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Space-time wave packets can propagate invariantly in free space with arbitrary group velocity thanks to the
spatio-temporal correlation. Here it is proved that the space-time wave packets are stable in dispersive media
as well and free from the spread in time caused by material dispersion. Furthermore, the law of anomalous
refraction for space-time wave packets is generalized to the weakly dispersive situation. These results reveal
new potential of space-time wave packets for the applications in real dispersive media.

INTRODUCTION

Most materials are dispersive media in which waves of dif-
ferent frequencies travel at different velocities.[1, 2] Disper-
sion causes the shape of a wave pulse to change as it travels,
which is known as group velocity dispersion.[3] The group
velocity dispersion limits many applications such as broad-
band optical communication and nanophotonics devices.[4, 5]
In addition to dispersion, diffraction also causes the distortion
of a pulse during the propagation. There have been a number
of studies on diffraction-free beams, such as the well-known
Bessel beams, Airy beams and X-shaped waves.[6–10] How-
ever, little efforts have been devoted to resist the dispersive
propagation in real linear material, and the dispersion is con-
sidered as an intrinsic and inevitable nature of material.

We are interested here in resisting the temporal spread
caused by dispersion of material. Achieving this goal can have
tremendous implications for optical communication, where
information may get lost as pulses spread in time and merge
due to dispersion effect.[11, 12] One typical strategy for ma-
terial dispersion compensation in optical fiber is to strike
a balance between the material dispersion and waveguide
dispersion.[12] However, such compensation only works at
fixed wavelength, i.e. the zero-dispersion wavelength for
single-mode optical fiber.

Here we prove that a recently proposed propagation-
invariant wave called space-time wave packet does not suf-
fer from material dispersion.[13] Without any requirement
for the medium, space-time wave packet serves as a general
method for dispersion-free propagation in dispersive media.
Moreover, we find that other unconventional properties of the
space-time wave packets also exist in dispersive medium, for
example, arbitrary group velocity.[13] We also modify the
law of refraction for space-time wave packets, with additional
terms introduced by material dispersion.[14] Our work here
provides a general theoretical framework for space-time wave
packets in dispersive media.

The rest of the paper is organized as follows. In Sec.2 , we
validate the non-dispersive propagation of space-time wave
packets in dispersive media. In Sec.3 , we modify the refrac-
tion law for space-time wave packets at the interface of two
dispersive media. In Sec.4 , we consider the high order con-

tribution to the rigid propagation of space-time wave packets.
We conclude in Sec.5 .

SPACE-TIME WAVE PACKETS IN DISPERSIVE MEDIA

In this section, we first show the existence of space-
time wave packets in dispersive media both theoretically and
numerically, then consider a more specific case of quasi-
monochromatic and paraxial condition in weakly dispersive
media.

Consider a light pulse with scalar field U(x, y, z, t) =
A(x, y, z, t)exp[−i(ω0t − n0k0z)] propagating along the z-
axis in a dispersive medium whose refraction index is fre-
quency dependent n = n(Ω), where A(x, y, z, t) is the slowly
varying envelope, ω0 is the frequency of the carrier, n0 is the
refraction index of the center frequency ω0, k0 = ω0/c is the
wave number and Ω = ω − ω0 is the frequency with respect
to ω0. The wave can be decomposed into plane waves:

A(x, y, z; t) =

∫∫∫
Ã(kx, ky,Ω)×

ei{kxx+kyy−Ωt+[kz(kx,ky,Ω)−n0k0]z}dkxdkydΩ
(1)

where kx and ky are components of the transverse wave vector
k⊥ = (kx, ky) and

kz(kx,ky,Ω) =
√

[n(ω0 + Ω)/c]2 − (k2
x + k2

y) (2)

Ideally, space-time wave packet consists of precisely se-
lected plane waves such that its spectrum exhibits a special
delta function:

Ã(kx, ky,Ω) = Ã0(kx, ky,Ω) · δ[Ω− vg(kz − n0k0)] (3)

where Ã0(kx, ky,Ω) is a spectrum of an arbitrary wave pulse.
Substitute Equation (3) into Equation (1) and we obtain

A(x, y, z; t) =

∫∫
Ã0[kx, ky,Ω(k⊥)]×

ei[kxx+kyy+(kz−n0k0)·(z−vgt)]dkxdky

= A(x, y, 0; t− z/vg)

(4)
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Equation (4) implies that the space-time wave packet can also
exist in dispersive medium. This leads to several unconven-
tional properties of space-time wave packet. First, the trans-
verse field profile is unchanged during the propagation. Sec-
ond, the temporal profile does not spread despite the disper-
sion of material. Third, the wave packet travels at a fixed
group velocity vg whatever the actual dispersion is like.

To be more specific, the role of such a δ spectrum in Equa-
tion (3) can be interpreted in the following geometry. The
band structure of light in free space is a 3D light cone in the
4D (ω,k) space (Figure 1a), and in dispersive medium the
band structure is a 3D hypersurface, for example Figure 1b.
Ordinary pulses has a 3D spectrum distribution on the 3D hy-
persurface because of the independence between space-time
coordinates. However, the δ function, denoted by the tilted
hyperplane Ω = vg(kz − n0k0) in Figure 1a&b, selects a 2D
distribution out of the 3D distribution, by correlating time and
space. In this way one can construct a both diffraction-free
and dispersion-free wave packet in dispersive media by lin-
ear superposition of the plane waves at the intersection of the
hyperplane and band dispersion.

Through a rigid numerical demonstration, we validate
the non-dispersive propagation of space-time wave packets,
shown schematically in Figure 1c. Here we consider a homo-
geneous material with a frequency-dependent refraction index
n(Ω) = n0 + βΩ, where n0 = 0.7, β = 5× 10−15 s. A Gaus-
sian wave packet propagates inside such a medium with its
central wave length λ0 = 1µm, waist radius W0 = 30µm
and temporal width τ0 ≈ 1.7 ps. Here the field is assumed
to be uniform along the transverse dimension y for simplic-
ity. Figure 1d shows the spectrum of the Gaussian wave
packet, and Figure 1e&f show the amplitude distribution at
z=0 and z=0.4 m respectively (depicted in the moving refer-
ence frame). Such a Gaussian wave packet spreads in time
and space as expected (Figure 1e&f). And Figure 1g shows
the nomalized amplitude of the Gaussian wave packet on the
axis, which broadens due to material dispersion. By impos-
ing the spatio-temporal correlation upon the Gaussian wave
packet, we construct a space-time wave packet with group
velocity vg = 0.097c, whose spetrum exhibits a parabolic
shape(Figure 1h). Figure 1i&j show its amplitude distribu-
tion at z=0 and z=0.4 m, and its profile hardly changed, which
is in line with Equation (4). As shown in Figure 1k, the tem-
poral profile of the space-time wave packet does not change
despite the material dispersion. That reveals its unique resis-
tance to material dispersion.

The resistance of space-time wave packets to temporal dis-
persion could be interpreted as follows: the spatio-temporal
correlation forces light of different frequencies, thus differ-
ent group velocities, to travel in distinct directions, resulting
in the same group velocity components along the z-direction.
Dispersion of different media just changes the phase veloc-
ity of every monochromatic light, and the propagation in-
variance of space-time wave packets remains as long as such
monochromatic lights travel in their specific directions. Note
here, though we formulate with a scalar field, the extenstion

to a vector field is straight forward.
However, such precise control over Ω and k⊥ is impossible

in practice due to the infinite intensity such δ function requires
and the finite precision in experiments.[15, 16] In addition, the
numerical aperture is also restricted in a small range in most
cases.[17] So it stands critical to explore the more realistic
case, with narrow bandwidth, limited control over the spec-
trum and paraxial condition. For a space-time wave packet
which is quasi-monochromatic, the frequency-dependent re-
fraction index can be expanded in the vicinity of its center
frequency ω0 as n(Ω) ≈ n0 + βΩ, and the spectrum reduces
to the parabolic form:

Ω ≈ c

2αn0ω0
k2
⊥ (5)

where α = (n0 + βω0)/c− 1/vg . So the parabolic spectrum
shown in Equation (5) suffices to sculpt the spatio-temporal
spectrum depicted in Figure 1h for a dispersive medium, as
long as the omitted high order terms in the dispersion relation
are relatively small compared with βΩ,

REFRACTION OF SPACE-TIME WAVE PACKETS AT
INTERFACE OF DISPERSIVE MEDIA

One unique property of space-time wave packets is the
anomalous refraction at the interface of two non-dispersive
media, where some corollaries of the Snell’s law no longer
hold.[14] Here we extend the study to the interface of two
possibly dispersive media, and modify the law of refraction
for space-time wave packets.

When travelling through different media of distinct disper-
sion relation, the spatio-temporal correlation is expected to be
conserved, because such correlation exhibits the same form of
a parabola shown in Equation (5) in different weakly disper-
sive media. To be more specific, with respect to the normal
incidence of space-time wave packets between two dispersive
media, conservation of energy and transverse momentum lead
to the invariance of ω and k⊥ for every monochromatic com-
ponent. Therefore the parabolic spectrum in Equation (5) is
also preserved under the refraction, so is the value of the coef-
ficient. Such invariant coefficient, expressed in two dispersive
media separately, gives rise to the refraction law for space-
time wave packets.

n01(n01 + β1ω0 − ñ1) = n02(n02 + β2ω0 − ñ2) (6)

where n0i is the refraction index of the medium i(i = 1, 2)
at the center frequency, ñi = c/vgi is the group index and
βi refers to the first order of dispersion. For non-dispersive
medium, the refraction law above reduces to:

n01(n01 − ñ1) = n02(n02 − ñ2) (7)

which agrees with the result of Bhaduri et al..[14]
Although the dispersion near ω0 can be relatively small:

βΩ � n0, such a small term could actually cause appre-
ciable change in the refraction of space-time wave packets,
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FIG. 1. a) Intersection of the light cone and a tilted space-time hyperplane. b) Intersection of a dispersive hypersurface and a tilted space-time
hyperplane. c) Dispersive propagation of ordinary Gaussian pulse and non-dispersive propagation of space-time wave packet. d)-k) Numerical
demonstration of the propagation in dispersive medium. d) The spectrum of Gaussian pulse. e)& f) The normalized amplitude distribution of
Gaussian pulse at origin z=0 and z=0.4 m. Depicted in the moving reference frame: τ = t − z/vgauss, where vgauss is the velocity of the
Gaussian pulse. Gaussian pulse suffers from both dispersion and diffraction. g) Normalized center intensity distribution of Gaussian pulse. h)
The spectrum of space-time wave packet. i)& j) The nomalized amplitude distribution of space-time wave packet at origin z=0 and z=0.4 m.
Depicted in the moving reference frame: τ = t − z/vg . k) Normalized center intensity distribution of space-time wave packet. Space-time
wave packet propagates with a fixed profile.

as the change introduced by β is actually βω0. To demon-
strate its effect, Figure 2 compares two refraction processes
both from non-dispersive air to a weakly dispersive medium
β = 1.64 × 10−16 s, ω0 = 1.89 × 1015 s−1 and n0 = 1.34
(green line) and a non-dispersive medium β = 0 with other
parameters the same (blue line). In this figure, we show the
law of refraction Equation (6) as a relation between (vg1, vg2)
and (θ1, θ2), here θ = acotñ stands for the tilt angle of space-
time hyperplane shown in Figure 1b. Both the two lines in
Figure 2a have the shape of the inverse proportional function
[indicated by Equation (6)] and the existence of dispersion
just shifts the center of such shape and stretches the coor-
dinates. The green triangles in Figure 2a represent the nu-
merical results of the refraction process making use of Fres-
nel equation, which validates Equation (6). In terms of the

tilt angle θ, the normal dispersion (β > 0) tends to “drag”
the blue line in Figure 2b downward. Meanwhile, compared
with ordinary pulsed beams with only fixed group velocity,
the group velocity of space-time wave packets can increase,
decrease or remain the same in the refraction process depend-
ing on the group velocity of incident space-time wave packets
[Figure 2b]. The region to the left of the dashed lines (Blue
and green denote respectively, the nondispersive and disper-
sive cases.) in Figure 2b corresponding to vg1 < vg2 stands
for the “anomalous” refraction of space-time wave packets,
because the group velocity does not decrease as expected
when n1 < n2. Compare the blue and the green dashed lines,
we can conclude from Figure 2b that the dispersion here also
can change the range of group velocity in “anomalous” refrac-
tion.
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FIG. 2. a) The group velocity relation between the two media in the normal incidence. b) The group velocity relation expressed in terms of the
tilt angle θ of the space-time hyperplane. The dashed lines in b) represent the equivalence of θ1 and θ2, i.e., vg1 = vg2. The left hand side of
the dashed line corresponds to vg1 < vg2 (anomalous) and right hand side corresponds to vg1 > vg2 (normal).

For oblique incidence (Figure 3), the condition kx1 = kx2

turns into kx1cosΦ1 = kx2cosΦ2 as kx is no longer parallel
to the interface.[14] The law of refraction for space-time wave
packet changes correspondingly:

n01(n01+β1ω0−ñ1)cos2Φ1 = n02(n02+β2ω0−ñ2)cos2Φ2,
(8)

where Φ1, Φ2 are the angle of incidence and refraction re-
spectively, determined by Snell’s law: n1sinΦ1 = n2sinΦ2.
For instance, an incident space-time wave packet with group
velocity vg = 0.1c could be refracted to have a new group
velocity in a wide and continuous range when it comes from
different Φ1, as illustrated in Figure 3b, and the existence of
dispersion tends to change such velocity range from approxi-
mately 0.1c∼ 0.75c to 0.1c∼ 0.6c. Therefore, the dispersion
here narrows (can also broaden in case of anomalous disper-
sion) the vg range of the refracted wave.

HIGH ORDER TERMS IN THE SPECTRUM

In practice, sculpting a spectrum of accurate parabola
shape is sometimes intractable, [14, 18] but a polynomial
spectrum also provides additional measure to shape the
propagation.[19] A more general case is to reconsider the rel-
atively small high order terms in the parabolic spectrum, for
example:

Ω(k⊥) ≈ α1(k2
x + k2

y) + α2(k2
x + k2

y)2 (9)

For simplicity, we discuss its behavior in free space. And the
result will deviate slightly from the case for ideal space-time

wave packets:

A(x, y, z; t) ∝
∫∫

Ãei(kxx+kyy)×

exp[−iα1k
2
⊥(t− z/vg)− iα2k

4
⊥(t− z/v′)]dkxdky

(10)
where1/vg = 1/c− c/(2ω0α1) is the reciprocal of group ve-
locity and 1/v′ = 1/c−c3/(8ω3

0α2) is the high term contribu-
tion with the dimension of the inverse of speed controlled by
α2. Therefore the previous rigid propagation fails to satisfy as
the amplitude distribution has a nonvanishing z-dependence:

A(x, y, z; t) ∝
∫∫

Ãei(kxx+kyy)×

exp[−iα1k
2
⊥t
′ − iα2k

4
⊥(t′ − z/v′ + z/vg)]dkxdky

(11)
where t′ = t − z/vg . Such a deviation would gets larger at
long distance or time.

However, the paraxial condition ensures A(x, y, z; t) ≈
A(x, y, 0; t−z/vg) again at least within a finite space and time
since α2k

2
⊥ � α1, and actually the propagation distance of

space-time wave packets is also finite due to the “fuzziness” in
the spatio-temporal correlation.[16] Such deviation, therefore,
can be relatively small in the propagation of space-time wave
packets. In fact, such deviation corresponds to the first disper-
sive term of space-time wave packets in free space.[19] To be
more specific, only one of the two terms in v′ is introduced
by α2 while the other comes from the high terms in Taylor
series, which is previously omitted in the expansion of kz . In
other words, one can makeA(x, y, z; t) = A(x, y, 0; t−z/vg)
strictly true at the order of k4

⊥ if we choose α2 properly such
that v′ = vg , in which case the z-dependence in Equation (11)
vanishes.

Furthermore, one can always complete Equation (9) with
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FIG. 3. a) Inclined refraction of space-time wave packet. b) The relation between incident angle Φ1 and the group velocity vg of refracted
wave.

additional high terms correspondingly to compensate the de-
struction of rigid propagation that is caused by the omitted
terms in the expansion of kz . The more terms one compen-
sates, the closer the spectrum is to the δ function, thus closer
to the ideal space-time wave packet. From another point of
view, putting more power series terms in Equation (9) can
make the free space to exhibit arbitrary magnitude, sign and
order of dispersion.[19] For example, a linear term added in
Equation (9) will result in an effective group-velocity disper-
sion (GVD), which has been demonstrated theoretically and
experimentally by Murat Yessenov et al..[20]

DISCUSSION AND CONCLUSION

Until now, space-time wave packets have mostly been in-
vestigated in free space. [17, 19, 21] However, there has
been attempt using spatio-temporal correlation in surface plas-
mon polaritons.[22] More generally, our work presented here
reveals the great potential of imposing spatio-temporal fre-
quency correlation in the dispersive media, which is proved to
resist the temporal broadening in dispersive medium. Here,
the first dispersion term in the medium provides a handle
to change the group velocity without destroying the spatio-
temporal correlation. Meanwhile, the higher order dispersion
do not affect the the propagation of space-time wave packet,
although that always leads to some unique properties to other
diffraction-free wave like an Airy pulse.[23] Apart from that,
we generalize the refraction law for space-time wave packet
to dispersive media. These findings further support the idea
of imposing spatio-temporal correlation to shape the propa-
gation of wave, and pave the way for dispersion resistance in
dispersive media.

The recent method proposed to impose precise spatio-
temporal correlation with a compact photonic crystal slab
freed the generation of space-time wave packets from sophis-

ticated procedure using a two-dimensional pulse shaper.[14,
18] On that basis, we prove that the possibly high order terms
in the band dispersion of such photonic crystal slab actually
open up a new avenue for sculpting the arbitrary dispersion
for space-time wave packets.[19]

This work is supported by the National Natural Science
Foundation of China (Grant No.11904264).
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