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Nondiffracting Bulk-Acoustic X waves in Crystals
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The concept of nondiffracting waves is generalized to encompass bulk-acoustic waves within
crystalline media. We introduce acoustic Bessel beams and generalized X waves for anisotropic elastic
materials. Detailed numerical predictions for propagation-invariant bulk-acoustic beams of various
orders, and also X pulses, are presented for experimental verification. The material parameters used
have been chosen appropriately for quartz, the most important material for acoustic device applications.

PACS numbers: 62.30.+d, 41.20.Jb, 43.20.+g, 63.20.–e
Stratton first derived expressions for nondiffracting
beams [1] and axicons were first employed to produce
them [2]. However, these waves attracted wide interest
only after Durnin and co-workers reported diffraction-free
optical J0 beams [3]. The nondiffracting beams remain
diffraction-free on passage through all paraxial optical
systems [4]. Bessel beams have distinct advantages
in metrology, in particle confinement and acceleration
[5], and in nonlinear optics [6] where they also show a
self-reconstruction property [7]. In modern optics, nearly
diffraction-free laser beams are generated by diffractive
elements [8], in optical resonators [9], and, programmably,
by spatial light modulators [10].

Within modern acoustics, nondiffracting or limited-
diffraction beams have been produced with two-
dimensional ultrasonic array transducers [11]. The first
experimental measurements to confirm the existence of
“directed-energy pulse trains” for ultrasonic waves in
water were reported by Ziolkowski et al. [12]; recently,
“acoustic bullets” were discussed by Stepanishen [13].
Lu and Greenleaf, in particular, found a novel class of
acoustic nondiffracting X waves [14] which are exact
solutions of the free-space scalar wave equation; they
also realized X waves with finite-aperture ultrasonic
transducers. We rederived nondiffracting X waves in the
framework of the angular spectrum of plane waves [15].
X waves and other localized fields, such as focus wave
modes, can be generated by finite dynamic apertures [16].
Recently, propagation-invariant localized X shaped light
waves were demonstrated [17].

Owing to their depth of field, limited-diffraction beams
have found important applications, e.g., within medical
real-time imaging [18] and in optical microlithography
[19]. To date, the design and synthesis of nondiffracting
beams and localized-wave physics and engineering [20]
have been performed only for free space [21] or for an
isotropic medium [22]; this also applies to nondiffracting
electromagnetic fields [23]. In this Letter we consider,
for the first time, nondiffracting waves in an anisotropic
medium [24].
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Elastic wave motion in an anisotropic crystal is de-
scribed by the equation of motion
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where �u is the displacement of a volume element.
The material properties are contained in the fourth-
rank stiffness tensor cijkl [25]. Fourier transforming,
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Here bik �
P3

j,l�1 cijklajal�r, the unit vector �a defines

the direction of wave propagation, and �k � q �a is the
wave vector. Equation (2) possesses nontrivial solutions
provided det�bik 2 �v2�q2�dik� � 0. This is a third-
order polynomial for v2�q2 having three real solutions.

For ordinary crystalline materials, these solutions are
positive, resulting in three possible dispersion relations.
Therefore, for a given direction �a there exist three in-
dependent waves with respective phase velocities v�q.
Each corresponds to a plane wave in which the atoms
oscillate along the direction given by the eigenvector,
�̃u�kx , ky , kz , v�, of the Cristoffel equation. This direc-
tion is referred to as the polarization of the wave; it de-
pends both on the direction of wave propagation and on
the choice of the dispersion relation. The polarizations
of the three modes are orthogonal by construction. The
dispersion relations are commonly expressed in terms of
the slowness (inverse phase velocity) vector �s � �q�v� �a
which points in the direction of wave propagation; the cor-
responding plane waves are ũi exp�iv��s ? �r 2 t��. Elas-
tic media support one (quasi)longitudinal (L), one fast,
and one slow (quasi)transverse (FT and ST) propagating
modes, given by the three slowness surfaces.

A nondiffracting wave propagates invariant in shape.
First consider nondiffracting beams localized in the
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transverse direction only. Taking a wave of the form
f�x, y, z, t� � f�x, y�eikz�z2yt�, its Fourier transform
is bound to a subset of the Fourier space for which
y � v�kz , i.e., sz � 1�y. The function f is limited by
the wave equation involved. Nondiffracting pulses, on
the other hand, are localized wave packets propagating
with a fixed velocity y. We look for waves of the form
f�x, y, z, t� � g�x, y, z 2 yt�; the Fourier transform
proves proportional to d�kz 2 v�y�. This is again just
the condition sz � 1�y, but now the angular frequency
v is free. Thus nondiffracting pulses are polychromatic
generalizations of nondiffracting beams.

Now consider nondiffracting elastic waves that propa-
gate with a preassigned velocity y along z. We impose
two restrictions on the Fourier transform of the wave:
(i) all Fourier components lie on the three allowed slow-
ness surfaces, and (ii) kz � v�y; hence sz � 1�y. If
a solution satisfying these two conditions is monochro-
matic, it is a beam; otherwise it constitutes a propagating
pulse. The properties of the nondiffracting wave solutions
intimately depend on the intersection of the slowness sur-
faces and the plane sz � 1�y. We may consider the most
general nondiffracting wave by taking intersections of all
the slowness surfaces with the plane where sz � 1�y,
but we may also include just one slowness curve at a
time. Let us parametrize one of the slowness curves with
u [ �0, 2p�, such that u is proportional to the arc length
measured from one fixed point on the curve. This is not
the only possible parametrization but it is chosen as the
most unbiased alternative. Moreover, other integration
measures can always be incorporated into the arbitrary
function A�v, u�. The nondiffracting wave is now repre-
sented as
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Z `

2`
dv

Z 2p

0
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3 eiv�sx�u�x1sy �u�y1szz2t�, (3)
where A�v, u� is an arbitrary function. If we omit the
v integration [or assume that A�v, u� ~ d�v 2 v0�], the
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wave becomes a nondiffracting beam since it then reduces
to the form f�x, y�ei�kzz2v0t�.

Heretofore, no further assumptions have been imposed
on the wave solution, except for the nondiffrac-
tion requirement. Now choose a function A�v, u�
which is separable: A�v, u� � a�v�b�u�, where
b�u� �

P`
n�2` bneinu; hence
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Above, an arbitrary reference frequency v0 appears which
merely serves as a computational tool: the nondiffract-
ing wave needs to be calculated for one frequency v0

only, the other frequencies are obtained through scaling:
x ! �v�v0�x; y ! �v�v0�y. The latter integral may
be evaluated numerically; finally, the wave is given by
Eq. (4) which expresses a nondiffracting beam of fre-
quency v as the sum of elementary beams, and the in-
tegrated wave is its polychromatic generalization. This
procedure parallels the decomposition of nondiffracting
scalar beams and pulses into different Bessel waves and
corresponding X waves; see, e.g., Ref. [15].

It is difficult to proceed analytically for the general
anisotropic material. Therefore, first consider the special
case of isotropic longitudinal waves assumed to propagate
with the phase velocity c (the speed of sound). The
general nondiffracting beam [26] is
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Here g is an arbitrary parameter g [ �0, p�2� which defines the beam velocity y � c� cosg. Since cosg # 1, the
velocity y is necessarily supersonic. Transforming into cylindrical coordinates, x � r cosh, y � r sinh, using the
Fourier series b�u� �
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n�2` bneinu , and evaluating the integrals we find for the order n � 00B@ u1
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FIG. 1 (color). Nondiffracting acoustic beams in quartz. The
left column shows the L mode for n � 0, 1, and 2, the middle
one illustrates the FT mode, and the right column is the ST
mode. Color shading denotes the time-averaged kinetic energy;
each frame represents 100 mm 3 100 mm area.

where k � �v�c� sing is the transverse wave number.
This shows that the different Bessel orders do not appear
separately in the elastic waves, but rather couple to orders
one lower and one higher. Consequently, the energy
density of the wave need not display any zeros as in the
scalar case [27] since the nodes of the different Bessel
functions do not coincide.

By construction, a nondiffracting wave retains its trans-
verse form and energy is effectively transported along the
beam. However, the velocity of energy transport is not
the velocity of the beam, but rather a velocity slower than
that of sound. This is understandable, since otherwise a
nondiffracting wave would lead to a supersonic (or super-
luminal) energy transport. This may be interpreted as fol-
lows: Energy is not transported only along the beam, but
there is also a transverse energy flow towards the beam
center and away from it. Therefore, the cross section of
a nondiffracting beam is essentially a standing wave and
the transverse energy flow vanishes. As the energy veloc-
ity is a vectorial sum of the velocity along the beam and
the transverse velocity, with the latter canceling due to the
standing-wave effect, the resultant velocity is slower than
that of sound.

We evaluate nondiffracting beams and pulses numeri-
cally for quartz [25], one of the most important indus-
trial materials for acoustic applications. The resulting
nondiffracting beams of different orders, n � 0, 1, 2, con-
structed from the L, FT, and ST modes, respectively, are
illustrated in Fig. 1. The threefold symmetry of the beams,
reflecting the underlying trigonal symmetry of quartz, is
evident. For the lowest-order (n � 0) modes, the L, FT,
and ST nondiffracting beams each also displays mirror
symmetry. For the L and FT modes, the n � 0 beams
feature maximal intensity at the center. However, for the
ST mode there occurs a dark spot in the middle. This is
due to the u1 and u2 components being proportional to
the function J1, and u3 averaging to zero owing to the
complicated behavior of the ST mode polarization. For
higher-order beams, symmetry is reduced to trigonal. Note
that the ST mode features maximal intensity at the beam
center for n � 1 and again a minimum for n � 2. The
intensity in the higher-order L and FT mode beams is
accumulated farther from the center, as for the X waves
in free space, cf. Ref. [15].

Consider nondiffracting pulses in quartz. An X-shaped
pulse is composed by evaluating the beam at the fre-
quency v0 � 109 s21 and then constructing the beam
corresponding to the frequency v by scaling, cf. Eq. (4),
and integrating over v with weight e2hv , where
h � 1029 s. Figure 2 elucidates the 3D amplitude of the
quasi-longitudinal lowest-order (n � 0) nondiffracting
pulse. Note the distorted shape of X on projection into
the yz plane, a consequence of crystal anisotropy and
inversion symmetry of the X pulse. One may use either
a planar [11,28] or a conical [29] piezoelectric transducer
arrangement to excite the nondiffracting acoustic waves
in crystals. Subsequently, they may be detected experi-
mentally with acoustic wave-front imaging [30].

Nondiffracting optical and ultrasonic beams have novel
and broad technical applications owing to their depth of
field, ranging from optical microlithography [19] to medi-
cal real-time imaging [14] and, potentially, optical com-
munication [31]. Nondiffracting bulk-acoustic X waves
may be anticipated to have applications in high-quality
crystal resonators and resonator filter devices within
telecommunications. In the future, propagation-invariant
nondiffracting electromagnetic waves and light pulses in

FIG. 2 (color). Nondiffracting quasilongitudinal fundamental
(n � 0) acoustic pulse propagating along z with the velocity
y � 1.43 3 104 m�s in quartz. (a) Acoustic amplitude of the
pulse in the yz plane at x � 0; note the reduced symmetry
in the shape of X, owing to crystal anisotropy. (b) Acoustic
amplitude of the pulse at a crosscut in the xz and yz planes.
(c) Approach form of the acoustic pulse at z � 70 mm; the
trailing form is a parity transform of that in (c). Width of each
frame is 140 mm.
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crystals are expected to become industrially increasingly
important in connection with low-loss microwave elec-
tronics, in particular, miniaturized resonators and filters
within mobile telecommunications.
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