(7.2) (V +V −

− 1)|x0| =



















(

1

2V −

x21 +
1

2V +
x22 − x1x2 + c

)

V − if x0 > 0,

(

1

2V −

x21 +
1

2V +
x22 − x1x2 + c

)

V + if x0 < 0,
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Figure 12. Simulation of system (7.1) with V + = −4.99 and V − = −1/5, with a pseudoequilibrium in
SL. (i) A single orbit originating near ES, with initial conditions (10−20,−10−6,−10−6), winds around the
singularity and reaches SL, and then is repelled from the singularity toward a pseudoequilibrium (red dot at
edge of SL). (ii) A linear coordinate change in the x1-x2 plane, and a stretching of the positive x0 axis by a
factor of 20, resolves the crossing dynamics of the orbit.

where the constant c fixes the height that the orbit attains along the x0 axis. When V +V −(1−
V +V −) > 0, these equations define a pair of paraboloids, one above and one below the
switching manifold, joined nondifferentiably, forming a ball with a creased equator. When
V +V −(1−V +V −) < 0, they similarly define a pair of surfaces above and below the switching
manifold, each of which is part of a saddle, again joined nondifferentiably. In Figure 12(ii),
the two adjoined paraboloids are clearly seen. In Figure 11(i) higher order terms govern the
behavior of the trajectories away from the singularity, but near the singularity they can be
seen to lie on portions of saddles. If c = 0, the surfaces form a nonsmooth double cone—a
diabolo—through the singularity, which undergoes the nonsmooth diabolo bifurcation when
p = 0 [16].

Finally, for the reader’s interest, we provide examples of systems exhibiting each of the
ten different portraits in Figure 5. We consider system (7.1), changing the Jacobian of f+ to

(7.3)







a11 −1 0

−1 −3 0

0 a32 −2






.

By assigning the values in Table 7.1 to the parameters a11, a32, V
+, and V −, we obtain an

example of each predicted scenario. It is a simple exercise to recast (7.3) in the form of a relay
system (see, e.g., [31]), implying that it might easily arise in electrical or control applications.
It is conceivable that the singularity occurs in various piecewise smooth dynamical systems
where the generic conditions (2.5)–(2.7) are satisfied.
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Table 7.1

List of parameter values a11, a32, V
+, and V − used to obtain examples of all portraits depicted in Figure 5,

using the system (7.1) with the Jacobian of f+ modified as in (7.3).

Portrait a11 a32 V + V −

s1-c1 −3 1 −1/20 −20

s1-c2s −3 1 −1/5 −5

s1-c2u 100 0 −20 −1/20

s1-c3s −3 1 −1 −1

s1-c3u −3 1 −5 −1/5

s2-c1 −3 10 −1/2 −2

s2-c2s −3 10 −2/3 −3/2

s2-c2u 100 100 −5 −1/5

s2-c3s −3 10 −1 −1

s2-c3u −3 100 −5 −1/5

8. Conclusions. We have reviewed the local description of the singularity formed when
a three-dimensional piecewise smooth vector field is tangent to both sides of a switching
manifold—a two-fold singularity. We analyzed the dynamics of orbits in regions of sliding,
identifying conditions that cause a pseudoequilibrium to pass through the singularity. This
represents a novel bifurcation through which a pseudoequilibrium can collide with a boundary
of a sliding or escaping region, fundamentally different from the well-known boundary equilib-
rium bifurcations in Filippov systems [10]. We conclude that, in some cases, families of sliding
orbits are attracted to the singularity, making the intersection of an orbit with a two-fold a
generic event. This allows solutions starting away from the escaping region to reach it. These
facts are often overlooked in the literature (see, e.g., [10, 11, 27]). We also analyzed the dy-
namics of crossing orbits, concluding that if one of the folds is visible (local trajectories curve
away from the switching manifold along it), then all orbits eventually leave the neighborhood
of the singularity. These cases, (sections 4–5), are of interest when they interact with other
attractors or invariant sets outside the neighborhood of the two-fold. The case that is most
dynamically interesting in its own right is the Teixeira singularity.

The Teixeira singularity consists of two invisible folds, which cause all local trajectories
to curve toward the manifold. This case exhibits a number of local bifurcations, which we
unfolded by separately analyzing the bifurcation of the smooth systems that describe the
local crossing and sliding dynamics. The crossing dynamics is described by a return map
that undergoes a degenerate 1:1 resonance bifurcation. This coincides with the passage of a
pseudoequilibrium through the singularity, from SL to ES or vice versa. One parameter, the
quantity V

+
V

−, characterizes the leading order problem and measures the angular disparity
between the vector fields above and below the switching manifold, evaluated at the origin. A
normal form reduction of the neighboring dynamics reveals that the qualitative behavior of a
local unfolding depends on three coefficients, two characterizing the stability and topological
type of the fixed points of the crossing map, and one the position of the pseudoequilibrium.
The unfolding reveals the bifurcation of the Teixeira singularity as a new route to the sudden
appearance of periodic orbits and more complex invariant sets in piecewise smooth systems.
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Among the local dynamics possible near a Teixeira singularity, we have identified one that
is particularly intriguing. It occurs when, for a whole family of parameters where V +V − > 1
with V +, V − < 0, the crossing map contains an unstable focus (an unstable limit cycle of the
full system) and the pseudoequilibrium is a saddle. Here we find conditions for nondeterminis-
tic chaos over a compact neighborhood of the singularity. All local orbits begin and end at the
singularity, with a definite direction through it, but on each visit their history is lost and their
forward evolution is nonunique. We have simulated an example of this scenario in section 7,
depicting one such orbit in Figures 9, 10, and 11. We verified in numerical simulations that
the conditions for this recurrent nondeterministic dynamics exist, but the phenomenon can be
tamed by changing the parameters V + and V −, through a nonsmooth diabolo bifurcation [16].
After the bifurcation, orbits wrap around a nonsmooth ball, going from ES to SL. Once in
SL, they evolve away from the singularity, so that in this case a typical orbit never encounters
the singularity.

By stripping the two-fold down to the leading order behavior of its sliding and crossing
dynamics, we have unfolded its bifurcations and unveiled its determinacy-destroying heart.
But we cannot yet claim that this troublesome singularity is fully understood. The bifurcation
diagram of the crossing return map in Figure 5 is incomplete: global bifurcations, yet unknown,
occur between the identified scenarios or each time the invariant manifolds of the crossing
map, or the images of the boundaries of ES, become tangent to the folds. Much grander
challenges than this remain, however. In systems of dimension n ≥ 4 the two-fold generically
has dimension n − 3. How much of the local dynamics revealed in this paper will survive in
higher dimensions remains to be studied. Moreover, even in three dimensions any of the three
flavors of two-folds can interact with nonlocal attractors, causing global bifurcations that have
not been considered to date.

Appendix A. Normal form reduction of the sliding vector field of a Teixeira singularity.

The normal form (3.7) is obtained by multiplying (3.4) by the quantity (V + + 1/V +) and
then taking the dynamics along the direction (−V +, 1) of the singular eigenvector, by defining
x = pu and u̇ = qf̃ s(pu), with p and q respectively the right and left singular eigenvectors
of the Jacobian of f̃ s at the origin, when V +V − = 1 and V +, V − < 0. Calling c+ij and c−ij , for

i, j ∈ {1, . . . , 3}, the coefficients of the Jacobians of f+ and f−, from this transformation we
obtain u̇ = (V +V − − 1)u+ a2u

2 +O(u3), with

(A.1) a2 = c+
22
V + − c+

23
− c+

32
+

c+
33

V +
− c−

22
(V +)2 + c−

23
V + + c−

32
V + − c−

33
.

Appendix B. Generic perturbation of the map. Assuming analyticity of the return maps,
φ+ can be expanded around the singularity, yielding

x1 $→ −x1 + α20x
2
1 + α11x1x2 + α02x

2
2 + α30x

3
1 + α21x

2
1x2 + α12x1x

2
2 + α03x

3
2

+ O(‖(x1, x2)‖
4),

x2 $→ x2 − 2V +x1 + β20x
2
1 + β11x1x2 + β02x

2
2 + β30x

3
1 + β21x

2
1x2 + β12x1x

2
2 + β03x

3
2

+ O(‖(x1, x2)‖
4),
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while φ− is equal to

x1 !→ x1 − 2V −x2 + γ20x
2
1 + γ11x1x2 + γ02x

2
2 + γ30x

3
1 + γ21x

2
1x2 + γ12x1x

2
2 + γ03x

3
2

+ O(‖(x1, x2)‖
4),

x2 !→ −x2 + δ20x
2
1 + δ11x1x2 + δ02x

2
2 + δ30x

3
1 + δ21x

2
1x2 + δ12x1x

2
2 + δ03x

3
2

+ O(‖(x1, x2)‖
4).

However, the possible values of the maps’ coefficients are constrained, since the two maps are
involutions and the inducing flow is quadratically tangent to the x2 and x1 axes. Imposing
that φ+ ◦φ+ and φ− ◦φ−, truncated to third order, be the identity (involution condition), and
that φ+ and φ− preserve the x2 and x1 axis, respectively, reduces the number of independent
coefficients of each map from 15 to 6, yielding

x1 !→ −x1 + α20x
2
1 + α21x

2
1x2 − (α2

20 + α21V
+)x31 +O(‖(x1, x2)‖

4),

x2 !→ x2 − 2V +x1 + β11x1x2 + (α20 − β11)V
+x21 + β12x1x

2
2

+

(

1

2

(

−α20β11 + β2
11

)

+ (α21 − 2β12)V
+

)

x21x2 + β30x
3
1 +O(‖(x1, x2)‖

4)

for φ+ and

x1 !→ x1 − 2V −x2 + γ11x1x2 + (δ02 − γ11)V
−x22 + γ21x

2
1x2

+

(

1

2

(

−δ02γ11 + γ211
)

+ (δ12 − 2γ21)V
−

)

x1x
2
2 + γ03x

3
2 +O(‖(x1, x2)‖

4),

x2 !→ −x2 + δ02x
2
2 + δ12x1x

2
2 − (δ202 + δ12V

−)x32 +O(‖(x1, x2)‖
4)

for φ−. Finally, composing φ− ◦ φ+, we obtain the general third order expansion of the
Poincaré map φ:

x1 !→ −x1 + 2V −x2 + a20x
2
1 + a11x1x2 + a02x

2
2 + a30x

3
1 + a21x

2
1x2 + a12x1x

2
2 + a03x

3
2

+O(‖(x1, x2)‖
4),

x2 !→ −2V +x1 + (−1 + 4V +V −)x2 + b20x
2
1 + b11x1x2 + b02x

2
2 + b30x

3
1 + b21x

2
1x2

+ b12x1x
2
2 + b03x

3
2 +O(‖(x1, x2)‖

4),
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with

a20 = α20,

a11 = −γ11 − 4α20V
−,

a02 = V −(−δ02 + γ11 + 4α20V
−),

a30 = −α2
20 − α21V

+,

a21 = 2α20γ11 − γ21 + 6α2
20V

− + α21(−1 + 6V −V +),

a12 =
−γ211
2

− 6α20γ11V
− +

δ02

2
(γ11 + 4α20V

−),

−V −(−4α21 + δ12 − 2γ21 + 12α2
20V

− + 12α21V
−V +),

a03 = −γ03 + 4(V −)2(α20(−δ02 + γ11 + 2α20V
−) + α21(−1 + 2V −V +))

b20 = (−β11 + α20)V
+,

b11 = −2(γ11 + 2α20V
−)V + + β11(−1 + 4V +V −),

b02 = δ02 − 2δ02V
+V − + 2V −(β11 − 2β11V

+V − + (γ11 + 2α20V
−)V +),

b30 = β30,

b21 =
−β2

11

2
− 6β30V

−

− α21V
+ + 2β12V

+
− 2β11γ11V

+
− 2γ21V

+ +
α20

2
(β11 + 4γ11V

+),

b12 = β12 + δ12 + 2β2
11V

− + 12β30(V
−)2 + δ02γ11V

+
− γ211V

+ + 4α21V
−V +

− 8β12V
−V + + 2α20δ02V

−V +
− 2δ12V

−V +
− 6α20γ11V

−V + + 4γ21V
−V +

+β11(δ02 − γ11 − 2α20V
−

− 2δ02V
−V + + 6γ11V

−V +),

b03 = −δ202 − 2β12V
−

− 3β11δ02V
−

− δ12V
− + β11γ11V

− + 2α20β11(V
−)2

− 2β2
11(V

−)2 − 8β30(V
−)3 − 2γ03V

+
− 4α21(V

−)2V + + 8β12(V
−)2V +

− 4α20δ02(V
−)2V + + 4β11δ02(V

−)2V + + 4α20γ11(V
−)2V +

− 4β11γ11(V
−)2V +.

Appendix C. Normal form reduction of the Poincaré map. When

p := V +V −

− 1 = 0,

the Poincaré map has a fixed point, at the singularity, with a nonsemisimple double one
linearization. This can be put into a 1:1 resonance normal form which is symmetric, due to
the constraints imposed by the involution assumption (see Appendix B). The normal form
reduction of map (3.9) is carried out, following a standard path, as a linear transformation
followed by a sequence of near-identity transformations (see [21,25]), eliminating nonresonant
terms of different degree iteratively. First, the linear part of the map (3.9) is simplified through
the parameter-dependent change of variables

(

x1
x2

)

=

(

2− 4V +V − 1
−2V + 0

)(

ξ1
ξ2

)

,

becoming
ξ1 "→ ξ1 + ξ2,

ξ2 "→ 4pξ1 + (1 + 4p)ξ2.
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This corresponds to the Jordan form of the linearized system when p = 0. In the (x1, x2)
coordinates and at the bifurcation, the coordinate axis ξ1 points in the direction of the singular
eigenvector (−1,−V +) of φ|p=0, while the axis ξ2 points in the x1 direction; hence the change
of variables has turned the plane to align the singular eigenvector with the ξ1 direction, and
in the new variables the ξ1 axis is strictly inside CR1 and CR2. This is an important remark,
since the crossing map is defined only for orbits in ES, CR1, and CR2.

Next, the second order, near-identity change of variables

ξ1 = c20µ
2
1,

ξ2 = d20µ
2
1 + d11µ1µ2s+ d02µ

2
2,

with

c20 = −
b20 + 2b02(V

+)2 + b11V
+ − a20V

+

V +(12p + 16p2 + 2)
,

d20 =
16b20p+ 4b20 + 16b20p

2 + 4b02(V
+)2 + 4b11V

+ + 2V +4b11p

2V +
,

d11 = −
6b20 + 4b02(V

+)2 + 4b11V
+ − 2a20V

+ + 32b20p+ 80b20p
2

V +(12p + 16p2 + 2)

+
64b20p

3 + 3V +4b11p+ V +16b11p
2

V +(12p + 16p2 + 2)
,

d02 =
−4b02(V

+)2 − 2b11V
+ + 2a20V

+ + 12b20p+ 16b20p
2

2V +(12p + 16p2 + 2)
,

simplifies the quadratic terms, giving

µ1 "→ µ1 + µ2,

µ2 "→ 4pµ1 + (1 + 4p)µ2 +B20µ
2
1 +B11µ1µ2,

with
B20|p=0 = 4(a20 − b11 − b20V

− + a11V
+ − b02V

+ + a02(V
+)2),

B11|p=0 = −4b02V
+ − 2b11 − 2a11V

+ − 4a20.

Due to the involution condition, the term B2,0 is identically null near p = 0, and this second
order expansion is structurally unstable. In order to obtain the topological normal form of
the Poincaré map, the third order expansion must be considered. Once again, through the
near-identity transformation

µ1 = u1 + e30u
3
1 + e21u

2
1u2,

µ2 = u2 + f30u
3
1 + f21u

2
1u2 + f03u

3
2,

we simplify the terms of degree 3 in the expansion of the map, obtaining the normal form

u1 "→ u1 + u2 +O(‖u‖4),
u2 "→ 4pu1 + (1 + 4p)u2 +B11u1u2 +B30u

3
1 +B21u

2
1u2 +B03u

3
2 +O(‖u‖4).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONDETERMINISTIC CHAOS AND THE TWO-FOLD 449

Appendix D. Approximation by a flow. A flow whose unit-time shift approximates map
(3.12) is easily found by means of successive Picard iterations, as explained, e.g., in [20]. For
p = 0, this is

u̇1 = u2 −
B11

2
u1u2 +

B11

3
u22 + C30u

3
1 + C21u

2
1u2 + C12u1u

2
2 + C03u

3
2,

u̇2 = B11u1u2 −
B11

2
u22 +D30u

3
1 +D21u

2
1u2 +D12u1u

2
2 +D03u

3
2,

with

C30 = −
B30

2
, C21 =

B2
11

3
−

B21

2
+B30, C12 = −

2B2
11

3
+

2B21

3
−

B30

2
,

C03 = −
B03

2
+

3B2
11

10
−

B21

6
+

B30

30
, D30 = B30, D21 = −

B2
11

2
+B21 −

3B30

2
,

D12 =
5B2

11

6
−B21 +

B30

2
, D03 = B30 −

B2
11

3
+

B21

6
.

The quadratic terms can be simplified following the generic Bogdanov–Takens normal form
reduction (see, e.g., [20, 25]), by setting

u1 = ξ1,

u2 = ξ2 +
B11

2
ξ1ξ2 −

B11

3
ξ22 ,

multiplying the resulting flow by the scalar function 1 +B11ξ1, and then setting

ξ1 = µ1,

ξ2 = µ2 −B11ξ1ξ2.

Then, the nonresonant cubic terms are eliminated by setting

µ1 = ν1 +
1

36
(2B2

11 − 12B21 + 15B30)ν
3
1 +

1

12
(6B03 − 5B2

11 + 5B21 − 3B30)ν
2
1ν2,

µ2 = ν2 +
B30

2
+

1

12
(13B2

11 − 6B21 + 3B30)ν
2
1ν2 +

1

6
(6B03 − 4B2

11 +B21)ν1ν
2
2

+
1

90
(45B03 − 7B2

11 + 15B21 − 3B30)ν
3
2 .

The resulting flow has equations

ν̇1 = ν1 +O(‖ν‖4),

ν̇2 = B11ν1ν2 +B30ν
3
1 +

(

B2
11

2
+B21 − 3B30

)

ν21ν2 +O(‖ν‖4).

Appendix E. Normal form reduction of the sliding vector field of a visible-invisible two-

fold. The normal form (5.5) is obtained by the same means as in Appendix A, by multiplying
f̃ s by the quantity (V + − 1/V +) and then taking the dynamics along the direction (V +, 1) of
the singular eigenvector. The coefficient of the second order term in (5.5) is

(E.1) a2 = −c+
22
V + − c+

23
+ c+

32
+

c+
33

V +
− c−

22
(V +)2 − c−

23
V + + c−

32
V + + c−

33
.
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