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This paper presents a systematic approach for minimization of a wide class of non- 
differentiable functions. The technique is based on approximation of the nondif- 
ferentiable function by a smooth function and is related to penalty and multiplier 
methods for constrained minimization. Some convergence results are given and the 
method is illustrated by means of examples from nonlinear programming. 

I. Introduction 

Optimization problems with nondifferentiable cost functionals, partic- 
ularly minimax problems, have received considerable attention recently 
since they arise naturally in a variety of contexts. Optimality conditions for 
such problems have been derived by several authors while a number of 
computational methods have been proposed for their solution (the reader 
is referred to [1] for:a fairly complete list of references up to 1973). Among 
the computational algorithms currently available are the subgradient 
methods of [10, 15, 19], the s-subgradient method [1, 2] coupled with an 
interesting implementation of the direction finding step given in [12], the 
minimax methods of [6, 7, 9, 17] which were among the first proposed in 
the nondifferentiable area, and the recent interesting methods proposed in 
[-5, 20]. While the advances in the area of computational algorithms have 
been significant, the methods mentioned above are by no means capable 
of handling all problems encountered in practice since they are often 
limited in their scope by assumptions such as convexity, cannot handle 
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U.S. Air Force under Grant AFOSR-73-2570. 
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nonlinear constraints or they are applicable only to a special class of 
problems such as minimax problems of particular form. Furthermore 
several of these methods are similar in their behavior to either the method 
of steepest descent or first order methods of feasible directions and converge 
slowly when faced with relatively ill-conditioned problems. Thus there is 
considerable room for new methods and approaches for solution of non- 
differentiable problems and the purpose of this paper is to provide a class 
of methods which is simple to implement, is quite broad in its scope, and 
relies on an entirely different philosophy than those underlying methods 
already available. 

We consider minimization problems of the form 

minimize g(x), (1) 
subject to x ~ Q c R", 

where g is a real-valued function on R" (n-dimensional Euclidean space). 
We consider the case where the objective function O is nondifferentiable 

exclusively due to the presence of several terms of the form 

V[fi(x)] = max {0, fi(x)}, i ~ I, (2) 

where {fi: ir  I} is an arbitrary collection of real-valued functions on R". 
By this we mean that if the terms y(.) in the functional expression of g were 
replaced by some continuously differentiable functions ~(-) then the result- 
ing function would also be everywhere continuously differentiable. 

For purposes of easy reference we shall call a term of the form (2), a 
simple kink. It should be emphasized that while we concentrate attention 
on simple kinks, the approach is quite general since we do not necessarily 
require that the functions f in (2) are differentiable but rather we allow 
them to contain in their functional expressions other simple kinks. In this 
way some other kinds of nondifferentiable terms such as for example terms 
of the form 

max {fl(x) . . . .  ,f,,(x)} (3) 

can be expressed in terms of simple kinks by writing 

max {fl, ...,fro} = f l  + 
Y[f2 - f ,  + Y[---7[fm-1 - fm-z + Y[f., -- f m - , ] ] . " ] ] '  (4) 

Since there are no restrictions on the manner in which simple kinks enter 
in the functional expression of g, a little reflection should convince the 
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reader that the class of nondifferentiable problems that we are considering 
is indeed quite broad. 

The basic idea of our approach for numerical solution of problems of 
the form (1) is to approximate every simple kink in the functional expression 
of 9 by a smooth function and solve the resulting differentiable problem by 
conventional methods. In this way an approximate solution of problem (1) 
will be obtained which hopefully converges to an exact solution as the 
approximation of the simple kinks becomes more and more accurate. 

While, as will be explained shortly, other approximation methods are 
possible, we shall concentrate on the following two-parameter approxima- 
tion ~[f(x), y, c] of a simple kink 7If(x)],  

( f ( x )  - (1 - y)2/2c 
~[f(x), y, c] = <y f (x)  + �89 [f(x)] 2 

[ . -y2 /2c  

where y and c are parameters with 

O_<y_< 1, O < c .  

if (1 - y)/c < f(x), 
if - y / c  < f(x)  < (1 - y)/c, 
if f (x)  < - y/c, 

(5) 

(6) 

If the functionfis differentiable then the function ~[f(x), y, c] above is also 
differentiable with respect to x. Its gradient is given by 

( V f(x)  if (1 - y)/c < f(x), 
V~[f(x),y, c] = ~  [y + cf(x)] Vf(x)  if - y / c  < f(x)  < (1 - y)/c, (7) 

~, 0 if f (x)  < -y /c .  

The functional form of ~ is depicted in Fig. 1. It may be seen that 

,)(t, y, c) < 7(0 < ~(t, y, c) + (1/2c)max {y2, (1 - y)2} (8) 
< ~(t, y, c) + (1/2c) for all t E R. 

Thus the parameter c controls the accuracy of the approximation. The 
parameter y determines whether the approximation is more accurate for 
positive or negative values of the argument t. Thus for the extreme case 
y -- l, the approximation to 7(0 is exact for 0 < t while for y = 0 the 
approximation is exact for t < 0. 

Let us now formally describe the approximation procedure for solving 
problem (1), where we assume that the nondifferentiability of 0 is exclusively 
due to the presence of terms 

7[f~(x)] = max { 0, f~(x) }, i E I (9) 

and I is an arbitrary index set. 
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Fig. 1. 

Given parameters Ck, Y~k, i e I with Ck > O, 0 < y~ < 1, replace each term 
7[fi(x)], i e ! in the functional expression of g by ~[fi(x), y~, Ck] to obtain 
a function 9k and solve the problem 

minimize ~k(X), (10) 
subject to x e Q c X .  

If xk is a solution of the above problem update c by setting Ck + 1 = fl Ck, 
where fl > 1, and update the multipliers y~ in some fashion to obtain y~ + 1, 
with 0 < y~+ 1 < 1, i e I. Solve the problem 

minimize gk + 1 (X), (1 1) 
subject to x e Q c X  

to obtain a solution Xk+ 1 and repeat the procedure. 
It is important to note that the choice of the approximation (5) is by 

no means arbitrary and in fact it is closely related to penalty and multiplier 
methods for constrained minimization (see e.g. [3, 4, 8, 11, 16, 18]). By 
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introducing an auxiliary variable z, a simple kink may be written as 

y[ f ( x ) ]  = min z. (12) 
f(x)<--z,O<.z 

By using a quadratic penalty function, the minimization problem above 
may be approximated by 

min [z + �89 (max{0, f ( x )  - z})2], c > 0. (13) 
O_<z 

Carrying out the minimization with respect to z, the expression above is 
equal to 

( f ( x )  - 1/2c if I/c < f (x) ,  
~[f(x), 0, c] ={ lc [ f (x ) ]2  if 0 _< f ( x ) <  1/c, 

( o if f (x)  <_ o. 

If we use the generalized quadratic penalty function used in the method of 
multipliers [4, 18] the minimization problem in (12) may be approximated 
by the problem 

min [z + 1/2c[(max{0, y + c [ f ( x )  - z]}) 2 - y2]], 
o-<z (14) 

0 < c ,  0 < y < l .  

Again by carrying out the minimization explicitly, the expression above is 
equal to ~[f(x), y, c] as given by (5). Notice that we limit the range of the 
multiplier y to the interval [0, 1] since one may prove that the Lagrange 
multiplier for problem (12) lies in that interval. 

The interpretation of the approximation procedure in terms of penalty 
and multiplier methods is very valuable for a number of reasons. First it 
provides guidelines for approximation of simple kinks by a wide variety 
of functions. Every penalty function suitable for a penalty or multiplier 
method yields an approximating function via the procedure described 
above. A wide class of such functions is given in [13, 14]. Many of these 
functions yield twice differentiable approximating functions, a property 
which may be desirable from the computational point of view. Second, our 
interpretation reveals that we may expect that the basic attributes of the 
behavior of penalty and multiplier methods will also be present in our 
approximation procedures. Thus we may expect ill-conditioning for large 
values of the parameter c. This fact necessitates sequential operation of the 
approximation method, i.e., repetitive solution of the approximate problem 
for ever increasing values of the parameter c. Third, the interpretation 
motivates us to consider an updating procedure for the parameters y which 
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is analogous to the one used in the method of multipliers. This updating 
procedure results in most cases in significant improvements in compu- 
tational efficiency. 

The updating formula for the multipliers y~, which closely parallels the 
one of the method of multipliers and which will be discussed in some detail 
in this paper, is given by 

{ i  if 1 <Y~+Ckfi(Xk)' 
fik+a = ~k -~- Ckfi()s if 0 < eL + Ckfi(Xk) ~ 1, (15) 

if y~ + Ckfi(Xk) < O. 

One heuristic way to justify (15) is based on the following observation�9 
If we assume for a moment that XR --' 2, where 2 is an optimal solution of 
(1) and for some k we have (1 - YD/Ck < f~(xk) this indicates that likely 
there holds 0 < f~(~-) and therefore it is better to approximate more accu- 
rately the simple kink y[fi(x)] for positive values of f (x)  rather than for 
negative values�9 The iteration (15) accomplishes precisely that by setting 
y~+a = 1 (c.f. (5)). Similarly for the other c a s e s  fi(Xk)~-~--y~/C k and 
-Y~/Ck < fi(Xk) < (1 -- Y~)/Ck the iteration (15) may be viewed as adaptively 
adjusting the accuracy of approximation of the simple kink y(t) from positive 
to negative values of the scalar argument t and vice versa as the circum- 
stances dictate. A more rigorous and satisfying justification for the em- 
ployment of (15) together with a clarification of the connection with the 
method of multipliers is provided in Section 4. 

Since the class of problems of the form (1) is extremely rich in variety, 
it is very difficult to provide a convergence and rate of convergence analysis 
for the general case. The utter impossibility o f  providing a unifying no- 
tational description for the general case of problem (1) is one of the main 
obstacles here. For this reason we shah restrict ourselves to the specific 
class of problems 

minimize g[x,  ~[f~(x)],..., ?[fro(X)]], (16) 
subject to x ~ Q c R " ,  

where #, f~, ..., fm are continuously differentiable functions. Notice that 
this class of problems includes the problem of solving systems of equations 
of the form 

hi[x , 7[fl(x)], ..., y[f,,(x)]] = O, i = 1,..., n 

by means of the minimization problem 



D.P. Bertsekas I Nondifferentiable optimization via approximation 

minimize ~. Ih,[x, eEA(x) ]  . . . .  , eEf . (x)3] l  
i = 1  

Our results also apply with simple modifications in statement and proof to 
the class of problems 

sm 
minimize g[x, max{f~(x),. . . , f~'(x)} . . . . .  max{f~(x) ..... f~ (x)}], (17) 
subject to x ~ Q c R .  

On the other hand, our analysis can serve as the prototype for the analysis 
of other different or more general cases and provides a measure of what 
kind of behavior one may expect from the approximation methods that we 
propose. 

The paper is organized as follows: In the next section we prove the basic 
convergence results for our approximation methods. Section 3 shows that 
one may obtain, as a byproduct of the computation, quantities which play 
a role analogous to Lagrange multipliers in constrained minimization. We 
also show that our convergence results may be used to obtain some optim- 
ality conditions for the problem that we are considering. Section 4 examines 
the possibility of acceleration of convergence by using iteration (15). The 
connection with the method of multipliers is clarified and some conver- 
gence and rate of convergence results are inferred. Finally in Section 5 we 
present some computational results. 

2. Some convergence results 

Consider problem (16), where we adopt the standing assumption that 
the set Q is nonempty and that the functions 

g :R"+m~ R, f : R " ~  R, i =  1,. . . ,m 

are everywhere continuously differentiable. We denote by VxO the (column) 
vector of the first n partial derivatives of 9, while we denote by ag/dt~, 
i = 1, ..., m the partial derivative of O with respect to the (n + i)th argument 
O.e., agfat, = 

Consider now the k th approximate minimization problem 

min O[x, ~[fl(x), y~, Ck], ..., ~[fm(X), yr~, Ck]], (18) 
xEQ 

where 
0 ~ C k ~ O k + l ,  Ck --.I. 00, 

O < y ~ <  l, i =  1,...,m, k = O ,  1,... 
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and the approximate kink ~[f/(x), y~, Ck] is given by (5). Any rule may  be 
used for updating y~--for example y~ may be left constant. Let Xk be an 
optimal solution of problem (18) (assuming one exists). We have the follow- 
ing basic proposition: 

Proposition 2.1. There holds 

Ig* - g[xk, ~ [ A ( x k ) ] ,  . . . ,  ~ [ f m ( x k ) ] ] l  -< L/ck, 
where 

k = 0, 1, ..., (19) 

o* = inf  oEx,~,[A(x)], .... ~,[f,.(x)]],. 

L = sup (x, tl, tin) 
i = 1  (x, tl . . . . .  tm)~M ~ i  " ' "  

M = {(x, t, . . . . .  t,.): x e Q, 7[f , (x)]  -- �89 o _< 
<-- t i <-- 7[f~(x)], i = 1 . . . . .  m}, 

provided L above is finite. 

(20) 

(21) 

(22) 

Corollary 2.3. Let g have the particular form 

g[x, ?[fx(x)], ..., ?[f, ,(x)]] = go(X) + ~ '),[f~(x)], 
i = 1  

Then 
Ig* - g[x, , ,  ~ , [A (xk ) ] ,  .. . ,  ~,[f, , ,(x,,)]] l  -< ,n/c,,. 

90: Rn -~ R. 

Corollary 2.2. Let Q be a bounded set. Then 

lkim g[Xk, ~[fl(Xk)], ..., ?[fm(Xk)]] = g*. (24) 

Proof. The boundedness of Q implies that L as given by (21) is finite. Hence 
by (19) and the fact CR ~ ~ the result follows. 

As a direct consequence of the proposit ion above we have the following 
convergence results. 

Proof. By Taylor 's formula, (8), and (21), (22) we have for every x e Q, 

IgEx, tEA(x)] . . . . .  7 [ f , (x) ] ]  + 
- g[x, ~[f~(x), y~, Ck],..., ~[fm(x), Y~', Ck]]l < L/2Ck (23) 

from which the result follows. 
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Proof. Immediate from (23), (21) and (19). 

The above corollary is interesting from a computational point of view 
since it shows that for the problem above there are available a priori 
bounds on the approximation error. 

Corollary 2.4. Let ~ be any limit point of the sequence {Xk} and let Q be a 
closed set. Then 

g[~, ~[f~(~)] . . . . .  7[fm(~)]] = min g[x, v[fx(x)] . . . .  , ~[fm(x)]], 
xeQ 

i.e. -~ is an optimal solution of problem (16). 

Proof. Without loss of generality assume that the whole sequence {Xk} 
converges to ~ and let S be any closed sphere containing the sequence {Xk}. 
Clearly each vector Xk is an optimal solution of the problem 

min g[x, )[fl(x),  y~, Ck],..., ~[fm(x), Y~, Ck]] 
xeQnS 

and since Q n S is bounded, by Corollary 2.2 and (23) we have 

l im  g[x,, ~[fl(xk), y~, c,] . . . . .  ~[f.(x,), y~, c,]] = 

= g[~, ? [ f , ~ ) ]  . . . .  ,7[fm(x)]] 

= min g[x, 7[fl(x)], ..., ?[f,~(x)]]. 
x~Qr~S 

It remains to show that the minimum of g over Q n S above is equal to the 
minimum of g over Q. But this follows from the fact that S can be any 
closed sphere containing {Xk} and hence it can have an arbitrarily large 
radius. 

Notice that the proposition states that every limit point of {Xk} is a 
minimizing point of problem (16), but does not guarantee the existence 
of at least one limit point. This is to be expected since problem (.16) may 
not have a solution. On the other hand the existence of a solution as well 
as of at least one limit point of {Xk} is guaranteed when Q is a compact  set. 

The above proposition and corollaries establish the validity of the 
approximation procedure. One may notice that the proofs are very simple 
and rest on the fact that the function ~[f~(x), y~, Ck] approximates uniformly 
the simple kink ~[f~(x)] with an approximation error at most  equal to 
1/2Ck as shown by (8). It is interesting to observe that convergence does not 
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depend on the particular values y~, i ~ I employed. This allows a great deal 
of freedom in adjusting y~, for the purpose of accelerating convergence. 

Since our procedures are related to penalty methods one expects that 
they must yield, as a by-product of the computation, quantities which may 
be viewed as Lagrange multipliers. In the next section we show that such 
multipliers may indeed be obtained. Furthermore we show that these 
multipliers enter in optimality conditions which, aside from their analytical 
value, may serve as a basis for termination of our approximation procedure. 

3. Multiplier convergence and conditions for optimality 

Let us assume throughout  this section that Q is a closed convex set. 
Using (9), the gradient with respect to x of the objective function in problem 
(18) may be calculated to be 

Vg[x, ~[f,(x), y~, Ck] . . . .  , ~[f.(x), Y~'k, Ck]] = 
ag ! 

= v .  + - , J cd 
i = 1  ' I x  

= Vxg + -- ~ og ~ ,=, ~//Yk(X) Vf, (25) 

where ~ ,  i = 1 . . . . .  m is given by 

{ i  if I<y~+Ckfi(X) '  
Y~k(X) = ~ + Ckfi(x) if 0 < y~ + Ckf~(x) < 1, (26) 

if Y'k + Ckf~(x) < 0 

and all gradients in the right-hand side of (25) are evaluated at the point x. 
Since Q is a convex set and Xk is an optimal solution of problem (18) 

we have the necessary condition 

(Vxg+  i ~ 1 CtiO~gYik(Xk)V filx = x~'(X -- Xk)) >-0 for all x ~ Q, (27) 

where ( . , .  ) denotes the usual inner product  in R". 
Let now {Xk}k~r be a subsequence of {XR} which converges to Y. By 

Corollary 2.4, 2 is an optimal solution of problem (16). In addition, the sub- 
sequence {)7/} = {37~(Xk), .... ~kk(Xk)}k~r defined by (26) has at least one limit 
point and, by taking limits in (27), each of its limit points y = {yl . . . . .  ~-,,} 
must satisfy 
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i= 1 -~i yiVfi  , (x - 2) > 0 for all x e Q. 

Combining the above observations with Corollary 2.4 we obtain the 
following proposition: 

Proposition 3.1. Let Q be a closed convex set, and let (~,y) be any limit 
point o f  the sequence { Xk, Yk}, where Yk = (Y~(Xk), ..-, ~(Xk)) is defined by (26). 
Then ~ is an optimal solution of  problem (16); and y is a multiplier vector 
satisfying 

V x g + i = l ~ i  y v J i  , ( x - 2 )  >_0 for  a l l x ~ Q ;  

(28) 
yi = 0 /ff/fx) < O, yi = 1 / f f (x)  > O, 

0 ___ y' _< 1 / f f ,  f~) = 0. 

Proposition 3.1 together with Proposition 2.1 and its corollaries may 
be used to provide a simple proof  of an optimality condition for problem 
(16). 

We shall say that ~ is a local minimum for problem (16) if ~ is a minim- 
izing point of g[x, y[fl(x)], ..., ~[fm(x)]] over a set of the form Q c~ {x: 
[x - ~] _< e}, where [.I denotes the Euclidean norm and e > 0 is some 
positive scalar. I f~ is a unique minimizing point over Q n {x: Ix - ~] _< e}, 
we shall say that ~ is an isolated local minimum. 

Proposition 3.2. Let Q be a closed convex set and ~ be an isolated local 
minimum for problem (16). Then there exists a multiplier vector 

= (-ill,..., ym) satisfying 

I 1 i=1 ~ y vJi Ix=" (x - x--) >_ 0 for  all x e Q, (29) 

y' = 0 if f~(2) < O, i = 1 . . . . .  m, (30) 

y i =  1 / f f~(2)>O,  i =  1 . . . . .  m, (31) 

0 < y' <_ 1 if f~(2) = O, i = 1,.. . ,  m. (32) 

Proof. Let Q be a set of the form Qc~ {x: [x - 21 < e} within which 2 is 
a unique minimum of g. Consider the approximation procedure for the 
problem 

min g[x, ~[f~(x)] . . . . .  ~[f,,(x)]]. 
xei~ 
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The generated sequence {Xk} is well defined since ~) is compact. Further- 
more, since 2 is the unique minimizing point of g within Q, we have Xk ~ 
and {)k}k~r ~ Y for some vector y e R" and some subsequence {)k}k~r, 
where Yk is defined in Proposition 3.1. Then (29) follows from (28). The 
relations (30), (31) and (32) follow directly from the definition of Yk and 
the fact Xk --" ~. 

We note that when Q = R", the above proposition yields the stationarity 
condition 

Vxg + - - y  vJi = 0. (33) 
i= a Oti X ~  

The above condition and in some cases the more general condition of 
Proposition 3.2 may be used as a basis for termination criteria of the 
approximation procedure. 

We note that necessary conditions similar to the one of Proposition 3.2 
may also be proved in an analogous manner for problem (17) as well as for 
many other problems which are similar in nature and are amenable to the 
same type of analysis as the one presented for problem (16). 

4. Acceleration by multiplier iterations 

In this section we examine an updating procedure for the multiplier 
vectors Yk which in many cases can greatly improve the computational 
efficiency of the approximation method. We consider the case where the 
approximation procedure is operated sequentially and the multipliers y, 
y~, i = 1 . . . . .  m used in the approximations, are updated by means of the 
iteration 

{ i  if 1 <--Yik+Ckfi(Xk)' 
Y~k+l = ~ + Ckfii(Xk) ifO <_ y~ + Ckfi(Xk) -~ 1, (34) 

if Y~k + Ckf~(Xk) < O. 

A heuristic justification for this iteration was given in the introduction, 
where we also mentioned its connection with iterations for the method of 
multipliers. We now concentrate on clarifying this latter connection further. 
Some familiarity with the method of multipliers is required on the part 
of the reader for the purpose of following the discussion. 

Consider the following simple special case of problem (16) 
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minimize{go(X)+ i=1~ aiT[f~(x)]}, 

where a~, i = 1, ..., m are some positive scalars. By introducing additional 
variables zl, ..., Zm this problem is equivalent to the problem 

min {go(x)+ ~zi}. 
~if~(x) < zi i= 1 

O<_z i 

The problem above may be solved by the method of multipliers with a 
quadratic penalty function as described for example in I-4, 13, 14, 18]. 
One may either eliminate only the constraints =~f~(x) < z~ by means of a 
generalized penalty or eliminate both the constraints a~f~(x) < z~ and 0 _< z~. 
It is possible to show that both approaches lead to identical results in our 
case. The reader may easily verify that our approximation procedure 
coupled with iteration (34) is in fact equivalent to solving the minimization 
problem above by the method of multipliers mentioned earlier. Our 
approximation procedure however is not equivalent to the method of 
multipliers for problems which do not have the simple form above although 
there is a certain relation which we now proceed to discuss. 

Let Q = R" and let 2 be a unique (isolated) local minimum of problem 
(16) within some open sphere S(2; e) = {x: Ix - 21 < 5}. Let us use the 
notation 

t + = {i: f/(2) > 0, i = 1,2 . . . . .  m}, 
1- = { i : f ~ ( 2 ) < 0 ,  i = 1 , 2  . . . .  ,m}, 
I ~ = {i:  f~(2) = 0,  i = 1,2 . . . .  , m } .  

Assume that 5 > 0 is taken sufficiently small to guarantee that 

fi(x) > 0 for all x ~ S(2; 5), i e 1 +, 
ft(x) < 0 for all x s S(2; 5), i e 1-. 

Let us first consider the case where the objective function O in problem 
(16)  has the particular form 

g[x, 7[f,(x)],..., 7[fm(x)]] = go(x) + ~ gi(x) 7[fi(x)], (35) 
i=1 

where g~: R" ~ R, i = 0 . . . .  , m, are continuously differentiable functions. 
Now if we make the assumption 

gi(2) 4 :0  for all i s  I ~ (36) 
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we have that, when g has the form (35), problem (16), locally within a 
neighborhood of ~, may be written as 

min~go(x) + ~ g,(x) fi(x) 
( i e I  + 

+ ,~,o+ ~ max[-O, g,(x) f(x)] + ,~,o ~ min[O, g,(x) f~(x)]} (37) 

where 

I ~247 = {i: gi(~) > O, f~(x) = 0}, I ~  = {i: gi~) < O, f(x)  = 0}. 

Since 2 is an isolated local minimum of the above problem, it follows under 
the mild assumption 

V[gi(x) fi(x)] x=x' i ~ 10 are linearly independent vectors (38) 

that the set I ~  is empty and we have 

gift) > 0 for all i ~ I ~ (39) 

Notice that the previous assumption (36) is implied by assumption (39). 
This fact can be verified by noting that 2 is an optimal solution of the 
problem 

min ~go(X)+ ~, gi(x) fi(x)+ ~ z,+ ~, gi(x)fi(x)~ (40) 
g i ( x ) f  t (x)  <- zl ~ i d  + i e l  o + i ~  "o - J 0 < zl,  i e l  O+ 

for every subset ' /~ of the set I ~ By applying the Kuhn-Tucker  theorem 
to problem (40) and using (38) it follows that the set I ~ must be empty, 
i.e., (39) holds. 

The basic conclusion from the preceding analysis is that, assuming (38), 
the problem of minimizing (35) is equivalent, locally around ~, to the 
nonlinear programming problem 

min {go(x)+~,gi(x) f~(x)+~zi} .  (41) 
gi(x)f~ (x) <-- zi iEl + i~l  ~ 

0 <- zl,  i~l  ~ 

At this point we deviate somewhat from our main subject and discuss 
briefly a constrained minimization method which is identical to the method 
of multipliers as described for example in [-4, 18] except for the fact that 
the penalty parameter may depend on the vector x. It turns out that this 
method is closely related to our approximation procedure. 
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Consider a constrained minimization problem of the form 

min po(X), (42) 
pi(x) <. 0 

i = l  . . . .  , m  

where Po, Pi :R"--' R. The method of multipliers consists of sequential 
unconstrained minimization of the function 

~ {[max(O, Y~k + dkp,(x))] 2 -- (Y/k)2}, (43) po(X) + 
i = 1  ~Ck 

where (d,) are sequences of positive numbers and the multipliers y~, are 
updated at the end of each unconstrained minimization by means of the 
iteration 

Y~,+I = max[0, y~, + dkpi(Xk)], i = 1,..., m, (44) 

where Xk minimizes (43). The same updating formula may be used even if 
Xk is only an approximate minimizing point of (43). The method maintains 
its basic convergence characteristics provided the unconstrained minimiza- 
tion is asymptotically exact. We refer for a detailed discussion of this point 
as well as for supporting analysis to [3, 4]. 

Now consider a variation of the method above whereby x-dependent 
penalty parameters ?~(x), ?~, : R n-~ R, are used in (43), (44), in place of c~,, 
i.e., we minimize 

1 {[max(0,y~, + ~,~(x)pi(x))] 2 - (y~,)~} (45) P(x, yk)= po(xt + 
i = 1  

and update the multipliers by means of 

Y~,§ = max[0, y~, + ~,(xk) p~(x~)], i = 1, ..., m, (46) 

where x~ minimizes (45). Here we assume that ~,(x) is positive over a 
region of interest and that there is some form of control over the magnitude 
of ?~,(x) so that it can be uniformly increased if desired. For example we 
may have ?/k(x) = cikr~(x), where c], is a scalar penalty parameter that may 
be increased from one minimization to the next and ri(x) is a positive 
function of x over the region of interest which does not depend on the 
index k. 

It is not difficult to see that a method of multipliers with an x-dependent 
penalty parameter of the type described above should behave similarly as 
a method of multipliers of the ordinary type. The reason is that if Xk is a 
minimizing point of the function P(x,  Yk) of (45), then Xk is also an approx- 
imate minimizing point of the function 
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m 1 
P(X, Yk) = po(x) + ,=i ~ 2~(Xk) {[max(O,y~ + C~(Xk) pI(x))] 2 -- (y~)2} (47) 

in the sense that 

VP(Xk, Yk) = --�89 ~ [max(-- y~/C~k(Xk), p,(xk))]2V~k(Xk). 
i = 1  

Now i f x  k is close to an optimal solution ~ and Yk is close to a corresponding 
Lagrange multiplier vector y of problem (42), then VP(xk, Yk) is small and 
in the limit as Xk ~ X, YR --* Y we have VP(xk, Yk)  - *  O. In other words, Xk is 
an asymptotically exact minimizing point of (47). As a result, the multiplier 
method with x-dependent penalty parameters is equivalent to an ordinary 
multiplier method with penalty parameter sequences {~(Xk)} where 
asymptotically exact minimization is employed. It follows under suitable 
assumptions that the reader may easily provide, using the analysis of [3, 4], 
that such methods of multipliers employing x-dependent parameters 
possess the well-known advantages of multiplier methods over penalty 
methods. In particular the multiplier iteration (46) accelerates convergence 
and the penalty parameters need not be increased to infinity in order for 
the method to converge. 

Now it may be verified that our approximation method when iteration 
(34) is employed is equivalent, within a neighborhood of ~, to a multiplier 
method for solving the constrained minimization problem (41) where the 
penalty parameter is x-dependent as described above. To be precise, let 
(Ck} be a parameter sequence used in the approximation method for 
minimizing (35) and let {Xk}, {Yk}be the corresponding generated sequences. 
Then the vectors Xk, Yk, for k > k, where k is sufficiently large, are identical 
to the ones that would be generated by a method of multipliers for problem 
(41) for which: 

(a) Only the constraints g~(x) f (x )  < zi, i e I ~ are eliminated by means 
of a generalized quadratic penalty. 

(b) The penalty parameter for the (k + 1)'h minimization corresponding 
to the ith constraint, i e I  ~ depends continuously on x and is given by 

= ck/g (x). 

(c) The multiplier vector ~ at the beginning at the (k + 1) th minimiza- 
tion is equal to Yr. 
Alternatively, the vectors Xk, Yk for k > k, where k is sufficiently large, are 
identical to the ones that would be generated by the method of multipliers 
for problem (41) for which: 

(a) Both constraints g~(x) f ( x )  < z~, i e I ~ and 0 < z~, i e I ~ are eliminated 
by means of a generalized quadratic penalty. 
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(b) The penalty parameter for the (k + 1)th minimization corresponding 
to the ith constraints depends continuously on x and is given by ~(x) = 
2cdgi(x). 

(c) The multiplier vectors ~ ,  ~ at the beginning of the (k + 1)th minimi- 
zation (where ~ corresponds to the constraints #~(x) f~(x) < zi, i ~ I ~ and 
~ corresponds to the constraints 0 < z~, i t  I ~ satisfy ~ = Yk- and ~ = 
1 - -  y ~ .  

The equivalence described above may be seen by verifying the following 
relations which hold for all scalars y ~ [0, 1 ], c > 0, g > 0, f .  

~ ( f ,  y, c) = min[z + (g/2c) {[max(0,y + (c/g)(gf - z))] 2 - y2}] 
0 < z  

= min[z + (g/4c){[max(0,y + (2c/g)(g f -  z))] 2 - y2 

+ [max(0, 1 - y - (2c/g)z)] 2 - (1 - y)2}]. 

The above relations show that after a certain index (when ck is sufficiently 
high and the multipliers y~, i e I +, y~, i e I -  have converged to one and zero 
respectively) the k th unconstrained minimization in our approximation 
method is equivalent to the k th unconstrained minimization in the multiplier 
methods mentioned above. 

The conclusion from the above analysis is that our approximation 
procedure with the iteration (34) when applied to minimization of a function 
of the form (35) has similar behavior as a method of multipliers with x- 
dependent penalty parameter applied to problem (41). Thus we can conclude 
that results concerning convergence and rate of convergence for the method 
of multipliers carry over to our case. In particular we expect that under 
assumptions which hold in most cases of interest the iteration (34) will 
accelerate convergence and will avoid the need to increase ck to infinity, 
i.e., the approximation procedure will converge even for ck constant but 
sufficiently large. 

We turn now to the general case of problem (16) where the cost function 
g does not have the form (35). Let us assume for convenience and without 
loss of generality that I ~ = { 1,..., m}, and consider the following Taylor 
series expansion around 

a(x) = O[x, ~[fl(x)] . . . . .  7[fm(X)]] 
mr? 

= gEx, ?[f,(~)] .... ,7[fm~)]] + 2 ~ [ X ,  7[f,(x)], ..., 7[fm~)]]TEf~(x)] 
i = l  tJLi 

(48, 
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where Ox is a function of x, 7[f/(x)], i = 1 . . . . .  m such that for every x, 

lim 

i=1  

= 0 .  

Now the function (48) is of the form (35) except for terms of order higher 
than one. Thus we expect that in the limit and close to 2, where the term 
0~(~i~1 7[f/(x)]) is negligible relative to first order terms, the approx- 
imation method will yield similar behavior as for the case of a function of 
the form (35), and the iteration (34) can be viewed as asymptotically 
equivalent to the iteration of a method of multipliers. 

A more precise justification of the point above can be given by consid- 
ering the function (48) up to first order 

~(x) = g[x, 7[f1(#)] . . . . .  7 [ f ,  fY)]] 

8g 
+ ,=;~ ~-~ [x, 7[flfY)] . . . . .  7[f,,(2)] 7[f(x)].  (49) 

Now the point 2 satisfies the necessary condition of the previous section 
for an isolated local minimum of the function above. Let us assume that 
is indeed an isolated local minimum of (49). This assumption is not, of 
course, always satisfied but is likely to be true in many cases of interest. 
Then the approximation procedure for minimizing G(x) is equivalent to 
the approximation procedure for minimizing (~(x) except for the fact that 
in the latter case we terminate the unconstrained minimizations at points 
Xk, where the gradient'of the approximate objective function is 

Now when Ox contains terms of second order and higher and x k ~ 2~ Yk ~ 

(this is guaranteed for example if Ck ~ 00), the term above tends to the 
zero vector and the minimization of the approximation of G(x) is asymp- 
totically exact. 

Our discussion above has been somewhat brief since a detailed analysis ~ 
of our viewpoint would be extremely long and tedious. However it is felt 
that enough explanation has been provided to the interested reader in 
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order for him to supply the necessary assumptions and analysis and firmly 
establish the conclusions reached. 

We mention that for practical purposes it may be computationally 
efficient to update the multipliers prior to completing the minimization in 
the approximate optimization problems. One may use analogs of termina- 
tion criteria used for penalty and multiplier methods with inexact mini- 
mization [3, 4]. While it seems that the employment of such termination 
criteria should result in more efficient computation for many problems, 
our computational experiments were inconclusive in this respect. 

Finally we note that when the constraint set Q in problem (16) is specified 
by equality and inequality constraints, it is convenient to eliminate these 
constraints by means of penalty functions while solving the approximate 
minimization problems. In this way the approximation method is combined 
with the penalty function method in a natural way. One may use the same 
parameter Ck to control both the accuracy of the approximation and the 
severity of the penalty. Assuming that Ck ~ O0 one may prove various 
convergence theorems for methods of this type simply by combining 
standard arguments of convergence proofs of penalty methods [8] together 
with the convergence arguments of this paper. As an example consider the 
problem 

minimize go[X, 7[f~(x)],  ..., 7[fm(x)]], 

subject to g l [x ,  7[hl(x)], ..., r[hp(x)]] = 0, 

where go, gl are real valued functions. One may consider sequential 
minimization of the function 

go[x, ~[s yL ~],  ..., ~[/,(x), H,  cQ] + 

+ ,kg,[~, ~[h,(~), wL c~] ..... 9[h,(~),,q, ~ ] ]  

+ �89 [~, ~[h,(~), w~', ~,], ..., ~ [h~(x), w~, c~]]] ~, 

where (Ck} is an increasing sequence tending to infinity with Ck > 0, {y~}, 
{W~,} satisfy 

0 < y ~ <  1, 0 < w ~ <  1 for allk, i 

and {2k} is a bounded scalar sequence. The updating procedure for the 
multipliers which corresponds to the iteration of the method of multipliers 
is given by 
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{ii y'k + 1 = k + ck f~(x~)  

if 1 < yik + ckf~(Xk), 
if 0 < Y~k + Ck-f~(Xk) < 1, 
if Y'k + ckfi(xk) < 0; 

Wk + 1 k + Ckhi(Xk) 

if 1 < Wik + ckhi(xk), 
if 0 < w~ + Ckh~(Xk) < 1, 
if y~ + Ckhi(Xk) < 0; 

(50) 

(51) 

)'k+1 = 2k + Ckg,[Xk, ~[h1(Xk), W~, Ck], ...,~'[hp(Xk), W~, Ck]]. (52) 

The updating procedure (50)-(52) appears to be a reasonable one and when 
employed it improved a great deal the speed of convergence in our com- 
putational experiments. However we offer here no theoretical analysis 
which supports the conjecture that it accelerates convergence for any broad 
class of problems. 

5. Computational results 

We have performed, with the assistance of L. Berman, a number of 
computational experiments to test the analysis of this paper. We present 
here some of the results related to two test problems. In both problems we 
performed the unconstrained minimizations by using the Davidon-Flet- 
cher-PoweU method available on the IBM-360 and referred to as the 
FMFP Scientific Subroutine. The value of the parameter e which controls 
accuracy of minimization in this method was taken to be e = 10- s. Double 
precision was used throughout. The starting point for each unconstrained 
minimization, except the first one in each problem, was the final point 
obtained from the previous minimization. The computational results are 
reported in terms of number of iterations required (the number of function 
evaluations not being readily available). These results, naturally, are highly 
dependent upon the efficiency of the particular unconstrained minimization 
subroutine employed. It is possible that much better (or worse) results may 
be obtained by employing a different unconstrained minimization method 
such as for example Newton's method. 

Test problem 1. The problem is 

m i n i +  i l x  i , 
/ = 1  
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where x ~ denotes the ith coordinate of x ~ R". We represented Ix~[ by 
x ~ + y [ - 2 x  i] and used our approximation procedure with and without  
updating of the multipliers starting with x i = - 1, y~ = 0, i = 1, ..., n. We 
solved the problem for n = 5 and n = 50 and a penalty parameter  sequence 
Ck = 5 k. We also solved the problem by using a constant  value of penalty 
parameter ck = 10 for all k in conjunction with iteration (34). Table 1 shows 
the results of the computation.  

Table 1 
'Value of objective at  minimizing point Xk)/(Number of iterations required) 

Ck = 5 k, y~ -- 0 Ck = 5 k, Yk : updated ck -- 10, Yk : updated 

k n - - 5  n = 5 0  n = 5  n = 5 0  n = 5  n = 5 0  

0 32.6820 10 14753.3 6 
1 3.06250 19 6420.92 13 
2 1.32250 16 441.704 72 
3 1.06090 13 11.9509 93 
4 1.00240 13 2.28010 132 
5 1.00048 34 1.21441 165 
6 1.00010 24 1.04122 131 
7 1.00002 29 1.00818 180 
8 1.00000 30 1.00163 103 
9 1.00033 186 

10 1.00007 143 
11 1.00001 168 
12 1.00000 140 

32.6820 10 14753.3 6 1.89062 16 2028.52 56 
2.00493 18 5807.64 73 1.00000 10 131.120 86 
1.00000 13 72.7005 60 50.7946 84 

1.93668 139 18.6044 115 
1.00000 I00 1.00091 71 

1.00090 50 
1.00000 36 

Total 
number  
o f iterations 

188 1532 41 378 26 498 

We also solved a constrained version of the problem 

subject to 
Ix 1 -  2L + Ix 1 + . . .  § Ix l = 1 

by using the combinat ion of the penalty or multiplier method and the 
approximation method described at the end of the previous section. The 
starting points were x i = - 1, yi = 0, w i = 0, i = 1, 2 . . . . .  n and ;t = 0. The 
results are summarized in Table 2. In each case the constraint  equat ion 
was satisfied within six significant digits at the final solution point. 
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Table 2 
(Value of objective at minimizing point Xk) / (Number  of iterations required) 

C k = 5 k, yk,Wk,2k =- 0 C k ---- 5 k, yk,Wk,2k:Updated C k = 10, yk,wk,2 k :updated 

k n = 5 n = 50 n = 5 n = 50 n = 5 n = 50 

0 23.6249 13 164410. 61 23.6249 13 164410. 61 3.85141 15 2611.20 92 
1 4.35020 19 7095.79 93 3.17223 16 4400.94 103 3.63379 16 161.944 133 
2 3.84160 15 432.923 102 3.80147 15 99.9155 114 3.93774 5 52.6251 131 
3 3.95553 19 20.1098 108 3.99683 5 5.73819 133 3.98959 5 3.22301 111 
4 3.99054 16 6.21738 137 3.99999 5 3.99912 109 3.99826 5 3.86473 84 
5 3.99809 26 4.40393 222 4.00000 6 4.00002 60 3.99971 5 3.97907 51 
6 3.99962 44 4.07921 132 4.00000 50 3.99995 5 3.99800 54 
7 3.99992 36 4.01578 167 3.99999 5 3.99937 50 
8 4.00000 36 4.00315 139 4.00000 5 3.99989 50 
9 4.00063 149 3.99998 50 

10 4.00013 186 4.00000 50 
11 4.00003 131 
12 4.00001 500* 
13 4.00000 500* 

Total 
number  
of  iterations 

224 2,627 60 630 66 856 

* Limit on # of iterations 

Test problem 2. This is a minimax problem suggested to us by Claude 
Lemarechal:  

min max{fx(x), f2(x) . . . . .  fs(x)}, 
X 

where x E R t~ and 

f~(x) = ~x,  A i x )  - (bi, x ) ,  i = 1, 2 . . . .  , 5. 

The elements at(m, n), m, n = 1 . . . . .  10 of the matrices Ai and the coordinates 
hi(m) of the vectors bi are given by: 

at(m, n) = e m/n cos(m- n) sin(i) for m < n, 

ai(m, n) = ai(n, m) for m > n, 

a,(m,m) -- 2 Isin (i)1 i/m + Y~ la,(m,j)l, 
j~p rn 

bi(m) = e " / i  s i n ( / "  m ) ,  i = 1 . . . . .  5 ,  m = 1, ..., 10. 

We represented max{f1, f2 . . . . .  fs} by 
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max{A, . . . ,  fs} = A + 7[f2 - A  + ~:[f3 - A  + ~'[A - f3 + ~:[f5 - A ] ] ] ]  

and used our approximation procedure in conjunction with iteration (34). 
The starting points were x ~ = x z = ..- = x 1~ = 0 and y01 = y~ = yo 3 = yo 4 
= 0. The optimal value obtained is -0.51800 and the corresponding 
multiplier vector was 

= (1.00000, 0.99550, 0.89262, 0.58783). 

It is worth noting that  for minimax problems of this type the optimal values 
of the approximate objective obtained during the computat ion constitute 
useful lower bounds for the optimal value of the problem. Table 3 shows 
the results of the computa t ion  for the case where unconstrained minimiza- 
tion was "exact" (i.e., e = 10- 5 in the D F P  routine% It also shows the results 
of the computat ion when the unconstrained minimization was inexact in 
the sense that  the k th minimization was terminated when t h e / t - n o r m  of the 
direction vector in the D F P  was less than max[lO -s,  lO-k]. 
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