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NONDISCRETE MATHEMATICAL INDUCTION 

Vlastimil PTÁK 
Czechoslovak Academy of Sciences 

Institute of Mathematics 
Žitná 25, 115 67 Praha 1, Czechoslovakia 

The lecture is divided into the following sections: 

1. Motivation 

2. Statement of the induction theorem 

3. Relation to classical theorems 

4. Principles of application 

5« An illustration: the factorization theorem 

6. New results 

7. Connections with numerical analysis 

1. Motivation 

This lecture presents a report about a series of investigations 

whose aim it is to set up an abstract model for iterative existence 

proofs and constructions in analysis and numerical analysis. 

I intend to show that a model which describes a large class of 

iteration processes may be based on a certain modification of the closed 

graph theorem. 

Let us start with the following observation. In existence proofs in 

mathematical analysis and in numerical analysis we often devise iterative 

procedures in order to construct an element which lies in a certain set 

or satisfies a given relation. At each stage of the iterative process we 

are dealing with elements which satisfy the desired relation only appro

ximately, the degree of approximation becoming better at each step. 

To describe the abstract model which we shall investigate later, 

consider the problem of constructing a point x which belongs to a 

given set W • We start by replacing the given set W by a family W(r) 

of sets depending on a small positive parameter r ; the inclusion 

z e W(r) means - roughly speaking ~ that the inclusion z e W is 

satisfied only approximately, the approximation being measured by the 

number r . All the W(r) are supposed to be subsets of a complete 

metric space (E,d) • 
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In what follows we intend to show that, under suitable hypotheses 

concerning the relation between the sets W(.) and the metric of the 

space a simple theorem may be proved which gives the construction of an 

iterative process converging to a point x c W . The theorem, the so-

called induction theorem, is closely related to the closed graph theorem 

in functional analysis; it could be described as a quantitative 

strengthening of the closed graph theorem. Indeed, the closed graph 

theorem can be viewed, in a certain sense, as a limit case of the 

induction theorem, for an infinitely fast rate of convergence. The proof 

of the induction theorem is an exercise; the interest of the result lies 

exclusively In its formulation, which makes it possible to unify a number 

of theorems in one simple abstract result. 

2. Metric spaces and the Induction Theorem 

Definition. Let T be an interval of the form T = {t; 0 < t < tJ 

for some positive t . A rate of convergence or a small function on T 

is a function aj defined on T with the following properties 

1° co maps T into itself 

2° for each t €. T the series t + U)(t) + U)
KC)

(t) + ... is 

convergent. 
(n) 

We use the abbreviation w for the n~th iterate of the function 
(2) 

w , so that ou (t) = uj(ou(t)) and so on. The sum of the above 

series will be denoted by 6~ . The function 6- satisfies the following 

functional equation 

ff(t) - t = 6(u)(t)) ; 

one of the consequences of this fact is the possibility of recovering 

uo if 6* is given. Indeed, we have 
uj(t) = e r - 1 ^ (t) - t) 

(with the exception of pathological cases). 

Given a metric space (E,d) with distance function d , a point 

x e E and a positive number r , we denote by U(x,r) the open spheri

cal neighbourhood of x with radius r , U(x,r) = [y ^ E ; d(y,x) <c r|. 

Similarly, if M C E , we denote by U(M,r) the set of all y <£ E for 

which d(y,M) < r . If we are given, for each sufficiently small positive 

r , a set A(r) a E , we define the limit A(0) of the family A(.) as 

follows 
A(0) = O ( UA(r))~ . 

s>-0 r<s 

Now we may state the Induction Theorem. 
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Theorem. Let (E,d) be a complete metric space, let T be an 

interval {t ; 0 < t < tQ} and cu a rate of convergence on T . For 

each t £ T let Z(t) be a subset of E ; denote by Z(0) the limit 

of the family Z(.) . Suppose that 

Z(t)CU(Z(o;(t)), t) 

for each t G. T . Then 

Z(t)dU(Z(0, 6-(t)) 

for each t e. T . 

Proof. An exercise. 

3. Relation to classical theorems 

It will be interesting to compare the induction theorem with some 

classical results. It is almost immediate that the Banach fixed point 

principle is a simple consequence. 

Let E be a complete metric space and f a mapping of E into 

itself such that 

d?(f (x^, f (x2)) .-£= oCd(xlfx2) for all x l fx 2 e E 

where c< is a fixed number, 0 < c< < 1 . Then there exists an x € E 

such that x - f(x) . 

Proof. For each t > 0 set 

Z(t) = {x ; d(x,f(x)) < t] ; 
it follows that Z(O) = {x ; x=f (x)j . It will be sufficient to show 

that Z(t)CZU(Z(c<t),t) . If x £ Z(t) , set x*= f(x) so that 

d(x,x*) < t . Let us show that x*£ Z(cxt) . This, however, is immediate 

since 

d(x*,f(x')) = d(f(x),f(x')) -^o<d(x,x') = o<d(x,f(x)) < <*t . 

The induction theorem applies with to(r) = o<r . 

The connection with the closed graph theorem is somewhat less 

obvious. Roughly speaking, the closed graph theorem consists in the 

following implication: a mapping which is uniformly almost open is 

already open. Now the induction theorem can be described as a quantita

tive refinement of the closed graph theorem. To see that, let us recall 

the notion of a uniformly almost open mapping [4]. 

A mapping f from a uniform space E into a uniform space V is 

said to be uniformly almost open, if, for each entourage U in E , 

there exists an entourage V in F such that, for each x , we have 

f (U(x))~:z>V(f (x)) .This means, that points of V(f(x)) may be arbitra

rily well approximated by points from f(U(x)) . The conclusion is that 



- under appropriate hypotheses about the spaces and the mapping - that, 

for a slightly larger U # 3 U we already have the inclusion f(U*(x))D 

D V(f(x)) for all x . 

It turns out that the same conclusion can be obtained under a weaker 

assumption. The approximability of V by the elements of f (U) need not 

be arbitrarily good. It suffices if we are able to approximate to a finite 

distance, provided the error of the approximation is small as compared 

with the size of the entourages. Smallness is measured by a small 

function; the conclusion also gives an information how much larger u' 

has to be in order to have the inclusion f(u')DV . For details, see 

the author *s remark [4] • 

4» Principles of application 

Now we should explain why the method has been given the name of non-

discrete mathematical induction. We shall see that the application of 

the method consists in reducing the given problem to a system of functio

nal inequalities for several indeterminate functions one of which is to 

be a rate of convergence; this explains the word nondiscrete. The con

nection with the classical method of mathematical induction is obvious 

- we investigate the possibility of passing from a point x which 

approximates the point to be constructed with an error not exceeding r 

to another point x # close to x for which the approximation is con

siderably better. 

Suppose we are given an approximation of order r , in other words, 

a point x eW(r) and are allowed to move from x to a distance not 

greater than r . Can we find, within U(x,r) , an approximation of a 

much better order r#? A suitable way of giving this a precise meaning 

is to impose the condition r# = cv(r) where a; is a small function. 

The condition that for each x e.W(r) there exists a point x'eU(x,r)n 

n W(r') with r* = ou(r) may also be expressed in the form W(r) d 

CZ U(W(o;(r))f r) so that W(r) satisfies the hypotheses of the 

induction theorem. We have thus 

W(t) CU(W(0), 6*(t)) 

for sufficiently small t . Hence we shall be able to assert that W(O) 

is nonvoid provided at least one W(r) is nonvoid. 

This corresponds to the first step of an ordinary induction proof; 

here, as in the discrete case, we have to make sure that the process 

begins somewhere. There is another point which should be stressed, the 

heuristic value of the method. 
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The main advantage consists in the fact that the iterative construct-

ion is taken care of by the general theorem so that the application con

sists in the verification of the hypotheses, the main question being: 

how much can a given approximation be improved within a given neighbour

hood. By separating the hard analysis portion from the construction of 

the sequence, this method not only yields considerable simplifications 

of proofs but also evidences more clearly the substance of the problem. 

Instead of defining an approximation process first and then investigating 

the degree of approximation at the n-th step the method we propose could 

be described as exactly the opposite: we begin by looking at the sets 

W(r) where the degree of approximation is at least r , then choose a 

suitable rate of convergence; the induction principle gives the construct

ion of an iterative sequence corresponding to that rate of convergence 

automatically. 

In this manner, we are using the relation between the improvement 

of the approximation and the distance we have to go in order to attain 

it in the most advantageous manner. There are examples to show that a 

given system of functional inequalities may be consistent with different 

rates of convergence. The conclusion obtained from the Induction Theorem 

may differ according to the choice of these; however, there seems to be 

(at least in the concrete problems investigated thus far - in particular 

in the case of the Newton process, which we shall discuss later) a natural 

rate of convergence which yields the best possible result - in the sense 

that the estimates are sharp within the class of problems under consider

ation. 

Now let us give all this a more precise femulation. 

Let (E,d) be a complete metric space and f a nonnegative con

tinuous function on E . We are looking for a point x for which 

f (x) = 0 . 

1st observation. Let us assume that, for each x taken from some 

set M c E and each positive r < r we can prove an estimate of the 

form 

inf {f(x'); x*€ U(x,r)] <: h(f(x), r) 

where h is a suitable function of two variables. Suppose there exists 

a positive function a? tending to zero with r and a rate of convergence 

uo such that 

h ( ^ (r), r) -̂  (f(u) (r)) 

Set W(r) = [x £ U , f(x) ^ fir)} ; then W(r) C U(W(«; (r)), r) . 

2nd observation. The functional equation connecting a> and (F 

may be used to obtain information about the distance of the solution 

from any point uQ given in advance. Indeed, let u be a fixed point 
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in E • Given a point x £ E and two positive numbers d and r such 
that 

d(x,uQ) <= d - e-(r) , 
then, for x* £ U(x,r) , we have 

d(x',uQ) ̂  d(x,uQ) + d(x',x)-£ d - ff(r) + r = d - 6-(cu(r)) . 
It follows that the family 

Z(r) = {x £ M ; f (x) ̂  t/>(r) , d(x,uQ) < d - rj(r) 
satisfies Z(r) c U(Z(o/(r)), r) . It follows that Z(O) will be nonvoid 
if at least one Z(r ) is nonvoid since 

Z(rQ) cUte(O), 6-(rQ)) . 
Summing up: if h(<y?(r),r) < (f(co (r)) and if there exists an r ;> 0 
and an x € M such that 

f(x ) < f(r) *(x .u ) ̂  d - &(T) 

O ' O O7 0 o 

then there exists an x^ € M~ with the following properties 

f (x«J = 0 

d(Xfl0,xo) ^ e-(rQ) 

d(xw,uo) <_d . 

We have seen that the first step of the induction method consists in 

finding a function h(m,r) with the following property: given x with 

f (x) .£ m , there exists, within distance less than r , an x* with 

f (x*) — h(m,r) . In most cases the estimate for f (x*) will not depend 

on the value of f(x) alone but will require some further characteristics 

as well; one might think of derivatives or some other additional informa

tion. 

Suppose, for simplicity, that there is only one such additional 

characteristic, i.e. that the estimate for f(x') depends also on the 

value of another positive function f, at x so that inf {f (x') , 

x*£ U(x,r)j < h(f (x), f-j(x), r) . Consider the case where the estimate 

h is an increasing function of the second argument. Since we shall need, 

in the following step of the induction an estimate for f, (x#) , we shall 

need, in fact, a pair of positive functions h and h-, such that, for 

each x and r , there exists an x'^. U(x,r) for which 

f(x') ̂ h(f(x), fx(x),r) 
f l ( x # ) ^^tt(*>i fi< x>*>. 

In this case h, will have to be decreasing in the first argument and 
increasing in the second argument • It will then be desirable to find a 
pair of functions y>, u>, and a rate of convergence to such that 

h(y?(r), y^tr), r) < if(u)(T)) 

hjL(^(r)9 ^ ( r ) , r) 2: ̂ ( ^ ( r ) ) . 
Set W(r) = {x € B ; f (x) ^ y(r), f-^x) > ^(r)] ; then W(r) C 
C U(W(«o(r))f r) • 
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Let us pass- now to examples which illustrate the general principles 

sketched above. 

5. The factorization theorem 

The method of nondiscrete mathematical induction has been applied 

thus far to obtain improvements of selection theorems, transitivity 

theorems in the theory of C*~algebras, factorization theorems in Banach 

algebras and existence theorems in the theory of partial differential 

equations. The first three are described in the author s paper [3]• The 

ideas contained there have also been applied successfully by the 

author's collaborators [10], [11] . 

Among the many examples which demonstrate the advantages of the 

method the Rudin-Cohen factorization theorem seems to be the most suit

able one; in spite of the fact that the result itself is not new the 

simplification of the proof is considerable. 

If M is a unital Banach algebra, we denote by G(M) the set of 

its invertible elements. Let A be a Banach algebra without unit and 

denote by B its unitization. The multiplicative functional on B which 

has A as its kernel will be denoted by f . Let F be a Banach space 

which is an A-module. We say that the pair (A,F) possesses an approxi

mate unit of norm ft if, for each a £ A , y € F and £ > 0 there 

exists an e € A such that 

let s ft , |ea - a|< £ , |ey - yl< £ 

Theorem. Let A be a Banach algebra without a unit and let F be 

a Banach space which is an A-module• Suppose that (A,F) possesses an 

approximate unit of norm ft • Then, for each y e F and each £ > 0 , 

there exists an a € A and a z € F such that 

az = y , |a| < /3 , z € (Ay)"" , jz - y| ̂  £ . 

Proof. First of all, it is easy to see that the existence of a bounded 

approximate unit implies (Ay)"* = (By)"" for any y € F , B being the 

unitization of A . 

Consider the space 1 x (By)"* equipped with the norm 

iip« = r~7max{.l»ai ' ?izi] 
i f p = [a,z] ; Q < oo < 1 i s a constant to be chosen l a t e r . For each 
invert ible b € B l e t p(b) be the pair p(b) = [a,z] , a = b ^ - f (b*"1) , 
£ = by # For each r > 0 , set 

W(r) = (p(b); b £G(B), |f Or 1 ) ! < r , ||p(b)-p(l )il < J ^ J J (1-r)} . 
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In particular, fO,y] = p(l) € W(l) . Also, observe that fa,z] € W(r) 
implies 

az = (b"1 - f(b"1))by = y - f(b-1)z 
so that [a,z] £ W(O) implies az = y . 

We intend to show that there exists an 10 such that 
W(r) CU(W(wr), r) for each r > 0 . 

Having proved that, it will follow from the Induction Principle that 
W(l) CU(W(0), -i ' ) ; this means that there exists a pair 

X — CO -j 

p = r®iZ] £ W(0) with |(p-p(l)|| < j ~ - , in other words az = y , 
13] < fi , |z-y|< £ . Given p(b) € W(r) we intend to show that the 
pair p(b') corresponding to a slightly perturbed b* = be will 
satisfy p(b') € Yt(ou r)) n U(p(b), r) . For this, clearly it suffices 
to construct c in such a manner that 
(1) la* - a| < (1 - CO)/3T 

(2) f (c-1) = OJ 

(3) I (b*- b)y| < (1 - W)LT . 

We shall show that it is possible to satisfy these three conditions by 
constructing a c for which 

(4) b - b is a multiple of e - 1 for a suitable e . 

Since f (e-1) = -1 , such a choice of c - if possible - has the follow
ing consequences: 

a'- a = b'^-b-1 - f (b^-b- 1) = (1 - iu)t(b^)e 
b'- b = -b'tt/^-b-^b = -b*(l - aDfto^Me-Db 
b'(l + (1 - ^)f(b-1)(e-l)b) = b , 

for shortness, write w = (1 - ou)f(b )(e-l)b . 

It follows that a suitable choice of c will be c = (1+w) provided 
|w| < 1 . 

We shall need an estimate for w independent of e . Let T be such 

that (l-do)(/3+l) = l - 2 r . Since 

w = (1 - a;)f(b)-1(e-l)(b-f(b)) + (1 - a) Me-1) 

we have 

|w| s(l - wHf'b-r1! |(e-l)(b-f(b))| + (1 - uj)(/i + 1) 
and e € A , | e | -£ fi> may be chosen so as to have 

(5) (1 - ^)lf(b)-1! l(e-l)(b-f(b))| + (1 - uj)(fl + 1 ) ^ 1 - T 

whence |w| ̂  1 - r and |c| < i . 

Now suppose that e satisfies condition (5) and at the same time 

|b| i(l - ^)lf(b)-1! I(e-l)by| < (1 - UJ)£T 

then 

| z * - z | < ( l - & / ) £ r . 
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The proof is complete. 

6. New results 

The classical notion of the order of convergence or rate of conver

gence which reputedly goes back to the last century is defined as follows. 

Given an iterative process which yields a sequence x of elements of a 

complete metric space (E,d) converging to an element x e E we say 

that the convergence is of order p if there exists a constant oC such 

that 
d ( V l ' x ) ~ <*<d(xn,x))

p . 
Clearly it is immaterial whether we require this for all n or only 

asymptotically. Let us point out two difficulties which seem to arise if 

this point of view is adopted. 

1° If p > 1 then the above inequality contains a certain amount 

of information about the process; the information, however, is more of 

a qualitative nature since it relates quantities which we are not able 

to measure at any finite stage of the process. The obvious meaning of the 

above inequality seems to consist rather in the fact that, at each stage 

of the process, the following step of the iteration yields a significant 

improvement of the estimate. 

2° Theoretical considerations enable us, in many cases, to establish 

an inequality of the above type for certain constants cX and p ; how

ever, usually this is only possible if we assume n to be larger than 

a certain bound. We might want, however, to stop the process before this 

bound is reached - in this case the inequality cannot be used* Of course, 

it is possible to extend the validity of the estimate to all n by making 

o< sufficiently large - this may invalidate its practical applicability 

for the initial steps. 

It seems therefore reasonable to look for another method of estimat

ing the convergence of iterative processes, one which would satisfy the 

following requirements. 

1° It should relate quantities which may be measured or estimated 

during the actual process. 

2° It should describe accurately in particular the initial stage 

of the process, not only its asymptotic behaviour since, after all, we 

are interested in keeping the number of steps necessary to obtain a good 

estimate as low as possible* 

It is obvious that we cannot expect to have an adequate description 
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of both the beginning and the tail end of the process by any formula as 
simple as the one we discussed above. In our opinion, a description which 
fits the whole process, not only an asymptotic one, is only possible by 
means of suitable functions, not just numbers. 

It seems natural to expect that better results may be obtained by 
looking for small functions ou which relate two consecutive increments 
of the process by an inequality of the following type 

^ n + l ^ n * ~ ^ ^ I ' ^ - I ^ * 
By allowing a larger class of functions than just those of the type 

t —*<?<tP we have a better chance of getting a closer fit of the estimates 

even at the beginning of the process. 

At the same time this approach measures the rate of convergence at 

finite stages of the process using only data available at that particular 

stage of the process, in fact, instead of comparing the two unknown 

quantities d(x ,x) and d(x ,,x) it is based on the relation between 

d ( xn' xn-l ) *** d(xn+l'xn) • 
Suppose we have a sequence of inequalities 

^k^n+k-l* - ̂ " 1 > W ( V l ^ ) ) 

for k=l,2,... (where u) stands for the j-th iteration of the 
function co) and that the series -2.. cu^J (d(x + 1,x n>) is convergent. 
Such a sequence of inequalities may be deduced from the above inequality 
if cu is an increasing function. Then the sequence x

n»
x
n+i>»** *8 a 

fundamental sequence and, the space (E,d) being complete, converges 
to a limit x for which 

d(xn,x) 5£ <Hxn-KL,xn) + a< x
n + 2,

x
n + 1> * ••• ̂  fl^ ( j )(d(x n + 1,x n)) . 

As an example, let us mention the rate of convergence of Newton's 
process recently established by the author. There we have 

t2 
CO (t) = A T JK 

2(t2 + d ) 1 / 2 

where d is a positive constant depending on the data of the problem. 
A closer inspection of this formula shows that, for every small t , 
the function assumes approximately the form •• vyo whereas, for large 

2 2d 1 / 2 

t , the summand t predominates in the denominator so that the function 
is approximately linear, it . 

Since a> relates the consecutive steps of Newton's process by the 
inequality 3(x n + 1,x n) — ^ ^ x n , x n - l ^ thls silows first that, asympto
tically - in other words for small d(x_,x - ) - the next increment is 

-» o n«-»x 
approximately — ! T 7 2 ^ x n , x n - l ^ • Tlxis P h e n o i a e no n is usually described 
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by saying that the convergence is quadratic. 
However, in the initial stages of the process d(x

n»
x
n_i) *s still 

large so that co is almost linear. Since it may be shown that the esti
mates for Newton's process based on OJ are sharp at each step, it follows 
that accurate estimates valid for the whole process - including the 
initial steps - cannot be based on any simple quadratic monomial. 

The precise formulation is as follows. 
Let E and) F be two Banach spaces, let x £. E and 

U = {x ; | x-x I < mj . Let f be a mapping of U into F twice Frgchet 
differentiable for each x e U • Suppose the following conditions are 
satisfied: 
1° there exists a constant k > 0 such that |fM(x)| < k for all 

x € U , 
2° f'(xQ) is invertible and d(f'(xQ)) = dQ > o 
3° |f*(xor

1f(x0)l< rQ . 
If d^^ 2kr and if 

° • ° dn 2 k Pn 1/2 

then the Newton process starting at x is meaningful and converges to 
a point x such that f(x) = 0 . The function 

.2 
"(r)%iJL,.V3 

2kr 
j °) , is a 3 

following estimates 

d 2kr 
where d = (j^Kl - j ) , is a rate of convergence and yields the 

i
x
 - v £ i r

a
 -

 (1
 - - r

a )
 > • 

o 
These estimates are sharp in the following sense: for each triple 
k,d ,r of positive numbers satisfying the inequality d > 2kr there 
exists a mapping f for which these estimates are attained. 

The proof is given in [6]. The corresponding & function is computed 
in [6] and the finite sums & in [7] . 

Let us conclude this section by mentioning another example a detailed 
discussion of which may be found in [5] . 

If T and fl are positive numbers such that f > 4/3 then 
wM = t f + t - ( ( r + t ) 2 - 4 / 3 ) ^ 

r - t + u r + t )
2
 - 4/3 )

1 / 2 

is a rate of convergence on the whole positive axis. It has been used in 
[5J to obtain a result on the spectrum of an almost decomposable operator. 
The corresponding ff-function is computed in [5] and the finite sums & 
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in [8 j . 

7. Connections with numerical analysis 

Let us turn now to the problem of comparing this new method of 
measuring convergence with the classical notion described at the beginning. 
The new method is based on comparing consecutive terms in the sequence 

d (
v W 

while the classical one compares consecutive terms in the sequence 

d(xn,x) . 

It is thus natural to ask whether estimates using consecutive distances 
d(x ,x , ) imply similar estimates for the distances d(x .x) . More n n-1 n? 

for an estimate of d(x .x) we can ask whether estimates of the form 
n' 
in 

-<- c6>(e ) „ We intend to show that this is indeed so at least in the — n 
le: 

To see that, suppose we have a sequence x for which the estimate 

precisely, if e + 1 stands for an estimate of ^(x
n+i-

x
n'

 Bn
^ e

n 

for an estimate of d(x .x) we can ask whether estimates of the fom 
n' 

e +1 n+2 — ^ e n n+1^ ^mPly estimates of the classical type e n + 1 ^ 
-<- a;(e ) „ We intend to — n 
case where u) is convex. 

se 
d ( x n + l ' V - " ( d ( V x n - l } ) 

holds. Hence 

<Kxn,x) <d(x n + 1,x n) + <J(xn+2,xn+1) + ... < 

-5 |^W<k)(d(xn+1,xn)) = C(d(xn+1,xn)) . 

Here we have used the fact that u) is nondecreasing; this is a 

simple consequence of the convexity of a) • 

Similarly, d(xn+1,x) < ^(w (d(xn+1,xn))) ; it follows that the 

estimates 
en+p,n+P+l

= "(9) «<**v**» P=0 , l , 2 , . . . 
and 

en = ^Vrt* 
)) satisfy the inequalities e n + 1 < &(u)(en n + 1 

To obtain the desirable estimate e .., ^ ^(e ) it would be 
n+1 n 

sufficient to have the inequality &0 a) < u)o& since this yields the 

following estimates 

e n + 1 - 6-(«;(en>n+1)) ^ " ( * ( e ^ ) ) - «i(tn) . 

This heuristic reasoning should be sufficient to explain the 

importance of the inequality 6*ou> < 6cu 6" # 
It turns out that such an inequality may be proved in the case of 

convex rates of convergence u>. The following proposition holds [12]. 
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Suppose 60 is a rate of convergence on the interval T • If w 

is convex then 
w ® & > 6* o w 

on the interval T n ff (T) * 

It follows that, in this case, the two ways of estimating convergence 

discussed above are equivalent. 

Detailed proofs and a discussion of the basic principles of the non-

discrete induction method may be found in the Gatlinburg Lecture 13]* 

List of references 

[l] V* PTXK, Some metric aspects of the open mapping theorem^ Math* 
Ann. 163 (1966), 95-104 

[2] V* PT/k, Deux thgor&nes de factorisation^ Comptes Rendus Acad,Sci* 
Paris 278 (1974),1091-1094 

[3] V.PTAK, A theorem of the closed graph type, Manuscripts Math. 13 
L J (1974), 109-130 

[4] V, PTAKf A quantitative refinement of the closed graph theorem, 
Czechoslovak Math.J. 99 (1974), 503-506 

[5] V* PTAK, Nondiscrete mathematical induction and iterative existence 
J proofs, Linear Algebra and Appl. 13 (1976), 223-238 

[e] V* PT/SK, The rate of convergence of Newton#s process, Numer*Math* 
25 (1976), 279-285 

[7] V, PTiSk̂  Concerning the rate of convergence of Newton s process, 
Comment.Math.Univ.Carolinae 16 (1975), 699-705 

[8] V, PTAKf A rate of convergence, Abh.Math.Sem.Univ. Hamburg (in 
print) 

[9] V* PTi&C, A modification of Newton^s method, dasopis p§st*mst« 101 
1 (1976), 188-194 

[10] H* PBIZELTOVA and P. VRB0VAf A remark on small divisors problems, 
Revue Roumaine Math* (in print) 

[ill J* ZEMANEK, A remark on transitivity of operator algebras, fiasopis 
' pSst.mat. 100 (1975), 176-178 

[l2] V, PTAKf What should be a rate of convergence, RAIRO, Analyse 
num^rique (in print) 


