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Nondipole effects in photon emission by laser-driven ions
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and Max-Planck-Institute fu¨r Quantenoptik, D-85748 Garching, Germany
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The influence of the magnetic-field component of the incident pulse on the emission of photons by multiply
charged ions interacting with intense, near-infrared laser pulses is investigated theoretically using a strong-field
approximation that treats the coupling of the atom with the incident field beyond the dipole approximation. For
peak pulse intensities approaching 1017 W cm22, the electron drift in the laser propagation direction due to the
magnetic-field component of the incident pulse strongly influences the photon emission spectra. In particular,
emission is reduced and the plateau structure of the spectra modified, as compared to the predictions in the
dipole approximation. Nondipole effects become more pronounced as the ionization potential of the ion
increases. Photon emission spectra are interpreted by analysing classical electron trajectories within the semi-
classical recollision model. It is shown that a second pulse can be used to compensate the magnetic-field
induced drift for selected trajectories so that, in a well-defined spectral region, a single attosecond pulse is
emitted by the ion.

DOI: 10.1103/PhysRevA.66.063411 PACS number~s!: 42.50.Hz, 32.80.Rm, 42.65.Ky

I. INTRODUCTION

Atoms and ions interacting with intense infrared laser
pulses emit high-order harmonics of the driving field in the
form of coherent attosecond pulses@1–6#. This process is
readily understood in terms of the semiclassical recollision,
or ‘‘Simpleman’s model,’’ whereby electrons are detached
from their parent atom or ion by quasistatic tunneling ioniza-
tion, oscillate in the field, and return to the core where they
radiatively recombine@7–11#. A fully quantum version of
this model has formed the basis of a vast number of theoret-
ical investigations of high-order-harmonic generation@10–
12#, and has been used successfully to analyze experiment
~see, e.g., Ref.@13#!. This theory relies on the strong-field
approximation~SFA!, which assumes that the interaction of
the detached electron with the field is much stronger than its
interaction with the core so that the latter can be neglected.
In addition to explaining high-order-harmonic generation,
the model also forms the basis of our present understanding
of other processes occurring in low-frequency laser fields,
such as high-order above threshold ionization~ATI ! and
recollision-induced multiple ionization.

Once detached, the electron is accelerated by both the
electric-field and magnetic-field components of the incident
beam. The magnetic-field component tends to deflect the tra-
jectory towards the direction of propagation of the beam,
with the result that the electron never returns to the nucleus if
detached with zero velocity. The drift in the propagation di-
rection imparted by the Lorentz force is largely offset by the
width of the returning wave packet, and is therefore negli-
gible at the intensities and wavelengths normally used in
experiments on high-order-harmonic generation~typically
1014–1015 W cm22 in the visible or near infrared!. In these
conditions, the Lorentz force does not need to be taken into
account and the coupling of the electron with the incident

field is accurately described within the dipole approximation.
However, at much higher intensities the drift is no longer
negligible and the dipole approximation ceases to be valid.
Moreover, the electron’s dynamics becomes relativistic at
very high intensities.~At the Ti:sapphire wavelength, 800
nm, the ratio of the nonrelativistic ponderomotive energy of
the electron to its rest energy exceeds unity for an intensity
of 8.531018 W cm22.!

Recent theoretical investigations of atomic stabilization in
the high-frequency stabilization regime@14–18# and of pho-
ton emission by ions interacting with intense near-infrared
laser pulses@19–24# have established the existence of a
‘‘nondipole nonrelativistic’’ dynamical regime, in which the
effect of the magnetic-field component of the laser is too
large for the dipole approximation to be appropriate but not
so large that a relativistic description is necessary. At the
Ti:sapphire wavelength, the dipole approximation is ex-
pected to remain valid up to intensities of about 531016–1
31017 W cm22 ~depending on the system, as will be seen
below!. Due to the magnetic drift, the probability that the
electron recombines with the core is non-negligible only if
the electron is initially detached with a nonzero velocity in
the direction opposite to the propagation direction of the in-
cident beam. However, the detachment probability falls off
rapidly if this initial velocity departs from zero@25,26#. The
consequence is that the harmonic generation is weaker and
varies differently as a function of the frequency of the emit-
ted photon than would be the case in the absence of the
Lorentz force.

The dipole approximation has been assumed in nearly all
the theoretical work to date on high-order-harmonic genera-
tion in low-frequency fields. Only a few fully quantum cal-
culations, all based on the strong-field approximation, have
addressed the role of the magnetic drift in this context. Ex-
pressions for the dipole moment of an atom or ion in the
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nondipole nonrelativistic regime have been developed by
Walseret al. @21# and, in another form, by us@22,27#, and
applied to emission driven by ultrashort pulses. A relativistic
formulation of harmonic generation in stationary fields,
based on the Klein-Gordon equation, has also been given by
Milošević, Hu, and Becker@20,24#.

In the present paper, we give a detailed account of the
nondipole SFA sketched in Ref.@22# and relate it to the
theory of Walseret al. @21#. We also assess the importance of
the relativistic effects neglected in our approach by compar-
ing with results obtained by Milosˇević, Hu, and Becker@20#.
We consider, in particular, the emission of photons by iso-
lated Li21, Be31, and Ne61 ions exposed to strong near-
infrared pulses. We do not study emission from neutrals, as
only multicharged ions can withstand the intensities at which
the magnetic drift becomes significant without ionizing im-
mediately. The importance of the nondipole effects is inves-
tigated by comparing the nondipole nonrelativistic photon
emission spectra with dipole spectra for long pulses~repre-
sented by stationary fields! as well as for few-cycle pulses.
The numerical results are interpreted with the help of the
recollision model, generalized to the nondipole case. The tra-
jectories we consider are real and obey the classical equa-
tions of motion. This approach complements the description
of the electron’s dynamics in terms of complex trajectories
discussed in Ref.@20#; the two approaches lead to essentially
the same physical picture. Finally, we illustrate how a sec-
ond, weak laser pulse can be used to compensate for the
magnetic drift of the electron. In particular, we show that the
recombination probability of selected electron trajectories
can be enhanced by several orders of magnitude in this way,
thereby leading to photon emission in the form of a single
attosecond x-ray pulse. Unless otherwise indicated, atomic
units are used throughout the paper.

II. THEORETICAL APPROACH

A. Nondipole nonrelativistic approximation

We assume that the vector potential describing the laser
field can be written as

A~h!5 ê~E/v! f ~h!sin~h!, ~1!

with h5v(t2 k̂•r /c). The field has a carrier wavelengthl
52pc/v, field strengthE, is linearly polarized with polar-
ization vectorê, and propagates in the directionk̂. The func-
tion f (h) describes the temporal profile of the pulse;f (h)
[1 for a stationary field.

The influence of the magnetic-field component of the la-
ser on the electron dynamics can be accounted for in the
long-wavelength and nonrelativistic regime considered here
by expanding the vector potential to first order in 1/c. As-
suming the atom to be initially located at the origin leads to

A~h!.A~vt !1
1

c
~ k̂•r !E~vt !, ~2!

whereE(vt)52(d/dt)A(vt)52 ê(d/dt)A(vt)5 êE(vt).
Our work is based on the time-dependent Schro¨dinger equa-
tion

i
]

]t
C~r ,t !5S 1

2
@2 i“1A~vt !#21

1

c
~ k̂•r !@2 i“

1A~vt !#•E~vt !1V~r ! DC~r ,t !, ~3!

which is exact up to order 1/c in the atom-field interaction.
We neglect the spin of the electron. The potentialV(r ) de-
scribes the interaction of the electron with the ionic core.
There are two nondipole terms in the Hamiltonian: the first
one, in“•E(vt), gives rise to electric quadrupole and mag-
netic dipole transitions. The second one, inA(vt)•E(vt),
contributes to the drift in the propagation direction induced
by the magnetic-field component of the incident beam and
has a large influence on the emission of photons by ions at
high laser intensities.

At low frequencies, it is appropriate to transform the time-
dependent Schro¨dinger equation to the length gauge, with the
result

i
]

]t
CL~r ,t !5S 2

1

2
¹21F r2

i

c
~ k̂•r !“G

•E~vt !1V~r ! DCL~r ,t !, ~4!

where CL(r ,t)5exp@iA(vt)•r #C(r ,t). By introducing the
retarded Green’s function associated with the Hamiltonian of
Eq. ~4!, the wave functionCL(r ,t) can be obtained as the
solution of a time-dependent Lippmann-Schwinger equation.
In the SFA approach of Lewenstein and co-workers@1,10#,
this Green’s function is replaced by the Volkov Green’s func-
tion associated with the Hamiltonian that describes a free
electron in the laser field,GV

(1)(r ,t;r 8,t8). To account for the
magnetic-field component of the laser pulse at high intensi-
ties, we employ the nondipole Volkov Green’s function dis-
cussed in the Appendix. Neglecting continuum-continuum
transitions@28#, the dipole moment of the atom then reduces
to

d~ t !.E
2`

t

dt8E drdr 8f0* ~r ,t !

3~2r !GV
(1)~r ,t;r 8,t8!H int~ t8!f0~r 8,t8!1c.c.

~5!

The atom or ion is initially in its ground state and is de-
scribed by the wave functionf0(r ,t)5f0(r )exp(iI pt), I p be-
ing the ionization potential of the state.H int(t8) is the atom-
field interaction Hamiltonian

H int~ t8!5F r2
i

c
~ k̂•r !“G•E~vt8!. ~6!

Equation~5! can also be written in the form
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d~ t !.2ImE
0

t

dt8E dpdrec* @p~p,t !#

3exp@2 iS~p,t,t8!#dion@p~p,t8!,t8#, ~7!

where

p~p,t !5p1A~vt !1
1

c Fp•A~vt !1
1

2
A2~vt !G k̂, ~8!

S~p,t,t8!5
1

2Et8

t

dt9@p~p,t9!#21I p~ t2t8!, ~9!

drec~q!5~2p!23/2E dre2 iq•r~2r !f0~r !, ~10!

and

dion~q,t !5~2p!23/2E dre2 iq•rH int~ t !f0~r !. ~11!

The spectrum of the emitted photons is then obtained by
calculatinguê•a(V)u2, for emission polarized parallel to the
polarization direction of the incident pulse, anduk̂•a(V)u2,
for emission polarized along the direction of propagation of
the incident pulse. In these expressions,V denotes the angu-
lar frequency of the emitted photon anda(V) the Fourier
transform ofd̈(t). The ratioV/v is an effective ‘‘harmonic
order.’’ Results in the dipole approximation are obtained by
setting 1/c50. The SFA is readily modified to include the
depletion of the ground state@1,10#; however we can neglect
depletion for the laser parameters and atomic systems con-
sidered here.

B. Saddle-point integration

The quasiclassical actionS(p,t,t8) is a rapidly varying
function of p, t, and t8, and therefore the required integra-
tions in Eq. ~7! can be carried out using the saddle-point
method. We proceed by first using the relation

dion@p~p,t8!,t8#52 i
d

dt8
E dr

~2p!3/2
e2 i p(p,t8)•rf0~r !

52 i
d

dt8
f̃@p~p,t8!#, ~12!

where

f̃@p~p,t8!#5
~8I p!

5/4

8p

1

@p2~p,t8!/21I p#
2

5
~8I p!

5/4

8p F2
]

]t8
S~p,t,t8!G22

~13!

is the Fourier transform of the ground-state wave function of
the ion. We have assumed thatV(r ) is a Coulomb potential
with effective nuclear charge (2I p)

1/2. Equation~7! is then

integrated by parts. SinceH int(t850)50, the boundary term
at t850 is zero while the boundary term att85t can be
ignored; it corresponds to the process whereby the electron
both ionizes and recombines at timet. Next, the integral over
p is approximated using the saddle-point method, with the
result

d~ t !.2Im
~8I p!

5/4

8p E
0

t

dt8C~t!drec* @p~ps,t !#

3exp@2 iS~ps,t,t8!#F ]

]t8
S~ps,t,t8!G21

. ~14!

The saddle momentumps depends ont andt8 and is obtained
by solving

“pS~p,t,t8!up5ps
50. ~15!

The factor

C~t!5~2p!3/2S ~«1 i t!3F12
1

c2
~ ê•ps!

2G D 21/2

, ~16!

with t5t2t8 and « a small positive parameter, can be un-
derstood physically as arising from wave-packet spreading.

The integral overt8 in Eq. ~14! is straightforward to
evaluate numerically. However, the integration must be re-
peated for each value oft, due to the dependence of the
integrand ont. The total computational effort required for
calculating the temporal variation of the dipole moment thus
increases as the square of the laser-pulse duration. For this
reason, and because of the rapid oscillations of the exponen-
tial term, it is advantageous to calculate the integral using the
saddle-point method. The saddle timests are complex and
are determined by the equation

2
]

]t8
S~ps,t,t8!u t85ts

5@p2~ps,t8!/21I p#u t85ts
50.

~17!

Expanding the denominator in Eq.~14! in a Taylor series,
retaining only the linear term, and noting that the integrand
has a first-order pole at the saddle times@29#, the dipole
moment is found to be

d~ t !.22Re
~8I p!

5/4

8 (
ts

C~ t2ts!drec* @p~ps,t !#

3exp@2 iS~ps,t,ts!#Fp~ps,t8!•
]

]t8
p~ps,t8!G

t85ts

21

.

~18!

In all the cases considered, we have found that the spectra
calculated using Eq.~18! are in very good agreement with
those obtained by carrying out the integration overt8 in Eq.
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~14! numerically. Typically, they differ by less than a factor
of 2, and the agreement improves as the laser intensity in-
creases.

The saddle time can also be obtained using a semianalyti-
cal approach, similar to that described by Ivanov, Brabec,
and Burnett@30# for calculations in the dipole approxima-
tion. In this approach, the saddle time is expressed asts5td
1D, with td determined by solving

pe~ps,td!5 ê•p~ps,td!50. ~19!

Equation~17! is then expanded in powers ofD,

2
]

]t8
S~ps,t,t8!u t85ts

5s01s1D1 1
2 s2D21O~D3!.

~20!

In terms of the component ofp(ps,td) in the propagation
direction,

pk~ps,td!5 k̂•p~ps,td!

52
1

2c~ t2td!
E

td

t

dt9uA~vt9!2A~vtd!u2, ~21!

the first coefficient is

s05I p1 1
2 pk

2~ps,td!. ~22!

Analytical expressions fors1 ands2 are lengthy, and in prac-
tice can be obtained numerically. Setting Eq.~20! equal to
zero and solving forD, the dipole moment~18! is evaluated
using

S~ps,t,ts!.S~ps,t,td!2s0D2 1
2 s1D22 1

6 s2D3 ~23!

and

Fp~ps,t8!•
]

]t8
p~ps,t8!G

t85ts

.s11Ds2 . ~24!

We have verified that this approach yields results that are for
all practical purposes identical to those derived using Eqs.
~17! and ~18!.

The calculations can be simplified even further by ne-
glecting terms of order 1/c2 and higher in the saddle momen-
tum. In this approximation

ps52
a1~ t,t8!

t2t8
ê1

1

c Fa1
2~ t,t8!

~ t2t8!2
2

a2~ t,t8!

2~ t2t8!
G k̂, ~25!

where

an~ t,t8!5E
t8

t

dt9An~ t9!. ~26!

This means thatp(ps,td) and S(ps,t,td), respectively, will
be correct to order 1/c and 1/c2. Using Eq.~25!, Eq. ~19!
reduces to

E
td

t

dt9@A~vt9!2A~vtd!#50, ~27!

thereby givingtd in the dipole approximation. The coeffi-
cientss1 ands2, to order 1/c2, are then found to be

s15
pk

2~ps,td!

t2td
, ~28!

s25E2~vtd!F11
1

c
pk~ps,td!G1

3s1

t2td
. ~29!

Note that all of the nondipole corrections to the expansion
coefficientssi are of order 1/c2. Hence, consistent with the
action being correct to order 1/c2, we set

s150, s25E2~vtd!. ~30!

The resulting dipole moment can be expressed as@21,30#

d~ t !.22Im(
td

arec* ~ t,td!apr~ t,td!aion~ t,td!, ~31!

with the ionization, propagation, and recombination ampli-
tudes, respectively, given by

aion~ t,td!5
~8I p!

5/4

8~2s0s2!1/2
expF2

1

3 S 8s0
3

s2
D 1/2G , ~32!

apr~ t,td!5C~ t2ts! exp@2 iS~ps,t,td!#, ~33!

arec* ~ t,td!5drec* @p~ps,t !#. ~34!

We have evaluated the accuracy of the formula~31! by cal-
culating uê•a(V)u2 and comparing with the results obtained
using exact numerical complex saddle timests in Eq. ~18!,
for the laser parameters and ions considered in Sec. III. The
approximation given by Eq.~31! works extremely well: the
spectra cannot be distinguished on the scales used in the
diagrams.

The expression ofd(t) given by Walseret al. @21# is ob-
tained by ignoring the nondipole corrections in the preexpo-
nential factor in the ionization amplitude~32! and the recom-
bination amplitude ~34! @31#. These additional
approximations have no significant effect on the emission
spectra for photons polarized along the laser polarization di-
rection. Setting 1/c50 in all three amplitudes in Eq.~31!
leads to the formula obtained by Ivanov, Brabec, and Burnett
@30# in the dipole approximation.

C. Classical electron trajectories

A simple physical interpretation can be given to the re-
quirement that the detachment timetd satisfy Eq.~19!, as
will now be discussed. We start with the classical analog of
the Hamiltonian operator in Eq.~3!,
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H5
1

2
@p1A~vt !#21

1

c
~ k̂•r !@p1A~vt !#•E~vt !,

~35!

obtained by replacing the operator2 i“ with the classical
canonical momentump. The corresponding classical equa-
tions of motion are solved readily: If, at timet0, the electron
is located at the origin and has velocityv0, at time t1 its
position and velocity are, respectively,

r ~ t1!5E
t0

t1
dt9v~ t9! ~36!

and

v~ t1!5ve~ t1!ê1vk~ t1!k̂, ~37!

with

ve~ t1!5 ê•v01@A~vt1!2A~vt0!#1
1

c
E~vt1!E

t0

t1
dt9vk~ t9!

~38!

and

vk~ t1!5 k̂•v01
1

2c
@ve~ t0!1A~vt1!2A~vt0!#22

1

2c
ve

2~ t0!.

~39!

The corresponding acceleration isv̇(t1)5 v̇e(t1) ê1 v̇k(t1) k̂,
with

v̇e~ t1!52E~vt1!1
1

c
Ė~vt1!k̂•r ~ t1!2

1

c
Ȧ~vt1!vk~ t1!

~40!

and

v̇k~ t1!5
1

c
Ȧ~vt1!@ve~ t0!1A~vt1!2A~vt0!#. ~41!

The first two terms on the right-hand side of Eq.~40! can be
recognized as the acceleration imparted by the electric-field
component of the laser, corrected to first order in 1/c for its
spatial inhomogeneity in the propagation direction. The third
term and the right-hand side of Eq.~41! describe the accel-
eration due to the Lorentz force, also to first order in 1/c. A
wave packet formed by a linear superposition of nondipole
Volkov waves, Eq.~A4!, which at timet0 is localized at the
origin and has velocityv0 , follows the classical trajectory
~36! @22#.

Consider now an electron that is detached from the core at
time t0 with zero initial velocity in the polarization direction.
In the recollision model, the electron follows a classical tra-
jectory unperturbed by the atomic potential. A trajectory re-
turning to the core leads to photon emission via recombina-
tion, with the energy of the emitted photon being the sum of
the ionization potential and the kinetic energy of the electron
at the time of recombination. Working within the dipole ap-
proximation, Lewenstein and co-workers@10# have shown

that there is a one-to-one correspondence between the clas-
sical trajectories of the recollision model and the saddle
times obtained from Eq.~27!. Such a correspondence also
exists in our nondipole approach. In particular, it is straight-
forward to show that a necessary and sufficient condition for
the electron to return to the origin at timet is thatt0 is any of
the saddle timestd defined by Eq. ~19! and that v0

5pk(ps,td) k̂, wherepk(ps,td) is defined by Eq.~21!. In the
classical model,pk(ps,td) is thus the velocity in the pulse
propagation direction that the electron must have at the time
of detachment,td , in order to return to the nucleus at the
time of recombination,t. This initial velocity compensates
exactly the displacement imparted by the magnetic-field
component of the pulse on the free electron in the field@21#.

How upk(ps,td)u varies witht2td is shown in Fig. 1, for
a stationary field of 800 nm wavelength and 1.8
31017 W cm22 intensity. Results are given for trajectories
starting at equally spaced values oftd . Few or no trajectories
come back to the origin in certain time intervals, hence the
gaps in the data. Also given in Fig. 1, for each trajectory, are
the strength of the electric field at the time of detachment,
uE(td)u, the maximum speed the electron reaches betweentd
andt, vmax, and its speed at the time of recombination,v(t).
As will be seen below, all of these quantities are relevant for
understanding the features of the nondipole spectra.

At this stage, we recall that the maximum kinetic energy
of a returning electron in the dipole approximation is
3.17Up , whereUp is the ponderomotive energy. This maxi-
mum fixes the position of the cutoff frequency in the spec-
trum of emitted photons when nondipole effects are ne-
glected @8–10#. The corresponding maximum velocity is
indicated by the dashed vertical line in Fig. 1. Another well
known fact is that several trajectories return with the same

FIG. 1. Shown, for trajectories that return to the core, are~i! the
electron’s speed perpendicular to the laser polarization direction
when it is detached,upk(ps,td)u; ~ii ! the electron’s speed when it
returns to the core,v(t); ~iii ! its maximum speed between detach-
ment and recombination,vmax; and ~iv! the strength of the electric
field at the time of detachment,uE(td)u. These quantities are plotted
as functions of the duration of the trajectory,t2td , for a stationary
field of 800 nm wavelength and intensity 1.831017 W cm22.
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kinetic energy during each half cycle, namely, a short trajec-
tory ~that lies to the left of the dashed line! and one or sev-
eral long trajectories~that lie to the right of the dashed line!.
The long trajectories with return times of more than one
period can give rise to intermediate plateaus and, through
interference, to oscillations in the dipole spectrum.

We see in Fig. 1 that the behavior of the four plotted
quantities is very different depending on whether the trajec-
tory is long or short. In particular, for the short trajectories,
the velocity upk(ps,td)u and the magnitude of the electric
field at the detachment time decrease rapidly with decreasing
t2td . In addition, the electron attains its maximum velocity
when it returns to the core. In contrast, for the long trajecto-
ries,upk(ps,td)u, uE(vtd)u, and the maximum velocity of the
electron remain nearly constant close to their maximum al-
lowed values. Note, in particular, that for the field considered
in the figure,upk(ps,td)u, is about 3 a.u. for these trajecto-
ries.

III. RESULTS AND DISCUSSION

A. Nondipole effects in photon emission

Dipole and nondipole nonrelativistic spectra are compared
in Figs. 2 and 3 for photon emission by multiply charged
ions driven by a stationary 800-nm laser field. The modulus
squared of the Fourier transform of the dipole acceleration is
plotted against the effective harmonic order,V/v. The Fou-
rier transform of the dipole acceleration is defined as

a~V!5
1

~2p!1/2ET

T12p/v

dt exp~2 iVt !d̈~ t !, ~42!

where T is chosen large enough so as to include the long
trajectories that contribute to the dipole moment. We use the
notationae(V)5 ê•a(V) andak(V)5 k̂•a(V) for the com-
ponents of the acceleration.

The gradual breakdown of the dipole approximation with
increasing intensity is illustrated in Fig. 2 for emission by a
Ne61 ion (I p5207.3 eV). Going from 0.5 to 4
31017 W cm22, the influence of the magnetic-field compo-

nent first manifests itself as a reduction in photon emission
polarized alongê as compared to the dipole approximation,
then to a ‘‘bending over’’ of the plateaus, and finally to a
marked suppression of emission at both ends of the spectrum
and the disappearance of the intermediate cutoffs which
separate the plateaus in the dipole approximation. A small
shift in the position of the cutoffs is also noticeable.

Nondipole spectra for emission polarized parallel to the
direction of propagation of the incident field are also shown
in Fig. 2. Emission of photons polarized in this direction is
forbidden in the dipole approximation. Compared to emis-
sion polarized alongê, emission polarized along the propa-

FIG. 2. The magnitude
squared of the Fourier transform
of the dipole acceleration~in a.u.!
as a function of the photon energy
~in units of \v), for a Ne61 ion
interacting with a stationary laser
field of wavelength 800 nm. Spec-
tra for the emission of photons po-
larized along the laser polarization
direction obtained in the dipole
approximation (De) and in the
nondipole nonrelativistic approxi-
mation (NDe) are shown, as well
as the nondipole nonrelativistic
spectra for photon emission polar-
ized along the laser propagation
direction (NDk).

FIG. 3. The magnitude squared of the Fourier transform of the
dipole acceleration~in a.u.! as a function of the harmonic order
~upper plots!. Results for the ions Li21 and Be31 in the dipole
approximation~gray curves! and in the nondipole nonrelativistic
approximation~black curves! are shown. The ions are irradiated by
a stationary field of peak intensity 1.831017 W cm22 and wave-
length 800 nm. In the lower plots the ionization rate defined by Eq.
~43!, w(t,td), is given for electron trajectories that return to the
core, as a function of the harmonic order of the photon emitted at
recombination. The dipole and nondipole values ofw(t,td) are in-
dicated by crosses and circles, respectively.
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gation direction is weaker, but the spectra are otherwise simi-
lar in most respects. The dip visible in the low-energy part of
Figs. 2~a! and 2~b! also occurs when ions are driven by ul-
trashort pulses, and can be attributed to accidental cancella-
tions between different terms contributing to the dipole mo-
ment @22#.

In Fig. 2~a!, we observe thatuae(V)u2 is reduced by more
than one order of magnitude compared to the predictions of
the dipole approximation at the relatively weak intensity of
531016 W cm22. This reduction contrasts with the smaller
decrease found for a Li21 ion irradiated by a two-cycle
800-nm pulse of 931016 W cm22 peak intensity@22,27#,
and the even smaller nondipole effects found for a He1 ion
irradiated by a 5-fs 800-nm pulse of 531016 W cm22 peak
intensity@21#. As will be seen later, the duration of the pulse
influences to some degree the overall effect of the magnetic-
field component on photon emission. However, the origin of
the difference between the results of Fig. 2 and the results for
He1 and Li21 can be attributed to the larger ionization po-
tential of Ne61. That I p plays an important role is demon-
strated in the upper part of Fig. 3, where photon emission by
Li21 (I p5122.5 eV) and Be31 (I p5217.7 eV) are com-
pared for the same incident field@32#. Although the intensity
is the same for both ions, the relative difference between the
dipole and nondipole spectra is much less for Li21.

The strong dependence onI p , and in fact all the major
differences between the dipole and nondipole spectra, can be
readily understood within the framework of the recollision
model. Only two key quantities need to be considered: the
effective detachment rate when the electron is born and its
kinetic energy when it returns to the core. In the lower part
of Fig. 3 we show, for each trajectory of Fig. 1, the detach-
ment rate at timetd of an electron with velocityv'

[pk(ps,td) transverse to the electric field@33#,

w~ t,td!5
4

p

~2I p!3

uE~vtd!u2
expF2

2

3

~2I p1v'
2 !3/2

uE~vtd!u
G , ~43!

as a function of the harmonic order of the photon emitted at
recombination,@ I p1v2(t)/2#/v. We indicate the nondipole
values ofw(t,td) by circles and the dipole values~obtained
by settingv'50) by crosses. The rate~43! varies with the
field in the same way as the square of the ionization ampli-
tude ~32!, aion

2 (t,td), and has the same exponential depen-
dence onI p . Since the propagation and recombination am-
plitudes vary far less in magnitude thanaion(t,td) from
trajectory to trajectory, the importance of the contribution to
the spectrum of the different trajectories can be effectively
gauged by the corresponding values ofw(t,td). As has been
shown for He1 interacting with a short laser pulse@34#,
much insight about the photon emission spectrum can be
gained from this type of plot.

In the dipole approximation,w(t,td) is largest for the long
trajectories, as electrons having short trajectories are de-
tached at lower electric fields.~See Fig. 1.! Therefore, short
trajectories tend to contribute less to the photon emission
spectrum. However, when the magnetic-field component of
the laser field is taken into account, the opposite is true. This

is due to the fact thatpk(ps,td) is larger for the long trajec-
tories than for the short ones. The exponential dependence of
aion(t,td) on the initial transverse velocity means that the
ionization amplitude tends to be smaller for the long trajec-
tories than for the short ones, and the latter end up dominat-
ing the spectrum over much of its range@20#. The secondary
plateaus, which arise from the longest trajectories, almost
completely vanish~although they still visibly contribute to
the beryllium nondipole spectrum belowV/v52500). The
oscillations evident in the dipole spectrum largely disappear
because at most frequencies only one set of trajectories~the
short ones! significantly contribute to emission. The spec-
trum bends over as ionization is exponentially suppressed,
due to the relatively small value ofuE(td)u for the short tra-
jectories that give rise to the lower harmonics, and to the
large initial transverse velocity for the short trajectories that
produce the high harmonics. Finally, the reduction in har-
monic emission is proportionally larger for Be31 than for
Li21 because the ionization amplitude varies faster withv'

2

when I p is larger.
We now evaluate the importance of the relativistic effects

neglected in our approach by comparing, in Fig. 4, our non-
dipole nonrelativistic results with relativistic results recently
obtained by Milosˇević, Hu, and Becker@20,24#. The case of
a Ne61 ion interacting with a stationary field of wavelength
1054 nm and intensities 0.731017 and 1.431017 W cm22 is
considered. Milosˇević’s, Hu, and Becker’s calculations are
also done within the SFA but are based on the Klein-Gordon
equation rather than on the Schro¨dinger equation. The rela-
tivistic results shown in the figure are the emission rates
presented in Fig. 2 of Ref.@20#, rescaled so as to facilitate
comparison@35#.

The large differences between the dipole and nondipole
results indicate a strong influence of the magnetic-field com-
ponent of the laser field for these parameters. As in Figs. 2~d!
and 2~e!, the nondipole spectrum is completely dominated by
the short trajectories at 1.431017 W cm22. At this intensity,
the maximum velocity of the electron,vmax, is at most 42%
of the speed of light~i.e., vmax

2 /c250.18) for any returning
trajectory. The good agreement between our nondipole non-
relativistic spectra and the relativistic spectra, aside from an
arbitrary overall factor, suggests that the relativistic effects
that are not taken into account in our model are not impor-
tant. The difference is largest for the highest harmonics, as
could be expected, sincevmax

2 /c2 grows linearly with the en-
ergy of the photon emitted at recombination for electrons
following short trajectories. Compared to the spectra ob-
tained in the dipole approximation, the cutoffs occur at a
slightly higher photon energy in the nondipole nonrelativistic
calculation. The origin of this effect is the additional kinetic
energy the returning electron acquires due to its drift along
the pulse propagation direction. However, the nondipole non-
relativistic calculation neglects other effects, such as the in-
crease in the inertial mass, which contribute to the kinetic
energy to order 1/c2. In the relativistic results, these addi-
tional effects lead to a small displacement of the cutoffs to
lower energies. We have verified that the classical calcula-
tions within the recollision model yield the same shifts as in
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our nondipole nonrelativistic spectra and as in Milosˇević,
Hu, and Becker spectra when the dynamics of the detached
electron is described, respectively, by the Hamiltonian~35!
and by the relativistic Lorentz equation. Finally, we note that
vmax

2 /c2 is less than 0.18 for the short trajectories responsible
for the generation of photons below the harmonic order
30 000 at 800 nm wavelength, and is less than 0.10 for the
short trajectories responsible for the strongest photon emis-
sion in Figs. 2 and 3. The relativistic effects neglected in our
approach are therefore not expected to be significant at the
intensities considered.

To conclude this section, we briefly discuss photon emis-
sion by ions driven by ultrashort pulses. Spectra for three-
and four-cycle pulses are shown in the top and middle dia-
grams of Fig. 5. The field is described by Eqs.~1! and ~2!
with

f ~h!5sin2S h

2nD , ~44!

wheren denotes the number of optical cycles of the pulse.
The pulse is assumed to extend over all space. The corre-
sponding Fourier transform of the dipole acceleration is

a~V!5
1

~2p!1/2E0

2pn/v

dt exp~2 iVt !d̈~ t !. ~45!

The integral extends over the entire duration of the pulse
instead of just one optical cycle as in the case of a stationary
field. Results for a stationary field of the same intensity are
shown in the bottom diagram. The plateau structure of the
spectra for few-cycle pulses largely originates from the tem-
poral variation of the intensity rather than from the contribu-
tion of very long trajectories@34#. ~For every half-cycle dur-
ing an ultrashort pulse, the trajectories are detached with
different probabilities and return with different kinetic ener-
gies.! Overall, the magnetic-field component of an ultrashort
pulse affects photon emission in a similar way as for station-

ary fields. However, for short pulses, photon emission is not
as strongly suppressed at the low-energy end of the spec-
trum, and plateau structures with oscillations are still visible.
This indicates that more than one electron trajectory is con-
tributing to the emission of a particular harmonic in the larg-
est part of the spectrum. Consider, for example, the low har-
monics. As noted above, these are weak in the stationary
case because they can be produced only through the return of
an electron detached in a weak electric field. For few-cycle
pulses, they can also be produced through the return of an
electron detached near the end of the pulse, at a time where

FIG. 4. The magnitude
squared of the Fourier transform
of the dipole acceleration~in a.u.!
as a function of the photon energy
~in units of \v). Spectra for a
Ne61 ion obtained in the dipole
and nondipole nonrelativistic ap-
proximations are shown for the
emission of photons polarized
along the laser polarization direc-
tion. The ion is irradiated by a sta-
tionary laser field of peak intensi-
ties 0.7 and 1.431017 W cm22, as
indicated, and wavelength 1054
nm. The nondipole results are
compared with the relativistic re-
sults ~R! of Milošević, Hu, and
Becker@20#.

FIG. 5. The magnitude squared of the Fourier transform of the
dipole acceleration~in a.u.! as a function of the photon energy~in
units of \v!. Spectra for a Be31 ion obtained in the dipole and
nondipole approximations are shown for the emission of photons
polarized along the laser polarization direction (De, NDe) for a
three cycle pulse (n53), a four cycle pulse (n54), and a station-
ary field. The peak intensity is 3.631017 W cm22 and l
5800 nm.
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the electric field is strong but the intensity envelope of the
pulse falls off rapidly. Since the falloff prevents it from at-
taining a high velocity, the electron can only contribute low-
energy photons and is not deflected as much by the
magnetic-field component of the pulse.

B. Selective compensation of the magnetic drift
using a second laser pulse

At intensities where the dipole approximation is valid, the
contribution of each electron trajectory to photon emission
depends primarily on the electric-field strength at the time of
ionization. At higher intensities, the contribution of a particu-
lar trajectory can be drastically reduced by the drift induced
by the magnetic component of the field. As noted above, to
return to the nucleus the electron must be emitted with a
nonzero velocity transverse to the electric field, and the prob-
ability for this is exponentially small in the tunneling regime.
At the intensities considered here, the Lorentz force acting
on the electron has a magnitude comparable to that exerted
by the electric-field component of a relatively weak laser
field. This suggests that the magnetic drift can be compen-
sated, at least for certain trajectories, by irradiating the ion
with a second, weak laser field, polarized along the propaga-
tion direction of the intense one. In this section, we show by
an example that a selective compensation of the magnetic
drift through this mechanism is indeed possible.

We consider the case of a Ne61 ion irradiated by a com-
bination of two ultrashort pulses, both with the same carrier
wavelength~800 nm!. The first pulse, with vector potential
A, propagates in the directionk̂ and has the polarization
vector ê. The second pulse has the vector potentialAw and
the polarization vectorêw , with êw[ k̂. We assume that the
second pulse is weak enough to be treated in the dipole ap-
proximation. Therefore, the Schro¨dinger equation governing
the motion of the electron in the nondipole nonrelativistic
approach reads

i
]

]t
C~r ,t !5S 1

2
@2 i“1A~vt !1Aw~vt !#21

1

c
~ k̂•r !

3@2 i“1A~vt !#•E~vt !1V~r ! DC~r ,t !,

~46!

with E(vt)52(d/dt)A(vt). Within the SFA, the dipole
moment of the ion can be still be expressed as in Eqs.~14!
and ~18!, with the saddle momentum and the saddle times
determined by Eqs.~15! and ~17!; however, we now have

p~p,t !5p1A~vt !1Aw~vt !1
1

c Fp•A~vt !1
1

2
A2~vt !G k̂.

~47!

We assume that the two pulses have the same envelope,
with the second pulse delayed by a timetw with respect to
the first one. We take, specifically,

A~vt !5
E
v

sin2S vt

2nD sin~vt !ê ~48!

and

Aw~vt !5
Ew

v
sin2S vt2d

2n D sin~vt2d!k̂, ~49!

whered5vtw andn is the number of optical cycles encom-
passed by each pulse. In the classical model, an electron
detached at a timetd must have an initial velocity

v'52
1

t2td
H E

td

t

dt9@Aw~vt9!2Aw~vtd!#

1
1

2cEtd

t

dt9@A~vt9!2A~vtd!#
2J k̂ ~50!

to return at the nucleus at timet. The electric-field amplitude
of the second pulse,Ew , and the time delaytw are chosen so
that v''0 for a particular group of trajectories.

The left panel in Fig. 6 shows the magnitude squared of
the Fourier transform of the dipole acceleration of Ne61 as a
function of the photon energy for a two-cycle Ti:sapphire
pulse withE53.2 a.u. acting alone (Ew50). In order to il-
lustrate more clearly the differences between the dipole and
nondipole results, the fast oscillations in the spectra have
been averaged by convoluting with a Gaussian window func-
tion. Let us first consider the trajectory of an electron ‘‘born’’
at time td5116 a.u. during the laser pulse. If the Lorentz
force was negligible, the electron would return to the nucleus
at timet'190 a.u., where it could recombine with the emis-
sion of a photon of energy 7500v. However, the Lorentz
force is not negligible: in order to return the electron must
have an initial velocity of about 2 a.u. opposite to the direc-
tion of propagation of the pulse. Correspondingly,uae(V)u2

is much reduced, compared to its value in the dipole approxi-
mation.

If, in addition, the ion is irradiated by a second two-cycle
pulse, of field strengthEw50.37 a.u., and delayed bytw
562 a.u. with respect to the first pulse, the electron returns
to the core if detached with zero velocity at timetd5116 a.u.
In the center panel in Fig. 6 we see that the magnitude of the
nondipole spectrum is now comparable to the spectrum ob-
tained in the dipole approximation in the region of the
7500th harmonic. The small difference is due to the fact that
the magnetic drift is compensated only for some of the tra-
jectories that contribute to emission in this part of the spec-
trum, namely, those withtd'116 a.u.

Photon emission in the region of the cutoff of the second
plateau can be enhanced in a similar manner, by choosing the
delay and the strength of the second pulse to betw5280
a.u. andE50.32 a.u., respectively. The resulting spectrum is
shown in the right panel of Fig. 6.

C. Single attosecond pulse generation

Finally, we investigate how the magnetic-field component
of the laser pulse influences photon emission in the time
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domain. To this end, we calculate the frequency-resolved di-
pole acceleration for emission in a narrow frequency window
centered aboutV, defined by@36#

ae~ t,V!5
1

~2p!1/2
eiVtE

0

`

dV8ei (V82V)t

3F~V82V!ê•a~V8!, ~51!

where F(V82V) is a Gaussian window centered atV8
5V. The square modulus ofae(t,V) is shown in Fig. 7, for
Ne61 interacting with a four-cycle pulse of 3.6
31017 W cm22 peak intensity at 800 nm wavelength. We
concentrate on the emission of 3.9-keV photons (V
52500v).

The results calculated in the dipole approximation are
shown in Fig. 7~a!. Each spike in this diagram corresponds to
a burst of emission of 3.9-keV photons. The spikes occur
precisely at the instants where, in the recollision model, de-
tached electrons return to the nucleus with the speed required
for emission at this energy. Seven bursts are particularly
strong and have approximately the same intensity, showing
that in the dipole approximation the emission is dominated
by seven groups of trajectories.

However, the magnetic drift, when taken into account,
changes this picture dramatically. The central part of the fig-
ure, where the nondipole results are plotted, shows that all
but one of the seven returns that contribute most in the dipole
approximation are severely suppressed. The only significant
emission event occurs towards the end of the pulse and

FIG. 6. The magnitude squared of the Fourier transform of the dipole acceleration, in a.u., of Ne61 as a function of the photon energy
~in units of \v). The laser-pulse duration is two cycles, with peak intensity 3.631017 W cm22 and wavelength 800 nm. Dipole (De) and
nondipole (NDe) spectra are shown. In plots~b! and ~c!, the nondipole results are for the case in which the ion interacts with a second,
weaker laser pulse polarized along the propagation direction of the intense pulse~see text!. In plot ~b!, the time delay (tw562 a.u.) and
intensity (I w54.831015 W cm22) of the second pulse were chosen such that photon emission in the neighborhood of the 7500th harmonic
is enhanced, while in plot~c!, tw5280 a.u. andI w53.631015 W cm22, leading to the enhancement of emission around the 30 000th
harmonic.

FIG. 7. The magnitude squared of the frequency-resolved dipole acceleration for photon emission centered about the 2500th harmonic of
the driving field by a single Ne61 ion interacting with a four-cycle Ti:sapphire pulse of 3.631017 W cm22 peak intensity. Shown are results
obtained in the dipole approximation~a! and in the nondipole nonrelativistic approximation~b!,~c!. Plot ~c! shows the enhancement by a
second laser pulse of photon emission at 3.4 laser periods. The peak intensity of the second pulse,I w , is 2.231014 W cm22 and the delay
tw is 30.8 a.u.
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dominates the spectrum. The corresponding trajectory is de-
flected less than the others, owing to the decrease in the
strength of the magnetic-field during the trailing edge of the
pulse. The width of the spike indicates that the duration of
the burst is about 20 as.~It is worth noting that the intensity
of this emission depends crucially on how the envelope of
the pulse decreases at the end of the pulse: the slower the
decrease, e.g., the longer the pulse, and the weaker the emis-
sion.! The other trajectories make a smaller contribution;
their main effect is to induce, by interference, the oscillations
in the nondipole spectrum which are visible in the lower
curve of Fig. 8.

In Fig. 7~c!, we presentuae(t,V)u2 calculated for a super-
position of the same intense pulse with another Ti-sapphire
pulse, as discussed in Sec. III B. The electric-field amplitude
of the second pulse,Ew , and the delay between the two
pulses,tw , are chosen so as to compensate the magnetic drift
for the trajectory giving rise to the strongest burst of emis-
sion in Fig. 7~b!. As seen from the diagram, when the mag-
netic drift is compensated, emission is as strong as in the
dipole approximation. The other trajectories are further sup-
pressed by the second pulse, with the consequence that a
single attosecond pulse of x-ray photons is emitted. The
same conclusions can be drawn from the corresponding spec-
trum, shown in Fig. 8. In fact, one sees from the spectrum
that with the second pulse, emission is much more intense
and occurs as a single burst~note the absence of oscilla-
tions!, not only for V52500v but also in a large range of
frequencies around this value.

IV. CONCLUSIONS

In this paper we have given a detailed account of the
approach introduced in Refs.@21,22# for describing photon

emission by ions interacting with laser fields~stationary or
pulsed! whose peak intensities are sufficiently high so that
the dipole approximation is no longer applicable. This ap-
proach can be viewed as a nondipole generalization of the
SFA theory of Lewenstein and co-workers@1,10#. It applies
to the dynamical regime that lies between the usual nonrel-
ativistic dipole regime and the fully relativistic regime. Us-
ing the nondipole nonrelativistic Volkov wave functions~A4!
and within the SFA, we have shown that the time-dependent
dipole moment of the ion in the laser field,d(t), can be
reduced to the simple form given by Eq.~18!. Then through
a series of approximations, none of which compromise the
accuracy of the calculations in any significant way, we re-
cover the expression for the dipole moment derived by
Walseret al. @21#, wherebyd(t) is obtained as a sum over
amplitudes arising from particular electron trajectories.

The trajectories satisfy two simple classical criteria. First,
if the electron is detached at some earlier timetd , its dis-
placement along the polarization direction must be zero at
time t. Second, at timetd its velocity along the laser-pulse
propagation direction,v' , must be equal and opposite to the
average velocity that the free electron acquires in the propa-
gation direction due to the Lorentz force between the timestd
andt. These are, of course, nothing more than the conditions
that must be imposed if a classical electron detached at time
td is to return to the core at timet. One recognizes immedi-
ately the language of the recollision model, modified so as to
account for the magnetic-field induced drift of the detached
electron. As in the intensity regime where the dipole approxi-
mation is applicable, it follows that the main features of pho-
ton emission spectra can be understood from two key quan-
tities, namely, the tunnel ionization rate when the electron is
detached and the kinetic energy of the electron when it re-
turns to the core. In contrast to the dipole approximation, the
tunnel ionization rates now depend strongly onv' , and in
particular on its magnitude relative toI p and the magnitude
of the electric field at the time of detachment. The overall
effect of the dependence onv' results, at sufficiently high
intensities, is a strong suppression of photon emission. Only
trajectories witht2td and uv'u small contribute meaning-
fully to the emission spectrum. As was emphasized recently
in Ref. @5#, it is remarkable that multiphoton processes in
atoms interacting with intense laser fields, processes that
would at first sight appear to be exceedingly complex, can in
fact be largely understood in terms of classical trajectories of
electrons that are detached and then subsequently return to
their parent ion. These processes, in addition, provide a fas-
cinating example of a system whose dynamics lies at the
interface between quantum and classical mechanics.

Typically, a number of electron trajectories contribute in a
comparable way to photon emission in some frequency in-
terval or to ATI spectra in some energy range. We have dis-
cussed a scheme whereby a second laser pulse can be used to
control an individual electron trajectory. By the appropriate
choice of the laser parameters, the effect of the drift induced
by the magnetic-field component of the pulse can be com-
pensated for a selected trajectory, and enhanced for others,
leading to the emission of a single attosecond pulse of high-
frequency photons. The scheme has similarities to the pro-

FIG. 8. The magnitude squared of the Fourier transform of the
dipole acceleration of a single Ne61 ion interacting with a four-
cycle Ti:sapphire pulse of 3.631017 W cm22 peak intensity. Shown
are results obtained in the nondipole nonrelativistic approximation,
with the upper curve illustrating the enhancement of photon emis-
sion aroundV/v52500 when the ion interacts with a second,
weaker laser pulse having the same peak intensity and delay as in
Fig. 7. The high-energy part of the spectrum is not shown.
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posal by Corkum, Burnett, and Ivanov for producing an iso-
lated attosecond pulse, in which single returning trajectories
are selected by a temporal variation of the ellipticity of the
incident field@37#.

Many of the issues regarding the consequences of the
breakdown of the dipole approximation discussed here apply
equally well to strong-field recollision processes leading to
single and multiple ionization. For instance, the reduced
recollision probability in the nondipole nonrelativistic re-
gime means, as has recently been observed experimentally in
nonsequential multiple ionization@38#, that these processes
are strongly suppressed at very high intensity. This could
well impose a practical barrier to the experimental study of
strong-field recollision processes at intensities where relativ-
istic effects become important. The selective compensation
of the effect of the magnetic drift by a second laser pulse, as
discussed above, may offer a way to alleviate this difficulty.
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APPENDIX: NONDIPOLE NONRELATIVISTIC VOLKOV
WAVE FUNCTION

The required nondipole nonrelativistic Volkov Green’s
function can be expressed as

GV
(1)~r ,t;r 8,t8!52 iu~ t2t8!E dpCp

L~r ,t !@Cp
L~r 8,t8!#* ,

~A1!

where the functionCp
L(r ,t) is a solution of the time-

dependent Schro¨dinger equation~TDSE! ~4! with V(r )50.
Calling Cp(r ,t) the solution of the TDSE~3! with V(r )
50, introducing the wave functionCp8(r ,t) as

Cp~r ,t !5expS i

c F2 i“•A~vt !1
1

2
A2~vt !G~ k̂•r ! DCp8~r ,t !,

~A2!

and recalling that“•A(vt) commutes withk̂•r , it is seen
that

i
]

]t
Cp8~r ,t !5

1

2 S 2 i“1A~vt !1
1

c F2 i“•A~vt !

1
1

2
A2~vt !G k̂D 2

Cp8~r ,t !. ~A3!

The Hamiltonian operator in Eq.~A3! commutes with the
momentum operator, so that the TDSE is easily solved.
Transforming back to the length gauge, the nondipole Volkov
wave function reads

Cp
L~r ,t !5

1

~2p!3/2
expS i p~p,t !•r2

i

2E
t

dt9@p~p,t9!#2D ,

~A4!

where p(p,t) is defined in Eq.~8!. The nondipole Volkov
wave function~A4! is also readily obtained by expanding the
relativistic Volkov wave function in powers of 1/c and ne-
glecting terms of orders 1/c2 and higher. It reduces to the
familiar nonrelativistic, dipole Volkov wave function when
1/c→0.
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