
p c  # 

f-2 (NhSb-Cb-134339) N O N Z ~ L I I L I E , S I U ~  SHERiSIEY . - ,  , BC56.  AHY L k Y i i a  I L I E G R A L  !lATFIX PROCEDUdE 

k. ~ i :  1. ~ l p o r t  ( A c u r e x  ~ o r p . ,  sountain 
Vier, Cdlit.1 105 p HC i l C . 2 5  CSCL L O R  

. - 

Unclas  
G 3 / 3 3  1 4 0 6 3  

. .  AC=uREx . ' * , 

7A<3 , .  ~orporation . 



A e r o t h e r m  Project 6099 

July 1973 

Aerotherm t'inal Report No.  73-67 

NONEQ~ILIBR18JM CHLYISTRY 

BOUNDARY LAYER IiJTEGRAL 

MATRIX PROCEUJRE 

Henry Tong 

Alfred ' Buckingham 

Howara L. Morse 

Prepared for 

~ational Aeronaut2.c~ and space Administration 

Johnson Space Center 
Houstm, Texas 

Structures and Mechanics Division 

Donald -4. Curry 

Extension to C ~ n t r a c t  NAS~-3494 



This report was prepared by the Aerotherm Division of Acurex Corpoiation 

for the NASA Zohnson Spacecraft Center under az7 extension to NASA contract 

NAS 9-9494. The codes and computational procedures describ2d in t : . ' ~  report 

were developed by the authors with technical support from Dr. R. M. Kendall, 

Mr. E. P. Bartlett, Mr. W. E. Nicolet and Mr. M. J. Abbett. 

Tine deveiopmentai effort described in this report was perfamed for  L!e 

NASA Structures and Mechanics Division with Dr. Donald M. Curry as Technical 

Monitor. 



This repor t  describes the  development of an ana ly t i c  procedure f o r  the  

calculat ion of nonequilibrium boundary layer  flows over surfaces of a r b i t r a r y  

ca2alyci t ies .  An. exis t ing  equi1ihri.m boundary l aye r  i n t e g r a l  matrix code was 

extended t o  include nonequilibricm chemistry while r e t ~ i n i n g  a l l  of  the  general 

boundary condition fea tures  b u i l t  i n t o  the  o r ig ina l  code. For p a r t i c u l a r  appli-  

ca t ion  t o  the pitch-plane of s h u t t l e  type vehicles an approximate proceeare was 

developed to estimate the r,onequilibrium and nonisentropic s t a t e  a t  the edge of 

the boundary layer. 

The nonequiiibrium code (BLIXF/KZ?!ET) was use3 t o  ca lcu la te  c a t a l y c i  t i e s  

of typica l  shu t t l e  thermal protect ion materials  which were e x p s e d  t o  an a r c  

j e t  environment. Suff ic ient  da ta  was avai lable  to pred ic t  the simultaneou:; 

c a t a l y t i c  e f f i c i enc ies  f o r  atomic oxygen and a'conic nitrogen recombination- 

Thcsc ca+alycities an2 appropriate nonequiifiri-mi edge cori2itior?s were used t o  

predic t  the boundary layer behavior on the  pitch-plane of a typ ica l  s h u t t l e  

vehicle over a t ra jec tory  range wiiich iriciucirci ixth lmtiiiai' aiici turbiile'ilt ~ ~ O W S .  

These calculat ions show a s m a l l  reduction i n  heat t r ans fe r  when compared t o  

c a t a l y t i c  surfaces: however, subs tan t i a l  reductions a r e  demonstrated f o r  

noncata.l.ytic suifaces, These ca lcula t ions  a l s o  demonstrate the  s igni f icance  of 

incl-;ding r~~Cropy Layer e f f e c t s  . 
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SYMBOLS 

parameter used i n  the  solu t ion  of the  mixing lzngth equation 
(defined by Equation (126) ; 

r a d i a l  o f f s e t  of the generator axis  a t  angle of a t tack ,  Figure 6-4 

ca lo r i c  enthalpy deviation associated with equilibrium dissocia t ion  

parameter used i n  the  solu t ion  of the mixing length equation (de- 
fined by Equation (127) ) 

coeff ic ients  i n  polynomial body surface equation 

binormal d i rec t ion  u n i t  vector ,  body or iented  coordinates 

constant introduced i n  the  a const ra in t  (Equation ( 44 ) )  
H 

constant introduced i n  the approximation f o r  multicomponent thermal 
d i f fus ion coe f f i c i en t s  embodied i n  Equation (8). Tentatively 

established by corre la t ion  of data  to  be -0.5 

product of densi ty and v iscos i ty  normalized by t h e i r  reference 
values (defined hy Equation (52)) 

tcmgent shock surf  ace metric,  Equation 178 

frozen s p e c i f i c  heat  of the gas mixture 

property of the gas mixture whir ?I reduces t o  C when di f fus ion 
P 

coeff ic ients  a r e  assumed equal f o r  a l l  species (defined by 

Equation (8) 1 

s p e c i f i c  heat  of species i 



SYMBOLS 

(continued) 

do ,dl tdZ coefficients defined i n  f ini te-dif feret~ce representation of 
streamwise derivatives (defined i n  Equations (107) and (108) for  
two- and three-point difference relat ions,  respectively) 

D," 

D 
i j 

v 

O i j .  

ERROR 

a reference binary diffusion coefficient  introduced by the approx- 
imation for  binary diffusion coefficients embodied i n  Equation (7) 

square of r a t i o  of tangent t o  normal shock surface metrics, 

(GI ' 

multicomponent t!!enaal diffusion coefficient  f o r  species i 

multicomponent diffusion coefficient  fo r  species i and j 

diffusion coefficient  fo r  a l l  species when a l l  Di are equal 

binary diffusion coefficient  fo r  species i and j 

uni t  direction cosines, j th  principal  axis 

errors  f o r  the various equations during Newton-Raphson i t e ra t ion  
(driven toward zero i n  the i t e ra t ion)  

stream function (defined by Equation (45) 

diffusion factor  fo r  species i introduced by the approximation 
fo r  binary diffusion coefficients 'embodied i n  Equation (7) 

r a t i o  of effective polytropic exponents i n  equation of s t a t e ,  

Y/ (Y-1) 

Gibbs f ree  energy f o ~  j-th specie 

s t a t i c  enthalpy of the gas (def i r d  by Equation (5) ) 



SYMBOLS 

Ccontinued) 

s t a t i c  temperature 

velocity component para l le l  t o  body surface 

1ocal.dimensionless tangential velocity component 

shear velocity, defined i n  Equation (33) 

f ree  stream velocity 

velocity component normal t o  body surface 

local dimensionless normal velot t y  component 

mole fraction of specles i 

dimensionless axial  measure with origin a t  nose intercept of 
body generator axis 

dimensionless axial  trace of shock wave with origin a t  generator 
axis intercept 

rCP1,XP2,... truncated ser ies  obtained i n  Taylor se r ies  expansion of 

f i  f 'p dq (defined by Equation (112) ) 
i-1 

distance from surface in to  the boundary layer, measured normal 
t o  the surface 

dimensionless normal measure above W y  surface 

dimensionless y-coordinate defined by Equation (33) ) 



SYMBOLS 

(continued) 

t o t a l  number of elements; a lso nixing length constnat 

mass fraction of molecular species i 

total mass fraction of element (or base gas) k contained i n  sur- 

face material Ceerg,, char1 removed by combustion, sublimation, o r  
vaporization 

to t a l  mass fraction of element (or base gas? k contained i n  gas 

which enters boundary layer without phase change a t  the surface 

(e .g., pyrolysis gases) 

t o t a l  mass fraction of element (or base gas) k irrespective of 

molocular configuration (defixied by Equation (11)) 

par t ia l  pressure equilibrium constant for  m-th chemical reaction 

mixing length (defined by Equation (39) 

dimensionless mixing length (defined by Equation (57) 1 

parameter used i n  mixing length formulation (defined by Equation 

(123) 1 

mass flow ra t e  per un i t  area 

mass removal r a t e  per un i t  area of surface material (e.g., char) 
by combustion, sublimation, o r  vaporization 

dimensionless mass flow associated with the iti~ strc?amline 

mass flow ra te  per wit area of gas which enters bcundary layer 
without phase change a t  the surface (e.g., pyro1ysd.s gases) 

th 
mass removal ra te  per uni t  area of component surface material 
(e.g., s i l i c a )  i n  the condensed phase (e .g., by melting with 
subsequent liquid runoff o r  by spallation) 

molecular weight of the gas mixture 

viii 



SYMBOLS 

(continued) 

molecular weight of species i 

Mach number 

effective shock Mach number, Equation 162 - 

number of nodal p o h t s  across the boundary layer selected for  the 

purpose of the numerical solution procedure 

normal direction uni t  vector, bod.* oriented coordinates 

normal shock surface metric, Equation 178 

- 
dununy variable representing f ' ,  HT, or  \ 

dimensionless pressure, i t h  region 

dimensionless t o t a l  pressure 

pressure, a lso  a parameter used i n  the mixing length formulation 
(defined by Equation (120) ) 

par t ia l  pressure of species i 

frozen Prandtl number of the gas mixture (defined by Equation (71)) 

turbulent Prandtl number (defined by Equation (55) ) 

diffusional heat f lux per un i t  area away from the surface 

heat conduction per un i t  area in to  the surface material 

one-dimensional radiant heat f lux (toward the surface),  tha t  is, 
the net r a t e  per uni t  area a t  which radiant energy is t ransferred 
across a plane i n  the boundary layer pa ra l l e l  t o  the surface 



SYMBOLS 

(continued) 

metric coeff ic ient  f o r  streamline spreading (equal t o  1 c ; ~ l  r-8di.u~ 
i n  the boundary layer  i n  a meridian plane f o r  axisymmetr~c f lov)  

surface value of r 

dimensionless r ad ia l  displacement measured from generator ax i s  

universal gas constant 

Reynolds number; subscripted with the length sca le  i f  other than s 

e f fec t ive  nose radius f o r  Newtonian flow 

react ion r a t e  f o r  m-th react ion  q qua ti on 91) 

nose radius of curvature 

distance along body from stagnation point  o r  leading edge 

i n i t i a l  streamline a r c  measure, Equation 199 

reference system Schmidt number (defined by Equation (74) 

turbulent  Schmidt number (defined by Equation ( 54 ) )  

r ad ia l  o f f s e t  of forward stagnation point  from generator axis, 
Figure 6-4 

mass f rac t ion  of i-th specie 

parameter de ' i l~ed  t o  simplify problems w i t h  t ransverse curvature; 

see  Equation 1 a. 1) ) 

tan9ential  d i rec t ion  u n i t  vector,  body oriented coordinates 



SYMBOLS 

(continued) 

s t a t i c  temperature 

velocity component para l le l  t o  body surface 

loca1,dimensionless tangential velocity component 

shear velocity, defined i n  Equation (33) 

f ree  stream velocity 

velocity component normal t o  body surface 

local  dimensionless normal vela\ t y  component 

mole fraction of species i 

dimensionless axia l  measure with origin a t  nose intercept of 
body generator axis 

dimensionless axia l  t race  of shock wave with or igin  a t  generator 
axis intercept 

truncate6 se r ies  obtained i n  Taylor se r ies  expansion of 

si f ' p  dTl (defined by Equation (112)) 
i-1 

distance from surface in to  the boundary layer, measured normal 
t o  the surface 

dimensionless normal measure above W y  surface 

dimensionless y-coordinate defined by   qua ti on (33) 



SYMBOLS 
(continued) 

constant i n  the arixing length d i f f e r e n t i a l  equation (see Equation 

(29) 

pr incipal  normal coordinate of body 

pr inc ipal  binormal coordinate of body 

a quanti ty f o r  species i which is  introduced as a r e s u l t  of the  
approximation f o r  binary diffusion coe f f i c i en t s  and reduces t o  K 

i 
when a l l  d i f fus ion coeff ic ients  a re  assumed equal (defined by 
Equation (81 1 

angle of a t t ack  annular radius of shock wave surface,  Figure 6-4 

a quanti ty f o r  element (or  base species)  k which is introduced a s  

a r e s u l t  of he approximation f o r  binary d i f fus ion  coe i f i c i en t s  
and redui:es t o  when a l l  d i f fus ion coe f f i c i en t s  a r e  a:sumed 5 
equal (defined by Equation (12) ) 

ZP1, ZPZ, ... truncated s e r i e s  obtained i n  Taylor s e r i e s  expansion of in teg ra l s  
involving nonsimilar terms (defined by Equation (118)) 

L- angle of a t tack  of body generator axis  

a* f lux  normalizing parameter (defined by Equation ( 6 7 ) )  

normalizing parameter used i n  de f in i t ion  of 5 (see Equation (43) ) 
defined impl ic i t ly  by use of a cons t ra in t  such as Equatitn (46) 

ak i 
mass f r ac t ion  of clement ( o r  base species)  k i n  species i 

@ streamwise pressure-gradient parameter (defined by Equation (53)) 

Y effec t ive  polytropic exponent, equation of s t a t e  

Y c a t a l y t i c  ef f ic iency 

y-dinlension normalizing parameter (defined by Equation (56))  

x i i  



SYMBOLS 
(continued) 

6 
i 

dimensionless shock standoff a t  i th  station 

logarithmic distance between two streanwise positions denoted by 

the subscripts L and L-1 {defined by Equatio~ (109) ) 

corrections fo r  fi, f!,.,., during Mewtor~-Rapbon i te ra t ion  
1 

change in fzee energy f o r  j-th chemical reaction 

displacement thickness (defined by Equation (36) ) 

inampressible o r  velocity displacement thickness (defined by 
Equation (Z7) 

distance between two boundary layer nodal points (defined by 

Equation (100)) 

inverse density jump at shock f ront  j-th station 

transforsled coordinate i n  a direction normal t o  the s u r f a ~ e  (de- 
fined by Equation (47)). Note: the ha t  is dropped from n through- 
out most of the report 

angle be- a surface normal and a nonual t o  the body center- 
line; also the in discus ions  of the charring ablation program 

angle measured clockwise from normal t o  body generator axis, 
Figure 6-3 

thermal conductivity 

dlatensionless curvature 

snek? viscosity 

x i i i  



PlwU2eP3rP4 properties of the gas mixture (defined by Equation (8)) 
which reduce to  unity, t o  Mw t o  1/M, and to  En r e s p e c t i ~ e l y ,  
for assumed equal diffusion coefficierlts 

R 

'j8m 
stoid#ometric coefficient  of j-th reactant i n  m-th  chemical 

reaction (Equation 901 

stoichicmetric coefficient  of j-th product i n  m-th chemical 
=action ( m a t i o n  90) 

kinematic viscosity 

 ionl less s t r e d i n e  distance, or igin  a t  shock in tercept  

transformed s t r e m i s e  coordinaze (defined by Equation (47) ) . 
Note: the hat  is dropped from r t*oughout most of the  report 

* 

density 

dimensionless density 

t o t a l  mass f lux per un i t  area i n t o  the boundary layer 

individual species turbulent eddy d i f fus iv i ty  

ave-age turbulent eddy diffusivi ty ,  where it is asswd t ha t  a l l  

PCD = PCD 
i 

turbulent eddy conductivity 

turbulent eddy viscosity 

dimensionless eddy viscosity (defined by Equation (59)) 

xiv 
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(continued) 

Stefan-Boltzmann constar-t 

cat 

edge 

equil 

i 

local shear stress 

third body effic2ency of i-th specie in  m - t h  chemical reaction 

elemental production rate (Equation 12) 

rate of mass generation of species i per unit voitrme due to  
chemical reaction 

Subscripts 

refers to  baseline ti-ajectory case, a = 30°, Mm = 9.61. 
Aititude = i64 K f t  

refers to  a catalytic surface 

pertains to boundary-layer edge 

pertains t c t  surface equilibriua requirement 

pertains to  the ith species or to the ith nodal p i n t  i n  thc 
boundary layer, starting w i t h  i = 1 a t  the surface 

th 
pertains to  j species 

pertains to  kth element (or base species) 

pertains to tth s t r e m i s e  position 

pertains to  mth iteration 6uring the Newton-Raphson iteration 
process 

pertr ' t o  the nth nodal points, corresponding to  the outer 
edge oL the boundary layer solution 



SYMBOLS 

(concluOed) 

generator axis conditions 

pertains t o  the stagnation point 

pertains t o  the steady s t a t e  energy balance requirement 

pertains t o  wall 

reference condition, usually taken as zero streamline from 
inviscid solution (synonymous with boundary-layer edge i n  the 
absence of an entropy layer1 

Superscripts - . 

& refers  t o  conditions a t  shock wave 

K equal t o  unity f o r  axisyamaetric bodies and zero for  two-dimensional 
bodies 

s ignif ies  tha t  quantity is normalized by a* (e.g., jc = jk/a*) 

n 

zepresents pa r t i a l  differentiation with respect t o  ll oz 0 (usually 
unless otherwise noted) 



INTRODUCTION 

! 
k'! 

B 
b 
e 
.F 

One of the basic features of the space shu t t l e  vehicle is the reusable thermal 

.i)rotection system which, depending upon the numher of f l i gh t s  between refurbishments, 

strongly affects  the economics of transporting men and equipment i n to  space. Be- 

clause of the res t r ic t ions  imposed by current high temperature materials technology, 

equilibrium radiation surface temperatures must be held t o  re la t ively  low values 

compared t o  surface temperatures on a typical  W .  For the  space shu t t l e  vehicle, 

l o w  surface temperatures w i l l  be achieved by aerodynamic deceleration a t  high 

alt i tudes.  H~~wever, the low densi t ies  associated with high a l t i tudes  ra i ses  

questions about the effects  of nonequilibrium chemistry and the va l id i ty  of bound- 

ary layer assmptions, especially i n  the stagnation region. The s i ze  of the  pro- 

posed shu' l e  vehicle and i ts  complex geometry poses questions about the e f fec t s  

cf entropy gradients and shock interference heating. Id addition the designers 

must be concerned about t ransi t ion and turbulent flow, gap heating, and dis-  

ccwtinuities i n  surface chemistry due t o  the  t i l e - l ike  assembly of the TPs. , 

- 

This repcrt. describes the development of analytic procedures to calculate 

the effects  . 5  nonequilibrium chemistry i n  laminar and turbulent boundary layers 

over s m .  ces of arbi t rary  catalycit ies.  In  order to effectively address this 

problem, however, it was a l so  necessary t o  establ ish  a procedure fo r  estimating 

: chemical s t a t e  of the air a t  the edge of the boundary layer. This s t a t e  is 

determined from the inviscid streamline history which therefore a lso accounts fo r  

en..xopy layere . 

The computational procedure has been used to prsdict  surface heating r a t e s  

or t2 .:3 windward pitch plane of a typical  shu t t l e  vehicle and was compared with the 

more normal equilibrium boundary layer predictions. The procedure has a l so  been 

use:! te ~x=FI?P the effects  of chemical reaction ra tes ,  scrface .catalycity and 

stagnation pressure a s  well a s  t o  predict  ca ta lyc i t i es  of candidate shu t t l e  TPS 

materials i n  simulated reents: environments. 



SECTION 2 

NONEQUILIBRIUM BOUN3ARY LAYER CODE - BLIIW/KINET 

The development of the governing boundary layer equations and computational 

procedure for the sirciiltaneous solution of these equations were presented in 

Eteference 1. The procedure described i n  Reference 1 is applicable to  nonsimilar 

multicomponent laminar boundary layers with arbi t rary equilibrium or  nonequilibrium 

chemistry, unequal concentration and thermal diffusion, radiation absorption and 

emission, second order transverse curvature effects ,  and a generi . set of surface 

boundary conditions which includes an intimate coupling with t ransient  charring- 

ablation energy and mass balances. A turbulent eddy viscosity model is presented 

i n  Reference 2. The result ing Fortran iV computer c&e w h i c h  vas iiet-elopcd in 

accordance with the analyses of References 1 and 2 is designated by the code 

name BLIMP (Boundary Layer Integral  Matrix Procedure) but does not include the 

radistion-emission model and, although permitting selected surface rate-controlled 

reactions, is res t r ic ted t o  equilibrium chemistry i n  the boundary layer. The 

radiation version is code named RABLE and is described i n  Reference 3. In the 

following, the extension of BLIMP t o  include nonequilibrium chemistry i n  the 

boundary layer is discussed, CKinetically controlled surface reactions were a l -  

ready incll-I~PA i n  the BLIMP code as an input option,) 

Since the analysis and computational procedure has been presented i n  

References 1 and 2 the following w i l l  be only a brief re i te ra t ion  of these 

references with an emphasis on those features which a re  germaine t o  homogeneous 

chemistry and surface catalyzed r a t e  controlled reactions. It should be emphasized 

that  none of the generalized procedures and capabi l i t ies  developed i n  BLIMP have been 

destroyed or altered i n  the process of extending BLIMP t o  BLIMP/KINET. BLIMP/KINET 

is currently limited ta 7 nonequilibrium species controlled by a maximum of 20 

stoichiometric chemical reactions, exclusive of dif ferent  t h i r d  body efficiencies.  

Kinetic ra tes  are calculated i n  accordance with the development i n  Peference 4. 



2.1.1 Conservation Equations 

Omitting radiation transport,the global conservation of mass,momentum and 

enerw,and the specie conservation equations are respectively 



and the coordinates :, s, and y are shown in Figure 2-1. The flux ji for multi- 

component diffusion is obtained from the Stefen-Maxwell relation 

using the bifurcation approximation of References 5 and 6. In this procedure, 

the binary diffusion coefficient& is approximated by the function 
i j 

where 6 is a reference diffusion coefficient and Pi is a diffusion factcr for 

spec& i. 3- I  en - wi% a few of the foilowing definitions 

the Stefen-Maxwell equations can be solved explicitly for the diffusive flux, i.e., 





In addition the diffusive energy flux can be expressed as 

i 

For some pmblems (e.g., equilibrium chemistry) the number of differential 

5 

P equations to be solved can be substantially reduced if conservation of "elements" 
I 

rather then conservation of species is used. Thus by defining the elemental mass 

s 
i fraction by 

and 

the diffusive flux will be represented by 

,ad the "elemental" species mnservation equation becomes 



Since elements are conserved, 1 a $ = 0 so that this formulation would not be 

j 
ij j 

appropri,ate for nonequilibrium chemistry since the production terms vanish. How- 

ever by reintroducing the production term into this conservation equation, t%e 

same formulation can be used for equilibrium or nonequilibrium chemistry by the 

simple expedient of setting the production terms to zero for equilibrium condi- 

tions. In addition, for nonequilibrium chemistry each specie is considered as 

an element and the "elemental" specie conservation equation serves to alter ttle 

elemental composition of the gas mixture. The conservation equations to be 

solved are therefore 
global (15) 
mass 

a u a u ap strewise (16) 
pu + pv = L L  ay + cM) g] - momentum 

a% a [r~(-~, +)I energy 
PU ,, + PV 

(17) 
65-=3q 

a$ % = I  a a% "elemental" (18) 

7 [''('ED - jk)] + ek specie p u r + p v ~  

where 

For nonequilibrium chemistry, 



These equations, which include the irpproximations fo r  unequal therraal and 

multicoxnponent diffusion coefficients of Reference 6, are  parabolic i n  nature and 

therelure requiring specifications of the dependent variables, t h e i r  Zerivatives, 

o r  a l inear  combination thereof along the wall (y = O ) ,  edge of the boundary 

layer, and a t  the i n i t i a l  body stat ion.  Typical s e t s  of boundary conditions w i l l  

be discussed l a t e r  i n  t h i s  report. Also necessary i n  the  mathematical formula- 

t ion  of the problem is  the specification of the molecular transport  properties, 

equation of s t a t e  an4 equilibrium rela t ions  for  the multicomponent gas, and a 

description of the eddy viscosity, conductivity and dif fusivi ty .  The molecular 

transport properties, equation of s t a t e ,  and e@librium rela t ions  are  discussed 

i n  references 2 and 4. 

2.2 TWRB- FLOW CONSIDERATIONS 

In  thz conservation equations developed above, the  concepts of eddy 

viscosity, eddy dif fusivi ty ,  and eddy conductivity were used t o  express the 

correlations of fluctuating velocity, species, and enthalpy f i e ld s  i n  terms of 

mean f i e ld  quantities. This is only one of several possible techniques of closing 

the s e t  of equatiocs (assuming sat isfactory expressions for  the eddy parameters 

a re  'available), and it does not provide any information regarding the  evolution 

of the turbulent correlations a s  the flow progresses downstream. Admittedly, it 

would be more desirable t o  describe the turbulent fluctuations i n  a more complete 

manner such a s  with an entrainment relat ion,  turbulent kinet ic  energy re la t ion,  

o r  a local  turbulent consti tutive equation (Reference 7). However, thecs tech- 

niques are  s t i l l  i n  early stages of development even for  incompressible single 

component flows, therefore a more proven approach was selected for  the present 

analysis. The Boussinesq description of turbulent boundary layers has proved t o  

be very useful, part icularly for  complex reacting flows such a s  a re  being de- 

scribed here, and w i l l  be used exclusively in the present analysis. 

There is a wide amount of la t i tude  possible even within the eddy viscosity 

framework of turbulence, part icul&ly i n  applying c lass ica l  incompressible 

models to compressible flows. The following two subsections describe how the 

turbulence model described i n  Reference 8 was applied to the present comp:essible 

flow problem. 



a. Wall Region 

Following the work of Clauser (Reference 9) the  boundary layer i s  

divided in to  a law of the wall region and a wake region. The re la t ively  thin  

wall region of the turbulent boundary layer is characterized by very steep 

gradients i n  the turbulent transport and mean f i e ld  propercias. Turbulent 

s t r e s s  varies from zero a t  the wall t o  near i ts maximum value s t  the outer edge 

of the wall region. There is a vast  amount of empirical e ?ce that  these 

turbulent s t resses  and also the mean flow f i e ld  propertlsc. >e descri3ed en- 

t i r e l y  i n  terms of the wall s ta te ,  wall fluxes, thennodynat.- . ,.,;d tr-sporc pro- 

per t ies  of the fluid,  and the normal coordinate y .  Since the strcamwise coordin- 

a t e  does not entex the solution for  t h i s  region, the problem becomes a one- 

dimensional i n i t i a l  value problem. Eliminating s derivatives from the continuity 

eqcation and neglecting variat ions i n  r due t o  the thinness of the layer resu l t s  

in  

where the subscript w re fe rs  t o  the wall value. Thus the wall injection r a t  , 

pwvw, 
which may be a function of s, determi,les the transverse mass f lux through 

the en t i re  wall region. Using the same technique for  the  momentum equation 

and substi tuting equation (20) 

where the wall shear, 'Iw, is a l so  typically a function of s. For flows over an 

impermeable wall with constant properties, t h i s  equation reduces to 



indicating that shear can be considered constant in the wall region. For flows 

Kth in-jaction or ahlation, it is seen that shear varies with the mass injection 

rate and local velocity, that is, 

? = T  * p v u  
w w w  (24) 

This one-dimensional description of turbulence in the wall region will be useful 

in formulating a mixing length model for eddy viscosity as described in the fol- 

lowing paragraphs. It shocld be made clear however, that only the wall regio3 

turbulent shear stress is assumed to behave in a one-dimensional fashion. In 

the solution arocedure, the complete two-dimensional equations of motion are 

solved over the entire boundary layer. 

A complete investigation of the validity of the mixing length postulate 

for flows with injection has been reported in Reference 10. The analysis used 

in this investigation is an extension of that wozkt therefore, the reader should 

refer to Reference 10 for more details. 

Because of the current lack of understanding of turbulent mechanisms, 

"theoretical" predictions of the variation of turbulence near the wall. must rely 

on empirical input into relations based on some phenomenological dependence. The 

generality of the ultimate goals of this analysis and the desire to approximate 

the physical situation dictated certain prerequisites for the turbtlent transport 

relations. These were: 

a) The relation~ must indicate a continuou~ variation of the turbulect 

transport properties from the wall to the fully turbulent region. 

b) The relations rur;st be generally applicable to maas, -.enturn, and 

energy transport. 

C) The relations must be epplicable to compressible or incompressible: 

flows with real gas propc-ties. 

d) The relations should be suitable for transpired an8 untranspiaetl 

boundary layers without any, or a rmnimum, modificstl~n c f  form. 



Two basic variations of the eddy viscosity hypothesis have been proposed 

in the past. me f i r s t  type predicts the variation of turbulent viscosity from 

the w a l l  the fully turbulent region. The second type of hypothesis involves 

a variation of mixing length from the w a l l  into the ful ly turbulent portion of the 

baundaxy layer. Data indicate that surface mass addition strongly affects the 

eddy viscosity profile, aad it was fouad t h a t  the first type of hypothesis could 

not be simply lllodified to  predict this variatiun. Ch the other hand, success 

of the &.ng 1ength.theory in  predicting profiles in the ful ly turbclent por- 

tion of the boundary layer with  surface mass addition has been noted, for ex- 

ample, i n  Rsference 11 and 12. It k s  generally been concluded tha2 the slope 

of the linear relation between mixing length and distance from the wall is in- 

sensitive t o  surface mass additior. As a consequence of this apparent generality 

of e e  mix ing  length apgroach, i t tas adopted for the present studies. 

The basic mixing length postulate can be expressed as 

where the m i d q  Length, It, is a combieation of various correlations, but retains 

some relationship to the scale of turbulence. P r a n d U  proposed that  this length 

w i l l ,  in its simplest form, be related t o  the distance from a wall, a t  least  i n  

the region of dewloplent of turbulence. H i s  proposition tha t  

dl - = constant, K 
dy 

has been tested under a variety of conditions and found to be quite adequate i n  

the fully turbulent portion of the wall region. 

As the wall is approached however, th i s  simple relation is no longer 

appropriate, and, i n  fact, it can be shown theoretically that  



This is a consequence af the Reichardt-Elrod criterion (see Reference 10). Thus, 

two cri teria are specified, namely, Prandtl's hypothesis which is appropriate i n  

the fully turbulent portion of the wall region and the Fteichardt-Elrod wall cri- 

terion as expressed by Equation (27). 

Several means of expressing a relation covering the fu l l  range of y and in- 

cluding these limiting cr i ter ia  have been used by other investigators. It is  

advantageous i n  considering extensions of mixing length theory t o  establish some 

physical logic for the selected relation. Unfortun&tely, the understanding of 

transition from the laminar t o  the turbu1er.t porticns of the layer has not reached 

a state permitting any quantitative specificatim. Therefore, the selected model 

can be based only on qualitative understanding of the process, dimensional con- 

siderations, and the above limiting criteria.  These cr i ter ia  are satisfied for 

incompressible flows by a simple implicit relation of the form 

h i c h  kg l i e s  that the r ~ t e  of increase of the mixing length is prcportioaal to  

the-difference between the value postulated by Prandtl (Ky) and its actual value. 

This rate of increase is assumed t o  be augmented by the local shear and retarded 

by the local viscosity. Using these parameters to nondimensionaliee the above 

relation yields 

= (Ky - ,I 
G 

s 
Y;V 

+ + 
where y is  the constant of proportionality. The'coefficients K and ya were 

a 

r shown in Reference 10 +a be invariant for a wide variety of flow conditions a t  

values of 0.44 and 11.83, respectively. 

Far compressible flows, the physical arguments must be changed somewhat. 

Rather than describing the scale of a turbulent eddy, it seems iippropriate to 

i describe the mass of the eddy, pk, with rerpect to  the mass available, $ p dy. 
4 



Thus, by analogy to Equation (281, the r a t e  of increase of the mass of an eddy 

w i l l  be taken t o  be proportional t o  the difference between the mass available 

between the wall and the point of interest (times an appropriate constant) and 

the mass of the eddy: 

Noadimensionalizing a s  above, 

+ 
The constants K and ya are  l e f t  a t  t h e i r  incompressible values of 0.44 and 11.83 

for the t i m e  being. The intecjral-diffezc!~tiz1 character of t h i s  mixing length 

equation indicates a d i f f i c u l t  solution procedu-e i n  the physical coordinate 

plane. Howevex, in the (T),() coordinates introduced by the Levy-Lees transfor- 

mation, the mixing length equation simplj.fies somewhat. T h i s  w i l l  be discussed 

further i n  Section 2.3. 

For the special case of constant properties and zero injection (constant 

shear), Equation (31) can be integrated t o  yield 

where 



r 

It can be seen that the Reichardt-Elrod cr i ter ia  is  satisfied a t  the wall. For 

4.. large y, the expression 

is obtained. This special case result for constant pmperty zero injection flows 

is not used in the general analysis technique presented here. 

b. Wake Region 

The wake region of a turbulent boundary layer is so named because the 

flow in this region tends to have a wake-like character. In particular, the 
i 

outer 80 to 90 percent of the boundary layer combined with the local turbulent 

eddies dominates the mixing processes within the flow, and the v i sco~s  effects 

become second order. Grhdients in  the wake region are typically much smaller 

than those of the wall region. Since the pressure gradient and s t r e m i s e  deriv- 

ative terms are important in the wake region, the t ~ o - d h n s i o n a l  ckrzcter of 

the tukbulence must be considered in its entirety, as opposed t o  the ap2roximations 

of the wall r e g i ~ n .  

< 

A fortunate feature of the wake portion of the boundary layer is that ed8y 

viscosity is  nearly constant across th is  region, a t  least for equilibrium+ in- 

compressible flows. In particular, Clauser (Reference 9) was able to  relate the 

eGdy viscosity to  edge velocity and a length scale 6* 

for a great quantity of experimental data taken i n  equilibrium flows. 

The quantity 6* i n  this  relation is the displacement thickness 

.I. 

I 
I 
Equilibrium as used here refers to  a particular pressure gradient, (6*/\) 
(dP/dx), which results in self-similar velocity profiles (Reference 9).  



fn which the densities cancel out for incompressible flaws. For compressible 

flows, this length scale is inappropriate since under some conditions 6* can be 

necjative. Defining a velocity defect thickness as 

the eddy viscosity in the wake portion 06 the flow will be taken as 

a satisfactory technique for choosing the correct CM expression at any particu- 

1;u: bo*; =+*tic? is to use the wall recjion expression 

until EM exceeds the wake value, Equation (38) ,  at which point EM is held con- 

stant at the wake value for the remainder of Ehe buidary layer thickness. 

c. Boundary Layer Transition 

As can be seen from the form of the conservation equation, both the 

molecular and turbulent transport terms are considered simultaneously. This is 

necessary since an accurate description of the turbulent boundary layer requires 

that the time-averaged fluctuation terms disappear near the wall. Another reason 

for the inclusion of these terms is the description of laminar or transitional 

flows. From the form of Equation (38). it can be seen that for very small 6f 

the turbulent stresses will be small compared to the laminar ones. Without any 

constraints on the equations as stated above, kinematic and eddy viscosities are 

equal at a velocity displacement thickness Reynolds number of 56: 



This "natural" transit ion Reynolds number is  too low for  most si tuations,  there- 

fore € is a r t i f i c i a l l y  s e t  t o  zero u n t i l  some other c r i te r ion  is sat isf ied.  A 
M 

Reynolds number on momentum thickness, Reg, is currently used t o  t r igger  transit ion.  

When a user prescribed Re is exceeded turbulent transport properties are in- 
8 

C,-c*zced into the calculations; however they a rc  reduced by a scale factor vary- 

ing between 0 and 1 t o  simulate a t ransi t ion zone. The scaling faclxir, after, 

referred to  as an i n t e d t t e n c y  factor, has been reviewed i n  Reference 13 and a 

quadratic variation w i t h  streamwise coordinate hes been recammended. However, 

due t o  the current state of t ransi t ion data, a simple l inear  re la t ion (fieference 14) 

was used. Thus 

I (s) ' 1 

2.3 COORDINATE TRANSFORMATIONS 

where E (ref) is calculated a s  if the flow were fui iy  iuE2iilsnt 
M 

The equations of motion for  a boundary layer flow can be solved i n  the 

physical (s,y) plane by nmcrous techniques, however it is  generally advantageous 

t o  transform the problem to  another coordinate system. The transformed coordinates 

offer  the advantages o f  nondimensionalizing the solution, confining the solution 

to  a narrower region, minimizing changes in the dependent variables, eimplifying 

boundary conditions and occasionally r e su l t  i n  the deletion of streamwise deriy- 

a t ive  terms. This l a t t e r  possibi l i ty  occurs only under very r e s t r i c t i ve  sets 

of boundary conditions. The coordinate transf o m t i o n  i n  the present analysis 

is a variation of the Levy-Lees transformation and is derived i n  its ent i re ty  i n  

Reference 1. The standard Levy-Lees transformation takes the form 



. The first al tera t ion of this transformation is actualiy a maiilmAdecl =cn-en- 

ience for  carrying out the numerical solution. Introducing a stretching para- 

meter % i n  the  normal coordinate, a new coordinate system is defined by 

The parameter c& is W e n  a s  a function of only and is determined implicit ly 

during the solution. Its purpose is  t o  s t re tch  the  n co0~3inate  such that the  

boundary layer remains of constant: thickness in the  6 coor'inates. 

Since a new variable aH ( 5 )  is introduced, an addit ional re la t ion is re- 

quired. This i s  conveniently supplied by constraining sane a rb i t ra ry  point near 

the boundary-layer edge, , to have a specified streamwise velccity,  c, near 
C 

(but something less  than) the cdge value: 

where f i s  the transconned stream function d a f i n d  a s  
5 



and the prime denotes di f ferent ia t ion w i t h  respect to so t h ~ t  

Examples of the u t i l i t y  of the stretching parameter aH a re  contained in  Reference 

1. 

The second change i n  tho Levy-Lees transformation has t o  do with the 

transverse curvature effect .  For very t h in  axisynm~etric bodies, it is possible 

to  have boundary layer thicknesses on the  order of the  body radius r . In  t h i s  
0 

instance, it is necessary t o  t r e a t  r a s  a function of y, thereby including its 

variation through the boundary layer. The coordinate transformations become 

Util ization of the above coordinate transformation re la t ions  resu l t s  i n  
A A 

a new s e t  of governing equations i n  the  (S,rl) coordinate plane which w i l l  be given 

below. The hat  iA) notation w i l l  be dropped for  the  remainder of the  t e x t  f o r  

simplicity, however 5 and TI a re  given by Equation (47). Primes w i l l  re fe r  t o  

derivatives with respect t o  TI expect when noted otherwide. 

The qlobal continuity equation is automatically s a t i s f t ed  by the def ini t ion 

of a transformed stream f~mct ion  f (S,TI) , shown in  Equation (451, and re-defined 

here in  the f i na l  coordinate system: 



6 '=wvw 
dE 

'= 1 ~ 1 ~ l d  

The governing equations w i l l  be discussed separately. 

Streamwise momentum equation 

I n  t h i s  equation, u t i l i z ing  the technique of Reference 15, the transverse curva- 

tu re  effect  is included ent i re ly  i n  the coordinate transformation and i n  the def- 

ini t ion of t: 

where 8 i s  the angle between the surface normal and a plane normal t o  the body 

centerline (see Figure 2-1). Other definit ions of i n t e r e s t  are: 

For solutions without consideratioh of transverse curvature, t is s e t  to 1.0 

throughout the boundary layer. 



Turbulent model equations 

+ 
The turbulent  f luc tuat ions  are r e l a t ed  to  the mean f i e l d  through the eddy 

models described i n  Reference 2. Eddy viecos i ty  is described by a wall  law and 

wake l a w ,  while eddy d i  f f u s i v i t y  and conducti v i t y  a r e  r e l a t e d  t o  eddy v i scos i ty  

by turbulent  Schmidt and Prandtl  numbers: 

Defining 

The w a l l  region eddy viscos i ty  r e l a t i o r  becomes 

(wall region) 

2, = 0.01b (by ~ e , *  (wake region) 
i 

where 

Transverse curvature is not  considered i n  determining the  wake region length 

sca le  6;. The povarn+g equation f o r  mixing length, which must be solved for 

the e n t i r e  boundary layer  although it. is used only i n  t h e  w a l l  region, is 



Since mixing length is used only i n  the wall region, it is valid t o  lase the ons- 

dimensional expression for shear s t ress ,  Equation (24).  In  transformed coordi- 

nates, this becomes 

where q* is the nonnaliz.ed diffusive energy f lux away from the surface including 
a 

turbulent fluxes 

The flux normalizing parameter a* is defined by 

Diffusive energy flux qa i n  the transformed coordinates is defined l a t e r  i n  t h i s  

section. 

"Elemental" species equations - 



+ 
where j* is the normalized diffusive flux of "element" k: 

I k 

Diffusive fluxes 

The normalized diffusive energy flux is given by 

EM f'f" 
E 

+ P T' + 1 (h' - 5 [T U; prt fCt - c p ~ * )  1 
i - 

i where Pr is the Prandtl number based on the frozen specific heat 
I 

The turbulent contribution to the diffusive energy flux is contained in the last 

bracketed term, which is left uncombined with the other terms for clarity. The 

fact that the gross simplifications of the turbulent model are included in the 

same equation with the rather sophisticated anequal molecular diffusior model is 

merely a mathematical convenience  stimulate.^ by the requirement for calculations 

in all types of flow situatl,ns, including both laminar and turbulent flows. Un- 

equal molecular diffusion and thermal diffnsion effects may be important in the 

laminar sublayer region of a turbulent boundary layer, however. 

Normalized lnolecular diffusive flux of species i is 

where Sc is a system pi-operty defined by 



The is a Schmidt numbe based on the self-diffusion coefficient for a fictitious 

species representative of the system as a whole. F.r: normalized mole.ular diffusive 

flux of the kth ' .lementalW species is 

When certain groupings of parameters are constant so that the flow simi- 

larity assumption is valid, the terms on the right-hand side of the conservation 

equations (Equations 50, 65, and 68) vanish, in which case the conservation 

equations become ordinary differential equations. It should be emphasized that 

the equations as presented herein ar2 equivalent to the corresponding boundary- 

layer equat:ons presented in Section 2.1. ahat is, no similarity assumptions 

have been made in their development. 

Equations 67, 53, and 49 for a*, 0, and f , respectively, are indeterminant 
W 

at the stagnation point of a blur' body. Special forms for these equations valid 

at the stagaation point are shown in Reference 1 to be given by 

where for Newtonian flow 

where i is the ratio of the crosswise to pitch-plane stagnation-point velocity 

gradients (i = K for axisyrmnetric or planar flow), and 



With Reff an effective nose redius taking i - r to  account the shock shape. Pl ter-  

natively, B and (dul/dsIsp can be computed from curve f i t s  of the inviscrd 
SP 

pressure distribution. The transverse curvature parameter t also requires some 

special treatment a t  a stagnation point. The troublesome term is cos O/ro which 

is evaluated a t  a stagnation point by 

In addition, t o  improve the accuracy of numerical i ~ ~ t e g r a t i o n  procedures 

i n  the  nose region, 5 and fw can be computed by the following xelations 

which take advantage of the f ac t  t ha t  u /s and ro/si vary aore nearly l inear ly  i n  
1 

the stagnation region t5an do ul and ro. The basic approach i s  discussed more 

thoroughly i n  Reference 1 while the parameter i is  discusbed i n  Reference 16. 

2.4 BOUNDARY ,Y)NDITIONS 

The usual s e t  of boundary conditions for  the boundhry layer flow problem 

consists of the specification of i n i t i a l  p rc f i l es  f o r  the depeldent variables f', 
" 

HT, and 5, plcs additional specifications of these qumt i t i es  a!.ong the wall and 

, a t  the edge of the 'boundary layer, and the specification of fw along the  wall. 

However, since the main uti l ize-t ion fo r  the analytical  technique presented here 

i s  to compute boundary layer properties fo r  flows over ablating o r  transpired 

surfaces (heat shields, rocket nozzles, e tc . ) ,  these boundary conditions have been 

greatly generalized. The numerous optioas result ing from t h i s  generalization are  

discussed below. 



The boundary layer edge conditions typically are found f r a t  an isentropic 

expansion from known elemental gas composition and stagnation conditions. Thus, 

given a se t  of stagnation conditions and a description of locr; s-tic pressure 

along the surface of interest, the teckniques of Reference 4 may be used t o  es- 

tablish the entropy of the gaseous mixture which, when combined with the 3r 1- 

fied pressures, can be used to establish the complete equilibrium edge gas state 

a t  each body station. Edge boundary conditions then would consist of 

H~ 
edge 

= %  
edge I actual 

'Sr = S r  
edge edge actual I 

alere the subscript "edge" refers to  conditions specified a t  11 
edge' 

chosen to L e  

outside the boundary layer (see Section 2.3). A n  additional constraint a t  the 

boundary layer edge which is  necessary only when cubics zrre as& is the require- 

ment 0. zero slope, i-e., 

'In addition "co the specification @f edge pressure, it is also possible to specify 

edge entropy and edge specie mass fractions to  simulate the effects of entropy 

layer swallowing and nonequilibrium chemistry in  the inviscid field. The tech- 

n;-ques of Reference 4 are then used.to establish the complete thermochemical gas 

state for nonisentropic, nonequilibrium expansions around a body of interest. 

In i t ia l  profiles of f", AT, and < axe more diff icult  to establish for the 

general problem, therefore calculations are often started with reasonable assumed 

profiles far upstream of the region of interest so that effects of erroneous 

assumptions wi.11 die out. Another possibility for in i t ia l ly  laminar problems is 

to  assume a similar solution as a starting profile. This assumption reduces the 



eqrrations to  ordinary differential equations a t  the starting point, which may be 

solved simultaneously for a eizt of profiles unique t o  the assumed edge and wall 

state. The similar solution is exact a t  a body stagnation point, therefore th is  

option is particularly valuable for blunt body problems. 

The wall boundary conditions allow the widest selection of options. The 

simplest combination is  the straightforward assignment of velocities, enthalpy, 

and ehwnta l  concentrations a t  the wall: 

f i  = 0 no s l i p  

specified p v 
W W  

$ s hw (0 specified enthalpy of gas 
w a t  the wall 

specified wall gas elemental 
w w camposition* 

Wa1l.L- e r a tu re s  may be used t o  find wall enthalpy in  the above formulation. 

Also, wall mass diffusive fluxes of up t o  three individual injectants may be 

assigned in l ieu of < and pWvw. W i t h  the values of the dependent variables 

a l l  directly assigned win th is  wnner, the boundary layer problem is uncoupled 

fram the surface chemistry interactior.. 

The inclusion of surface material/boundary layer gas interaction chemistry 

in the boundary layer problem forms the second major se t  of w a l l  boundary condi- 

tion o~tiorls. U s h q  the surface t h ~ m c h e m i s t r y  techniques of Reference 4, it 

is possible to specify given mass fluxes of the (up to) three injectants a t  the 

wall arid require chemical equilibrium between the injectants, the wall material, 

and the adjacent gas stream. In th is  instance, the values of HT (i.e., Tw) and 
Pr $ are found by simultaneoas solution of the local surface chemcal equilibrium 

W 
equations, surface mass balances, and the no-slip velocity boundary conditions. 

Alternatively, selected chemical reactions a t  the wall can be kinetically controlled 

* .L. 

It is physically unrealistic in most cases to-assign when diffusion coeffi- 

cients are unequal since the contribution to  $ by w preferential diffusion of 
the various "elements" to the surface is not w known a pziori. 



through Arrhenius-type rate law formulations (see sections 2.5 and 2.6) and in- 

cluded in the surface chemistry description. 

In the use of this boundary layer technique in conjunclion with in-depth 

charring ablation analyses, the chemically active injectants might result from 

the pyrolysis of an internally decomposing material, surface material combustion 

or phase ~F.3nr-e~ hi2 ~ ~ ~ k i x i i i ; &  i - v d .  A variation of this type of wall bound- 

ary condition is to specify the wall temperature or enthalpy and allow the sur- 
.c 

face chemistry calculations to compute the necessary pwvw and . In suunnary, 
W 

the surface equilibrium wall boundary condition is 

f; = 0 no slip 

f , = Q ( O  specified pwvw 

a a 
W W 

equil from surface equi- 

- - librium requirement 

The final wall boundary condition category involves the use of a steady 

state energy baliirxe at the surface. A general surface energy balance can best 

be understood by examination of a schematic representation of the enerqy fluxes 

to an ablating or nonablating (mc - 0 )  surface: 

4, inflzitesimally thin 

1 
controi volume at 
surf ace --- -------- 

surface 



which is -lid i n  e i ther  a transient o r  steady-state si tuation.  In  general, an 

in-depth charring ablation solution would be needed t o  provide the conduction 

term q 
cond 

and the pyrolysis gas ra te ,  m Under steady s t a t e  conditions, the 
g ' 

internal pyrolysis "fmr.tn =5 * c  ~.ir(~.reci surface are  assumed t o  be receding a t  

the same ra te ,  therefore requiring tha t  the energy conducted into the wall mate- 

r i a l  must equal the enthalpy r i s e  of the wall material and pyrolysis gases. In 

equation form 

Substituting in to  Equation ( 8 6 ) ,  the  steady s t a t e  energy balance becomes 

' 
In t h i s  equation, q- 

Q 
.W 

(701, and is found in 

is the w a l l  value of the energy f lux defined i n  Equation 

the course of the boundary layer solution. The surface 

equilibrium requirement is  always used i n  conjunction with the steady s t a t e  en- 

ergy balance. merefore, i f  one specifies the canpositions and heats of forma- 

t ion of the pyrolysis gas and char materials, the simultaneous soluti-on of the 

energy equation above and the surface chemistry re la t ions  mentioned ea r l i e r  COIL- 

pletely couples the boundary layex flow to  the surface response. The steady 

s a t e  assumption is good even i n  t ransient  si tuations fo r  large ablation r a t e s  

o r  s m a l l  thermal dif fusivi ty  of the  ablation material (Referance 17). In sum- 

mary, the use of the steady s t a t e  energy balance resu l t s  i n  the following: 

fi = 0 no s l i p  

steady s t a t e  
energy balance 

fw = f 

we*i1 ) aurface equilibrium 
requirement i - -%w 

equi l  



2.5 HOMOGENEOUS CHEMISTRY 

Chemical reaction rates are calculated using the procedures described in 

Reference 4. The m-th stoichimetric chemical reaction is written as  

and its reaction rate can be expressed generaliy by 

'She equilibrium constant K can be determined from the standard state free energy 
P 

change, AGO to be 
m ' 

and the reaction rate constant can be expressed in the Arrhenius form 

- .  rue acorrdzir2 - L e e  stste free energy is a fi~nction of temperature only and is  

obtained for each molecular saecies from 

where enthalpies are obtained relative to  some chemical base state, often the 

elements i n  t h e i r  most natural form a t  298OK and one atmasphere ( J A W  base 

state).  If any other base stai',e is consistently adopted, the AGO w i l l  be unaffected. 
3 



The molar production r a t e  of  the specie  i is then 

and t h e  mass production r a t e  is 

For the t h i r d  b d y  chemical reac t ions ,  t h e  p a r t i c u l a r  t n i r d  body spec ie  inf luences  

the production r a t e  however i n  many cases,  only the p r o b a b i l i t y  c o e f f i c i e n t  B is  
m 

different.  I n  C,?-.sz c=s~.s ,  somc reduction i n  the  number of equations can be 

achieved by specifying a reference value of B and t h e  r e l a t i v e  e f f i c i e n c i e s  
m 

r of each t h i r d  body. Then by omit t ing  t h e  t h i r d  bo6y from the s to ichiometr ic  
m. 
1 

reac t ion  an e f fec t ive  r eac t ion  r a t e  k '  can be  spec i f i ed  i n  terms o f  thc! r ~ a l a r  
F 

coilcentrations n of the t h i r d  bodies, i.e., 
i 

2.6 HETEROGENEOUS CHE'3ISTRY 

Heterogeneous chenical  r eac t ions  are spec i f i ed  i n  a form analogous t o  

homogeneous react ions noting t h a t  t h e  surface ,  on which t h e  r e a c t i o n s  take  p lace ,  

is a t h i r d  body. The caLculatLon procedure is then s i m i l a r  t o  that f o r  homogeneous 

chemistry. Of pa r t i cu la r  i n t e r e s t  a r e  surface catalyzed recomkination react ions.  

There a r e  two popular forms for  specifying the  e f fec t iveness  of  a su r face  as a 

c a t a l y s t  far atcnic reczrhinztion, nzii~eiy, t h e  catalytic effitleiiry and 

ca ta lyc i ty  k and is discussed i n  Section 4.2. The l a t t e r  d e f i n i t i o n  was chosen 
W 

because it could be re l a t ed  t o  the r eac t ion  r a t e  k and would t h e r e f o r e  be con- 
F 

s i s t e n t  with the  generalized surface  chemistry ca lcu la t ion  procedure. For in- 

stance, it is sh~?f.?n ir. t5c ?i~pcnBi:: tha t  for f i r s t  o rde r  su r face  recombination 



2.7 NODAL POINT DISTRIBUTION REFIT OPTION 

As w i l l  be shown in Section 5, nodal point  d i s t r ibu t ions  which are ap- 

plicable t o  equilibrium boundary layers a re  generally a l s o  applicable t o  non- 

equilibrium boundary layers. tiowever, because of ale i ~ ~ u r t r b c :  i r t i i i&b~  32 " ~ ; & u 3 i i ~ ' '  

that must be considered i n  nonequilibriwa calculations and the  at tendently large 

matrix t ha t  must be inverted i n  the Newton-Raphson calculation procedure, sub- 

s t a n t i a l  reductions i n  machine time can be real ized by reducing the number of 

-nodes- t o  .a minimum. T h i s  is especially t rue  when a lengthy laminar flow region 

is followed by t ransi t ion t o  turbulent flow. I n  the laminar region, typical ly  

seven nodes are suff ic ient  but  i n  the turbulent region twelve t o  fourteen nodes are 

required. In  addition a nodal dis t r ibut ion su i tab le  for,say,the stagnation region 

may not be ideal  fo r  solutions far f r o m  the stiigiiatf~n poizit. *.cs a ~rcecc%dre 

was developed for  adjusting the nodal point d is t r ibut ion and/or changing the number 

of nodal points t o  s u i t  the loca l  conditions where a solut ion is being sought. 

The purpose of t h i s  procedure is t o  provide a means f o r  maintaining an 

optimum nodal dis t r ibut ion f o r  problems which include nonsimilar e f f ec t s  including 

t rans i t ioa  t o  turbulence, blowing, entropl layer,  pressure gradients,  long stream- 

wise 'mn ing  lengths, e tc .  This readjustment is accomplished while preserving the 

fundamental characterist ics of each p ro f i l e  , namely, basic  p ro f i l e  shape, wall  and 

edge derivatives, and in tegral  properties. Potential ly a number of bases nay be 

ident i f ied for  selecting r d a l  d is t r ibut ions  and fo r  making decisions r e l a t i ve  

t o  changing the exist ing dis t r ibut ion,  e.g. mapping of any one of the velocity,  

temperature, and specie prof i les .  However, since adequate mapping of the veloci ty  

p rof i le  is the most commonly encountered problem, a select ion c r i t e r i on  based on 

t h i s  parameter has been implenentca, and Gia ideii*Aficzti.cn, evaluzticn LIZ h- 

plementation o f  any other possible c r i t e r i a  has not been pursued a t  t h i s  time. 

I n i t i a l l y  the selection c r i t e r ion  has been based upon maintaining a desired (specified) 

velocity r a t i o  dis t r ibut ion across the layer; f o r  nonsimilar turbulent flows then, 

fo r  example, the nodal d i s t r ibu t ion  w i l l  change as  a function of distance t o  account 

fo r  the changes i n  velocity p rof i le  shape a s  the turbulent laynr develops. The 

decision t o  r e f i t  is made following a converged solution and is based on whether 

o r  not the newly calculated veloci t ies  vary by marc than a selected r a t i o  from 

the desired values. 



The REFIT procedure is current ly  va l id  f o r  a l l  allowed curve f i t t i n g  

options across the boundary layer ,  i.e., a l l  quadrat ics ,  quadrat ics  with a f i n a l  

c h i c  and a l l  cubics, It is a l s o  compatible with a l l  of the entropy layer  options. 

F inal ly  a s  a r e s u l t  of the bas ic  fea tures  of the  REFIT option,  it is possible 

to change the  number of nodes used t o  describe the boundary layer. This l a t t e r  

capabi l i ty  has been programmed only f o r  the case of  t r a n s i t i o n  from laminar t o  

turbulent  flow, as a means f z r  e l in ina t ing  the unnecessary and expensive e x t r a  

nodes from laminar calculat ions.  As s : ~ h  t h i s  option is l imited t o  t h i s  applicat ion;  

however, potent ia l ly  it may be programmed f o r  more general applicat ion.  The REFIT 

option is l imited t o  a maximum of 15 nrdes; however, as might be ant ic ipa ted ,  the  

a b i l i t y  t o  maintain a more ~ptimum d i s t r ibu t ion  of nodes makes it possible t o  

solve most problems using fewer nodes than normally required without REFIT. For 

example, f o r  some long streamwise length, turbulent  flows, it is  e i t h e r  very d i f -  

f i c u l t  o r  impossible t o  est imate i n  advance the bes t  d i s t r i b u t i o n  f o r  the  e n t i r e  

length using a l l  15 nodes. W ~ ~ % ' R E F I T ,  it is possible to  achieve good r e s u l t s  

with micimal se lec t ion  of desired veloci ty  r a t i o s  using 12 nodes. Since solu t ion  

times vary roughly as the n h e r  of nodes squared, this represents  a saving of 

40 percent i n  computer time, some of which is used i n  the r e f i t t i n 3  operation. 



SECTION 3 

INTEGRAL MATRIX SOLUTION PROCEDURE 

The solution of the transformed boundary layer equations presented i n  

Section 2 uses an integral  rr.atrix method which has been developed specif ical ly  

for the solution of chemically reacting, nonsimilar, coupled boundary layers. A 

complete presentation of the integral  matrix procedure was included i n  Reference 

1, where solution of laminar flow probl.ems was discussed. In  the  present e f fo r t ,  

t h i s  technique has remained essent ia l ly  unchanged, however new variables and 

equations have been added to  describe the  nonequilibrium aspects of the flow. 

The present discussion w i l l  therefore review only the highlights of thc method, 

and the r ~ a d e r  may refer  t o  Reference 1 f o r  more de ta i l s .  

In the integral  matrix procedure, the primary dependent variables and the i r  

derivatives with respect t o  rl are related by Taylor series expansions such tha t  

these 2ependent variables e re  represented by connected quadratics o r  cubics 

(ei ther option i s  available).  That is, it, HT, and < are expanded i n  Taylor 

se r ies  form and the se r ies  are  truncated t o  r e f l ec t  the  proper polyr.3mial repre- 

sentation. A nodal network is  defined through t?e boundary layer and the  Taylor 

se r ias  expansions are assumed val id  between each set of nodes, with an additional 

requirement af continuous f i r s t  and second derivatives (a spline f i t ) .  Primarily 

for  convenience, the conservation equations are  integrated across each "s t r ip"  

(between nodal poiLts) using a unity weighting function. The l inear  Taylor 

se r ies  expansions together with l inear boundary ccnditions form a very sparse 

matrix which has t o  be inverted only once for  a given problem. The nonlinear 

boundary layer equations ~ n d  nonlinear boundary cond~t ions  a r e  then linearized, 

the errors  being driven t o  zero using Newton-Raphson it era ti ox^. 

3.1 I'lTEGRAL STRIP IQUATI ONS WITH SPLINED INTERPOLATION FUNCTIONS 

Consider the boundary layer in the region of a given s t r e m i s e  s ta t ion  s 

as  being divided in to  N-1 s t r i p s  connecting N nodal points. These nodal points 



are designated by ni where i = 1 a t  the  wall  and M a t  the edge of the  boundary 
1 

layer. Consider a function p(0) which with a l l  i t s  der ivat ives  is  continuous 

i n  the  neighborhood of the  point  rl = 'li. Then, f o r  any value of n i n  t h i s  neiq!-- 

borhocd, p(n) may be expressed i n  a Taylor s e r i e s  expansion a s  

(6q) * 
Pi+ 1 L 2 1 6  

= pi + p!6q + p: -- + p'!' - 

where 

Conventional f i n i t e  difference schemes, i n  e f f e c t ,  t yp ica l ly  t runcate the  

Taylor s e r i e s  a f t e r  the  f i r s t  t e x m  and use the  resul t ing  e x ~ r e s s i o n  t o  r e l a t e  p' 

t o  p, etc. ,  t h a t  is  

Round-off e r ror  is  then of order  (6n! and many nodes must be chosen t o  bring 

t h i s  value down t o  acceptable l i m i t s .  One can achieve a reciuction i n  the  number 

of nodes fo r  a given accuracy by employing a quadrat ic  o r  cubic r e l a t i o n  repre- 

senting the  function p over the  in te rva l  of i n t e r e s t .  This can be achieved by 

truncating the  Taylor s e r i e s  a f t e r  the  +bird or fourth term. The cubic approxi- 

mation w i l l  be used for  the remainder of t h i s  discussion. The pi can be consid- 

ered t o  be any of f i t  f;, fi, f i t ,  H , H'  , H: , . , , o r  . Since the  highest  
Ti T i  i i 

der ivat ives  of the  dependent variables whshlch appear i n  th& boundary layer  
5 

equations a r e  f'.", H" and K; , it is reasonable t o  t runcate  the  s e r i e s  a t  t h e  
1 Ti 

i 
next highest derivat ive a d  t o  consider t h a t  der iva t ive  a s  being constant between 

ni and ni+l, t h a t  is, 
f;;l - f Z t  

f"" = 
i i+l 6q 



Thus, r a the r  than using f i n i t e  d i f ference  approximations s imi lar  t o  Equation 

(101) which are subs t i tu ted  d i r e c t l y  i n t o  the  governing d i f f e r e n t i a l  equations, 

a set of l inea r  r e l a t ions  between the  dependent var iables  and t h e i r  d e ~ i v a t i v e s  -- 
is  obtained and is solved simultaneously with the  governing d i f f e r e n t i a l  ewa t ions .  

These l i n e a r  r e l a t ions  a r e  of the  form 

where i n  Equations (104) and (105) the pi represents  fj, H , and each of the  K 

s e t s  of i . Ti 

i 
Notice that f '  has been taken t o  be a cubic over each s t r i p ,  r a the r  than 

the  stream function, f ,  s ince it was desi-sd t o  represent  ve loc i ty  (u = u l f q / s )  

w i t h  the cubic. Equations (103) through (105) above, when wr i t t en  f o r  each 

adjacent p a i r  of nodes, give (3 + 2K) (N - 1) simultaneous algebraic equations - - ~- -- 
fo r  the  N ( 4  + 3K) + 1 unknowns, fn,  ftl, f", f q ,  aH, HT , H i  , H; , 5 , I$ , - 
5 a t  each streamwise s t a t ion ,  where i: is the number of  el&enta? ~ ~ e g i e s . 9  

~ h g  Taylor s e r i e s  equations e r e  wr i t ten  for only K-1 species s ince  the  overa l l  

mass balance equation supplies  the  remaining elemental concentration. Additional 

relations. must come from the  governing d i f f e r e n t i a l  equatiocs and t h c  boundary 

confitions. It is importmt t o  note t h e t  the  f ,  f', etc. ,  a r e  t r e a t e d  a s  indi-  

vidual variables re la ted  by algebraic - equations. It  is a l s o  important t o  note 

t h a t  the  coeff ic ients  i n  Equations (103) through (105) a r e  fi,nctions of 6n only; 

therefoxe, t h i s  portion of the  r e su l t ing  matrix need be inverted only once f o r  a 

given problem. 

* 
The mixing length is  not included i n  t h i s  var iables  count s ince  mixing length 
( a s  w e l l  a s  € i n  the  wake region) is t rea ted  a s  a s t a t e  property. 

M 



The conservation Equations (SO), (651, and (68) contain streamwise deriva- 

t i v e  o r  "nonsimilar" terms. In  t h e  present so lu t ion  technique, two o r  three  

p i n t  f i n J t e  difference formulas a r e  considered s u f f i c i e n t  t o  express these de- 

r iva t ives ,  s ince  gradients  i n  this  direc t ion  a r e  not severe. A s  i n  Reference 1 

where ( ) r e f e r s  t c  t h e  previous streamwise s t a t ion ,  
a-1 

f o r  two-point difference and 

f o r  three-point difference where typica l ly  

The three-point difference r e l a t i o n  is  general ly used unless a s imi lar  so lu t ion  

is  desired ( i n  which czse do = dl = d2 = 0) o r  unless the  point  i n  question is  

the  f i r s t  point  a f t e r  e i t h e r  (1) a s imi lar  so lu t ion  o r  (2) a discontinuity 

(e.g., where the body changes shape abruptly, or w::~re mass in jec t ion  is suddenly 

terminated). 

The next s t e p  i n  the  treatment of the  conservation equations i s  t h e i r  in- 

tegra t ion  across the  boundary l aye r  "str ips".  The primary reason f o r  t h i s  in te-  

grat ion is t o  simplify the  q-derivative terms i n  the energy and species c0nse.r- 

vat ion equations, s ince  it is not  convenient t o  express the  complex qi and j* 
k 

terms i n  derivat ive form. The solut ion can ac tua l ly  proceed very n ice ly  with- 

out  in tegra t ing  across. s t r i p s  (see Reference 8) without any noticeable change 



in speed, accuracy, o r  s t a b i l i t y  f o r  s implif ied problems sdch a s  irlcompressible, 

nomeacting flows. The weighting function f o r  in tegra t ion  between nodes i n  t h i s  

in teg ra l  method is unity. In  the  terminology of the general method of i n t e i r a l  

re la t ions ,  where in teg ra l s  a r e  ca r r i ed  form 0 t o  i n  rl (Reference 18) ,  a ryuare 

wave weighting function is used which is unity across the  s t r i p  i n  question and 

zero elsewhere. The equations a r e  then integrated N-1 times with the  square 

wave applied t o  each s t r i p  i n  succession. Using the  momentum equation a s  an 

example, the  in tegra t ion  from i-1 t o  i r e s u l t s  i n  

T ~ A _  Taylor s e r i e s  approximations introduced e a r l i e r  can a l s o  be used to express 

the  in teg ra l  terms above. L s  demonstrated i n  Reference 1, the term li f 'p dq 

becomes 1-1 

where 



This technique is used t o  rewrite  each of the  in teg ra l  terms i n  Equation ( 1 1 C )  

h o v e  of the  fonn f i  f ' p  do. Thr remai:~ing in teq ra l  term i n  thb momentinn 

eqcation,s.i  (pl;byan is  evaluated by approxirrating these functions a s  cubics 

over the  and in teyre t ing  d i rec t ly .  This y ie lds  

The prod;-ctian tern is assumed t o  vary l inea r ly  across the s t r i p  so t h a t  the  in- 

t eg ra l  of $,_/p is 

These approximations a re  not qu i t e  a s  good a s  the approximations fo r  f', flT and 
* 
5 since continuity of der iva t ives  is  not guaranteed a t  the  nod31 point.  

Direct subs t i tu t i cn  of these a;proxinations f o r  in tag ra l  terms i n to  the 

governing equations r e s u l t s  i n  the  following forms. 

Momentum 



aElementale Species 

.rhe following definitions are necessary : 



w i t h  

and pi is defined adjacent to the brackets in each ten that uses these defmitions. 

The conservation equations provide (K.i.1) (N-1) more equations for the 

N(3K + 4) + 1 -awns, thereby closing the problem. However, before discussing 

how this set of algebraic equations is soloed, Section 3.2 describes i n  detai l  how 

the mixing lensth differential equation is solved. 

3.2 S O U ! O N  OF THE MIXING LENGI?I EQUATION 

The mixing length equatim is a first order linear differential equation 

whose solution can be written directly in general tenns. The Gifferential 

equacion is 

Defining 

results in  



The solution to this equation is 

The remaining problem is to evaluate the integral t ern .  Defining 

yieias 

Reference 2 presents a cm.glete description of the techniquz used to evaluate 

L(n). xn essence, Pin) is assumed to vary l inearly over the interval n to 
i-i 

Qi, end the irtegrals are express& in a mre tractable form. The finzl expression 

is 

where 



The Dawson Integral, Dw( 1 ,  can be e'raluated fram tables  (Reference 19) or by a 

- - -  k rsries a=-=:uation x L h ~ d  is *sfla i1 fhn p x e s ~ ~ + ,  jp~p;=i=- TRIVV, 

combining Equations (124) and (1251, an expl ic i t  recursion formula for  mixing 

length a t  each node is obtained. This mixing length is a function of local  shear, 

viscosity, and density through the variat ion of P( ), and is re-evaluated at each 

node on each i t e ra t ion  during the course of a snluticc. 

3.3 NEWTON-WHSON ITERATIC@? FOR A SOLUTION 

A complete description of the Newton-Raphson i t e ra t ion  procedure a s  ap- 

plied t o  the laminar equations of motion was given i n  Reference 1. Since the 

procedure is basically ur-changed w i t h  t h e  addition of nonequil ibrim chemistry 

it w i l l  be reviewed only br ie f ly  here, with emphasis on the  recent additions. 

T-o i l l u s t r a t e  me Sewton-Raphson m e t h c x i ,  consider two simultarc?ous non- 

l inear  algebraic equations 

- - 
the solution for  which is given by x = x, y = y. Define x and y as the  values 

m - - m 

of x and y for  the mth i tere t ion.  The desired solution f (x,y) can be expressed 

i n  a Taylor se r ies  expansion 

The Newton-Raphson method consists  of r ~ p l a c i n g  (x,y) by (x 
mtlV. Ywl 

) on thz - 

hand side of these expressions and neglectirig nonlinear t cms  i n  x - x h26 
m+l m 



ymtl - y,. 
This y ie lds  the  set of  simultaneous equations 

D r  i : matrix form 

where 

The hm and Aym are  the  correct ions t o  be added t o  xm and ym, respectively,  to 

yie ld  the values of the  dependeat variables f o r  the m + lth i t e ra t ion .  Hero 

F(x ,y ) ar.2 G:r ,y ) a r e  values of t h e  or ig ina l  f'iinctions F(x,y) anc? C;(x,y) 
m m 5 m 

evaluated for x = x and y = 
'm* 

As the  correct ions approach zaro, the  F(x ,y ; 
m m m 

ana G(x ,y ) approach zero. Hence, it i s  appropriate to look upon these a s  
m m 

er ro r s  associated with the  o r ig ina l  Equation (130). It is apsarent t h a t  t h i s  

procedure can be extended t o  an a r b i t r a r y  number of functions and a corresponding 

number of primary variables. 

+he nrimrrso ~f t$e p ~ c n n t  &-sp;.~fz, ft h=s heen found mnst cnntreni~nt  
c--C - -  

." - 
t o  consider the primary bar iables  a s  f fi, fi, fi' , AT., H; , $ , IS; , i ' 
$:, and a This amounts t o  13K + 4)N + 1 unknowns whete N fs th/  rider of 

H' 

nodes and K is the number of elexental  species t o  bs considered in t h e  boundary 

layer. Recounting the number of equations, w e  have 



Eon. iv'umbers Xo. of Ecnrations 

Boundary layer equations (115) - (117) (M - 1) (K + 1) 
Boundary conditions (82) , (831, (84) 

o r  equivalent 

q! definit ion (44) 1 

TQ tdl N(3A + 4 )  + 1 

Other secondary variables such a s  E, p, T, etc.  are expressed i n  terms of those 

listed above. Thc ccrrections i n  these secondary variables a re  therefore found 

i n  terms of the corrections t o  the primary variables. 

The use of the Newton-Raphson technique for  the current set of equations 

requires the evaluation of the p a r t i a i  derivatives of each equation with respect 

to  each variable. The pa r t i a l  derivatives of the Taylor ser ies  rq=.ztions ;L:Z 

l inear  boundary conditions a re  exactly the same a s  i n  Reference 1. The deriva- 

t ives  of the conservation equations are: 



+ ZP4hfr-l 1 = - ERROR 

JPi=fi 

where the ERRC!R is given by the left-hmd side of Eqration (115) evaluated for  

mth iteration. 

) 
I Energy 

E P P H :  + Z P ~ A % ~ - ~ ]  = - ERROR 
' i 

pi=f i 



,"Elemental1' Species 

where Grt: ELK:: i; gi-;c:: by Lh.2 left-h&+ siee c?f EqEetinn ( 3  1.6: fnr trhc !!! 
th 

iteration end bq; is given by 



i-i 

= - ERROR 
(138) 

pi=£ i 

where the ERROR is given by the left-hand side of Equation (117) evaluated for  

the mth i t e ra t ion  and A j i  's given by 

The technique of re la t ing corrections on secondary variables such a s  C, 

0 ,  T, Pr ,  etc., t o  cozrections i n  primary variables was fu l l y  explained i n  - 
Reference 1. *.c same techniques are  used for  the corrections A t  and A€ ant, 

M 

Once the correction coefficients (par t i a l  derivatives k i t h  respect t o  

each primary variable) fo r  each equation a t  each nodal point =e found; they 

are azranged in  matrix form for  further manipulation. The order of the  primary 

variables and the order of the equations is of some importance i n  the matrix for- 

mulation. It  is most convenient to  divide the variables i n to  "lineax" (symbol Lj 

and "nonlinear" (synbol NL) se t s ,  namely 



where the linear equations are the Taylor series equations and some of the bound- 

ary conditions. The purpose of the partictoning is to allow aperations on sec- 

tions of the coefficient matrix which result in significant simplification of 

the overall inversion. In particular, since the coefficients of the linear equa- 

tions are all constant or functions of the fixed nodal spacing, this portion of 

the matrix (the AL portion) can be diagonalized once and for all in any given 

problem. In essence, the corrections on the linear variables AVL are always ex- 

pressed in terms of the nonlinear variable corrections AVNL. The choice of 

linear and nonlinesr labels for the variables is somewhat arbitrary, but care 

. must be taken that the AL matrix not be singular. It has been found convenient 

to arrange the variables into the linear and nonlinear groups as follows: 

A%(Af2, A ,  . Afn, 65, Af'; ,... A ,  A ' ,  A ,  . Af"'); AmH   AH^ , 
n 

" n 
AH' AH; , .. . AH; , AH; , AH" , . . . AH'' ) ; and K-1 sets of hVLK(< , &$ , 

Tn 2 
T2A$ ). The nonlinear variables are Phen arranged $ ,... 3 4 ,  , A q  ,... 

n 2 n 
in Zhe following o%er : 

A 
(haH, Af", Af" , Afi, Af; , . . . Af * ; A V N L ~  (AH; . 

W- n W & AH , . . . H ) ; and K-1 sets of (q , $ , A% , . . $ . 
w T2 D-1 w w 2 n-1 

The order of the llnear equations in the present matrix procedure is: 

No. of 
Equations Description of Equations 

Linear Boundary conditions and 

Taylor series for f, f', f", f"* 

Linear boundary conditions and 
Taylor series for HT, Hk,'Hi 

(K - 1) (2N) Linear boundary co~ditions~and 
Taylor series for \, $, IS: 

The nonlinear equations are sequenced as follows: 

No. of 
Equations Description of Equations 

Nonlinear boundary conditions 
and a constraint 

H 

Momentum equation for each pair 
of ncdes 

Energy equation for each pair of 

nodes plus wall enthalpy equation 

K-1 sets of "elemental" species 
equations for each pair of nodes 

plus wall species equation 



Special logic has been written for the matrix inversion, taking advantage 

of the regular sparseness of the matrix. Once the corrections for the l inear 

and nonlinear variables are found, these corrections are added t o  the variables 

t o  form the new guesses. The magnitude of the errors for  each equation are 

checked and the procedure advances t o  the next i terat ion i f  the absolute values 

of the errors exceed prescribed upper limits. I f  the errors are acceptable, 
' 

i teration is  completed for the current streamwise position c. Typically, three 

t o  six i terations are required t o  reach a satisfactory solution. 



SECTION 4 

CONSIDERATIONS FOR SHUTTLE APPLICATIONS 

4.1 TRANSITION TO TURBULENT FLOW 

For the  s h u t t l e  v e h i c l e , t r a n s i t i o n  inf luences  no t  only t h e  choice of TPS 

mater ia l  bu t  a l s o  s i z i n g  of the TPS. Because t r a n s i t i o n  c r i t e r i a  a r e  no t  wel l  

es tab l i shed ,  many s tud ie s  have been conducted t o  a s se s s  t h e  a f f e c t  of var ious  

t r a n s i t i o n  onse t  c r i t e r i a  on peck temperatures and TPS weights. For ins tance ,  

Reference 20 considered the  RI 134B vehicle  f o r  both cons tan t  and va r i ab l e  angle- 

of a t t ack  en t ry  t r a j e c t o r i e s  and found t h a t  95 t o  99 percent  of t he  TPS weight 

is  determined by laminar flow heat ing.  The remainder is due t o  t r a n s i t i o n  and 

turbulen t  heat ing.  This 1 t o  5 percent  requirement. f o r  t.ur3ulcnt f l c r ~  appears 

small, however f o r  an RPf system, the t o t a l  TPS weight nay be 20,000 pounds re- 

s u l t i n g  i n  a 1,000 pound variance depending on when turbuLcnt flow w i l l  occur. 

The r een t ry  heating condit ions determine t h e  peak temperatures experienced 

by aL equilibrium rad ia t ion  sur face  which i n  t u r n  inf luences t h e  width of t h e  

en t ry  Fl5ght cor r idor  (References 21-24) (along with equi l ibr ium g l i d e  and maximum 

force  cons t r a in t s ) .  Not only a r e  t he  condit ions which inf luence  t r a n s i t i o n  onse t  

not  wel l  es tab l i shed ,  b u t  the  length of the  t r a n s i t i o n  zone ;? not  c l e s r l y  def ined.  

Current b e s t  es t imates  p lace  t h e  r a t i o  FteT/Re a t  between 2 and 3. Thus a l a r g e  
t 

port ion of the  vehic le  may be i n  ne i the r  laminar nor t u rbu len t  heat ing bu t  

r a t h e r  an in-limbo t r a n s i t i o n a l  s t a t e .  

The quest ion of what cons t i t u t e s  t r a n s i t i o n  has been discussed by seve ra l  

authors ( f o r  example, References 13, 25-28). Clear ly a general  knowledge of turbu- 

lence and the  t r a n s i t i o n  from laminar t o  turbulence'  is not  ava i lab le .  However 

t he  i n t e m i t t a n c y  concept, which envisions l o c a l  flow condit ions which a r e  i n t e r -  

c t i t t an t ly  laminar and turbulen t  (References 13, 26, 29, 30) (an average condi t icn  

being the t r a n s i t i o n  s t a t e )  has received favorable  a n a l y t i c a l  a t t en t ion .  I n  e f f e c t ,  an 
* 



intermittaricy fac tor  is  employed which sca les  the  turbulent  eddy v i scos i ty  between 

0.0 and 1.0 of its f u l l y  developed value. Both l i n e a r  es well  a s  nonlinear 

dependences on flow length from the  onset  of t r a n s i t i o n  have been considered. 

Many possible var iables  o r  parameters can a f f e c t  t r a n s i t i o n  onset. The 

f a c t  t h a t  surface roughness, g a p ,  d iscont inui t ies  o r  external  t r i p s  can influence 

t r ans i t ion  onset i s  c las s i ca l ;  a l s o  heat  t r a n s f e r  t o  surfaces have been known t o  

have a s t ab i l i z ing  e f f e c t  on the  boundary layer .  Other va r i ab les  which have been 

shown t o  induce t r ans i t ion  include nose bluntness (Ref. 25, 29, 31, 33) mas: i n j ec t ion  

(Ref. 29, 33), entropy swallowing (Ref. 25),  adverse pressure gradients !hef. 2-, 34) 

boundary layer  edge conditions (.Ref. 25, 34) f r ee  stream u n i t  Reynol, s nunbcrs (Xef. 25, 

27, 33) , and vehicle angle-of-attack (Ref. 25, 33) . I n  addit ion,  i.1 bind t w e i  ex- 

periments, tunnel s i z e ,  w a l l  e f f e c t s  and noise (Ref. 33) must elsc be ccmsidexed. 

Because of the  la rge  number of var iables  t h a t  a p p a r - ~ t l y  hrla  . . $  influence 

on t r ans i t ion  onset,  a fundamental theory which enconrpar;ses a l l  of these var iables  

is not available. Many corre la t ions  of f l i g h t  and wind tunnel  d a t a  have been 

attempted and f o r  s h u t t l e  applicat ions,  the  corre la t ions  of References 25 a d  35 

appear t o  agree t h a t  the  boundary layer  edge conditions, f r e e  stream u n i t  Reynolds 

number and momentum thickr.ecs arn good corre la t ion  parameters. Similar conclusions 

were obtained i n  the Philco-Ford .(Ref. 36) corre la t ions  presented i n  Reference 29. 

Reference 29 showed t h a t  both the  Philco-Ford and the  McDonnell-Douglas (Ref.35) 

correlat ions follow the trend of a large number of f l i g h t  da ta .  However, most of 

e. t da ta  was f o r  s lender cones with abla t ing  n o s e t i p  and a separate,  more involved 

c r r re l a t ion  was obtained t y  Martellucci (Ref.29) which includes the e f f e c t s  of nose 

bluntness and mass addition. Far s h u t t l e  applicat ions,  the  amount of mass addit ion 

w i l l  be small; i n  addition no s ign i f i can t  shape change is expected so  t h a t  the simpler 

correlat ions of References 25, 35 and 36 a r e  recommended. 

Reference 25 presents  a corre la t ion  of thh form 

Where Ret is the  t r a n s i t i o n  Reynolds number based on edge proper t ies  and running 

length from the  stagnation point ,  Me is t h e  edge Mach nmker  and M / f t  is the  local  

u n i t  Reynoles number a l s o  based on edge pxo?erties. This corre la t ion  was obtid-ned 

for a simulated shu t t l e  configuration under wirA tunnel conditions ( M o o m  10,  

1.0 X lo6 - < ReJft - < 2.4 X 10') f o r  angles-of-attack between 5 and 3 5 O .  Ran the  



data i n  Reference 25 the functional relationship (141) can be s l p ~ r ~ ~ i m a t e d  by the 

expression 

Note, however t ha t  the above co-:el.ation was obtained for  a prescribed vehicle 

configuration a t  Ma = 1' 20r a particular wind tunnel. 

The correlations of Reference 35 a re  for  a number of de l ta  wing c~nfigura-  

tions under win3 tarinel t e s t  conditions and has a lso a3;' ed with slender cone f l i gh t  

data. This correlation has the form 

Where f ( a )  is  a function of the vehicle angle of attack, Ree is  the Reynolds 

number based on momentum thickness, Fie is the edge Mach number and RP/x is the  

local  uni t  Reynolds number based on -3ge prgpexties. F3r the data used t o  obtain 

the correlation (1431, f ( a )  h ~ s  a value of - 10.0 for  a < 35O and increases t o  

6 fo r  a = 60°. The accuracy of the correlation, as  indicated by da ta  sca t te r ,  

is about a factor of 4. I f  the un i t  Reynolds rider ef fec t  is not considered, 

the same data is represented by the correlation 

with data scat ter  as  high as s, factor of 6. 

The dependa :e on uni t  Reyno1.d~ number is small ( t o  the 0.2 power) and 

Martellucci's independent comparison witxi  :?le sam43 and other data  show a larger 

amount of data scat ter  which led Martellucci t o  question \.hether o- not there 

is a un i t  Reynolds number dependence, In view of f ac t  t ha t  Reference 25 and 

35 both observed a unit  Reynolds numter e f fec t  for shut t le  type veV.cles, e!ther 

correlations (142) or  (144) should be used as t ransi t ion c r i t e r i a  bearing i n  

mind however tha t  the data sca t te r  has an uncertainty -actor of about 4 an3 

tha t  the unit  Reynolds number effect ,  i f  rea l ,  is apparently small. Finally it 

is suggested tha t  some form of intennittancy factor be incorporated to simulate 

a transit ion zone and t h a t  the lenqth of t h i s  zone be datermined %y ReT/Ret " 2.0. 

4 



4.2 SURFACF, CATALYZED REACTTQXS 

Since significantdissocj.ation w i l l  occur in portions of the flow field 

surrounding a shuttle vehicle, surface catalyzed recanbi~ation reactions regre- 

sent a significant portion of the energy transfer to  the vehicle. The rcduced 

heating which can be realized fran low catalycity surfaces would locally reduce 

the equilibrium radiaticn temperature for any given f l ight  condition. However, 

i f  a rapid change i n  catalycity from very low to  very high occurs as the flow 

progresses downstream, then the downstream heating is increased by virtue ~d the 

noncatalytic upstream section. It is clewt that optimization would require a 

trade-off s t d y  which can be performed with the current code proviaed that adequate 

data i s  available for catalytic efficiencies of materials of interest. Surface 

catalyzed reactions are often defined i n  terns of catalytic efficiency y or cata- 

lycity Kw. 

The catalytic efficiency is defined as 

Where N is the collision rate of atcuts with the surface and N is the rate a t  
R 

which these atoms recanbine due t o  c o l l i s i ~ n  with the surface. If heter-ogeceot~s 

surface catalysis were due t o  the simultaneous collision of two atoms and the sur- 

face, the recombination rates would be similar in magnitude to  hc~geneuus reac- 

tion rates. However, very larqe catalytic rates (y - 1) have keen observed which 

lead to  the postulation of mechanisms which require an adsozbed layer of atoms 

on surface active s i tes  with reaction f-runalas that are identical t o  hcmogeneous 

reaction formulas (Ref. 37-39). Desi~a t ing  A* as a surface activation s i t e ,  

then the Langmuir-Hinshelwood mechanism is 

C 4- A* # OA' 
Langmuir -Hinshelwood 

and the 13deal-Eley mechanism is 

0 + A* t3 OA* 

0 + OA* c3 o2 + A* 
Iddeal-Eley 
( R-E) 



In a l l  likelyhuod both mechanisms occur simultancously with r a t e s  t h a t  depend 

on the availL4bility of surface ac t ive  s i t e s  and the mobility of absorbed atoms. 

fit high surface temperatures, sclrface d i f fus ion r a t e s  are high and the  L-fi mech- 

anism is  expected t o  predominate whereas a t  low surface tzmperatures the  d i r e c t  

col l i s ion  R-E mechanism is expected t o  predaninate. I n  any event,  it is possible 

for both mechariisms t o  be r a t e  limited by the reac t ion  

0 + A* 4 2  OA* 

which depends on the  concentration and s t a t e  of atoms near t h e  surface s ince  the  

co l l i s ion  r a t e  is a function of the  p a r t i a l  pressure of the atons and t h e i r  t e m -  

perature and t h e  probabil i ty of the  atoms adhering tc tho  si~rface depends on the 

k ine t i c  energy (or temperature) of t h e  atoms. Both mechanisms, i n  terms of t h e  

concentration of atomic species, can exhibi t  f i r s t  or second order behaviors. 

For instance, i n  the  L-H mechanism, a slow adsorption of 0 atoms and a rapid  

surface migratior. of OA* w i l l  r e s u l t  in a f i r s t  order  react ion;  s imi lar ly ,  the  

R-E mechanism w i l l  be f i r s t  order f o r  a repid adsorption of 0 atoms which forms a 

high surface densi ty of OA* such t h a t  the  reac t ion  0 + OA* +* O2 + A* controls .  

The ca ta lyci ty  k is defined (Ref, 40) f o r  convenience i n  gas dynamic s tud ies  
W 

i n  terms of loca l  atom concentration and d i f fus ive  flux. For a cats?-r+ic reac t ion  

the difLusion r a t e .  jw, is equal to the surface reacti~n l a t e  so t h a t  t h e  n z t  

overa l l  react ion f o r  both the  L-H and R-E mechanisms can be :=itten a s  

20  2 0, (Second order)  

o r  

o t 1/2 o2 ( F i r s t  order) 

For nonequilibrium boundary layers ,  t h e  forward d i rec t ion  is t h e  most pr-le. 

If t he  heterogeneous react ion w e r e  t rea ted  as a hauogeneous react ion (with the 

snrface a s  a t h i r d  body) then the  react ion rate (146a) has t h e  form 

Where ( W . )  is  the molar concentration of specie i, (Mi) is its production r a t e  
x 

per u n i t  surface area ,  and k i s  the molaz e ~ i l i b k i u m  constant.  For low surface 
C 

t ~ n p e r a t u r e s *  and a nonequilibrium condition near the  surface the  t e r n  (Pa2)/kc w i l l  

be small cmpared t o  (M )2 s o  t h a t  the  react ion r a t e  can be approximated a s  
0 

* 
Ixrw temperatures i n  the  current  context is  defined a s  a condition i n  which dissoc,- 

a t ion  is negligible. 



For near-equilibrium conditions the reaction rate w i l l  approach zero with (M ) 2  
0 

2 (M )/kc a d  can be achieved w i t h  appro~zLately large values of k Thus 
02 f 

' a t  l o w  temperatures reaction (146d) mld still be valid since (M ) approaches 
0 

zero. 

The catallcity k is defined for convenience in terms of the local a tm 
w 

==&itr~'A~; ~-2 dif f? ! ive  f l u .  That is , far a catalytic reaction the 

diffusion rate, j , is -oqud to  +%e surface reaction rate. Then making use of 
w 

reaction (146d) , with an apppr ia te  transformation to mass production rates, we 

have (Reference 40) 

Where n is the order of the reaction and c is the mass fradon of dissociated 

specie i. 

Using a kinetic theory definition of the coll ishn rate, i.c., 

mere the subscript o is far dissociated species, y and kw are then related by 

Tze ~ctiritior~ of k is conveilient since, with it, the surface reaction rate can 
W 

be expressed in th? acceptable form for a forward reaction, i .e . ,  reactions (146aI 

or (146b). 

Note that, for f i r s t  order reactions (n = 1) the relationship between y 

and k is independat cf * e  specie partial pressures. However for n > 1, the 
W 

partial pressure is required i n  linking y t o  kw. h addition, if  the reaction 

is first order, a t  any gi.ven value of T there is a maximum finite value for k 
w ' W 

which corresponds to y = 1. There is then an obvious discrepancy i n  t ' ~ .  relation- 

ship (148) since, as a reaction rate, the limits of kw should be betwet.1 0 and -. 



Very cmprehensive compilations of kinetic reaction rates for oxygen- 

nitrogen-carbon-hydrogen systems aye presented i n  References 41 through 44. Some 

of these rates as -1.1 as rates fraa other sources are shown in Table 4-1 and 

.4-2. For shuttle applications the -en-nitrogen reactions are most  important; 

the introduction of mall quantities of carbon and silicon compounds, due to  

ablation or surface oxidations would have only  a small effect on the baandary 

?epr solution. Thuk oxygen-nitrogen reactions which are important for- shuttle 

enviromumts are shown in the f i r s t  table and selected carbon-oxygen-nitrogen 

reactions are shown in the second table. A l l  rates are presented in the modi- 

fied Arrhenius form 

w i t h  T in  *I and the units of kf consistent w i t h  boles - cc - sec). Only for- 

w a r d  rates are shown; the presumption being that reverse rates can be calculated 

from the equilibrium constant k or kc which in turn can te calculated frcm 
P 

free e n q y  considerations. 

As noted by Dryer (Ref. 45) EXpation (149) is not always the best correlation 

of data, especially over a wide temperature range. T? i s  possibly one of the 

reasons why Reference 43 reconmends two reaction rates; ?e applicable a t  high 

temperatuzes where the endothexmic rce;ioa is Arminant and one applicable when 

the exothenaic reaction i s  daminant. Although it i s  possible for both exo- and 

endothermic reactions to be important in different parts of t3e flcw field, only 

the high temperature values of Reference 43 are shown in Table 4-1. 

A t  wall temperatures of interest, carbon sublimation w i l l  be negligible 

and the primary ablation product from a carbon heat shield w i l l  be CO. The 

relative reactivity of CO with air  species was cmpared and Table 4-2 includes 

oaly those reacticns which are most l i k e l y  t o  have a significant influeIice on the 

boundary layer solution. 



1) O * + M ~ O + O + M  

M = o2 

M = O  

M = N2 

M = N ,  NO, At 

M = N ,  NO, A r  

M = N ,  NO, AT 

2 )  N * + M ~ N + N + M  

M - N  

M = N2 

M = 02,0, NO, AT 

M = 02, 0, NO, Ar 

M = (;ENERAL 

M = NO, 0, Ar 

TABLE 4-1 

A I R  REACTIONS 

E REF. 
(OK) 



TABLE 4-2 

AIR AND CARBON REACTTONS 

E REF. 
(OK) 



SECTION 5 

TYPICAL RESULTS BASED ON EQUILIBRI'JM EDGE BOUNDARY CONDITIONS 

E=czur cf t\e d i t i i c u l t i e s  of &tzL?ixg i rz icz id  fls?: selutizze urf.th 

nonequilibrium chemistry f o r  general bodies, many boundary layer  ca lcula t ions  

are performed using equilibrium edge conditions and, i n  the  case of b lunt  

bodies, i se3t ropic  expansions from the  stag.>ation point .  For s h u t t l e  vehicles,  

which decelerate a t  high a l t i t u d e s  and have long c h a r a c t e r i s t i c  lengths compared 

t o  t h e i r  nose radii., these assmpt ions  are not  va l id .  Kevertheless, thes? 

assumptions are  convenient and were used t o  e s t ab l i sh  the  s igni f icance  of 

var iables  such a s  nodal point  d i s t r ibu t ion ,  surface ca ta lyc i ty ,  hcmogeneous 

chemistry, and pressure. In  most cases t o  be discussed stagnation po in t  so lu t ions  

on a nose radius of 2.325', a t o t a l  enthalpy of  9013 ~ t u / l b m  and stagnation 

pressures between .004 and -09 atmospheres were used s ince  t h i s  would be repre- 

senta t ive  of a s h u t t l e  vehicle a t  r e l a t i v e l y  high a l t i t u d e s .  The parameters of 

a l l '  cases i n  t h i s  sec t ion  are shown i n  Table 5-1 and Figure 5-1. The homogeneous 

react ion ra t e s  a re  shown i n  Table 5-2. The values shown i n  Column 2 of t h i s  t a b l e  

were used i n  most cases i n  t h i s  sec t ion ,  however, column 1 was used f o r  com- 

parisons shown i n  Section 5-1. 

5.1 EFFFClT OF HOMOGENEOUS KIRETICS 

The e f f e c t  of h-o  d i f f e r e n t  sets of kinetic: da ta  (Table 5-21 a r e  sbiwn 

i n  Figure 5-2 f o r  noncatalyt ic  walls.  A s ign i f i can t  d i f ference  is natea i n  the  

N c o n c a k r a t i c . ~  and r e s u l t s  i n  an eqtially s ign i f i can t  d i f ference  i n  hea t  

t r ans fe r  (-15% fron: Table 5-1). Although not  shawn, the  d i f ference  decreases 

a s  the  ca ta lyc i ty  increases with no s ign i f i cen t  d i f ferences  f o r  f u l l y  c a t a l y t i c  

walls. The e f f e c t  of d i f ferences  i n  k i n e t i c  r a t e s  is a l s o  expected t o  decrease 

as  the flow f i e l d  becomes more reac t ive ,  i .e. ,  a t  higher s tagnation pressures. 

A high densi ty,  small nose radius c~mparison is  shown i n  Figure 5-3. Under 

these conditions the  e f f e c t  of the two d i f f e r e n t  sets of reac t ion  r a t e s  is 

negligible.  



T
A
B
L
E
 5
-1
 

C
O
N
D
I
T
I
O
N
S
 A
N
D
 R

ES
UL

TS
 
F
O
R
 C

OM
PA

RI
SO

N 
C
A
S
E
S
 

=
 f

o
r 

N 
an

d 
0

, 
ze
ro
 f

or
 N

O 
I 





TA
B

LE
 

5
-2

 

R
E
A
C

T1
 ON

 
R

AT
E 

C
O

N
ST

AN
TS

 

R
E

A
C

T
IO

N
 

o
2

+
M

$
2

0
+

M
 

N
Z

 
+

 M
 
3

 
2N

 
+

 H
 

\
 

N
O

+
M

Z
N

+
O

+
M

 

;
N

O
+

O
t

O
,

+
N

 
I 

N
p

+
O

=
N

O
+

I
 

N
2
 

+
 

O
2 

2 
2
N

0
 

T
H

IR
D

 
B
O
D
Y
 

N
, 

NO
 

0
 

O
 2
 

N
2

 
-
 

0
, 

0
2

, 
NO

 

N
 

N
2

 

O
2

' 
k
2
 

N,
 

O
 

N
 0
 

--
 

- -
 - - 

N
 
t
 

0
 

:N
O

+ 
+

 
e

- 

I 
F

o
r
r
a

r
d

 R
a

te
 

C
o

n
s

ta
n

t 
=

 
k
t
 

m
 

A
T

B
 

e
-'

/T
, 

T
 

=
 
O
K
 

C
- 

9
.0

3
 

x 
lo

9
 

R
A

T
E

 
C

O
N

S
T
A

N
T
S

 
U

S
E

D
 

B
Y

 
R

E
F

E
R

E
N

C
E

 
6

1
 

I 
- -

 

A
 

3
.6

1
 

x 
1
0
"' 

9
.0

2
5

 
x 

lo
1

$
 

3
.2

5
 

x 
lo

i9
 

7
.2

2
 

x 
1

0
" 

-
 

-
 

1.
11

2 
x 

lo
1

?
 

4
.1

5
 

x 
lo

Z
Z

 
4

.8
0

 
x 

1
0

" 

3
.9

7
 

x 
lo

Z
0

 
7

.9
4

 
x 

lo
2

' 
7

.9
4

 
x 

lo
2

' 

3
.1

8
 

x 
lo

9
 

6
.7

5
 

x 
1

0
" 

R
A

T
E

 
C

O
N

S
T
A

N
T
S

 
FR

O
M

 
R

E
F

. 
4

1
 

0
.5

 

A
 

2
.9

9
 

x 
1

0
''

 

8
.4

9
 

x 
l

0
l

9
 

2
.3

0
 

x 
1

0
1

9
 

2
.9

9
 

x 
1

0
" 

1
.9

0
 

x 
1

3
1

9
 

1
.3

0
 

x 
lo

Z
0

 
3

.8
 

x 
lo

t9
 

2
.4

0
 

x 
1

0
" 

2
.4

0
 

x 
lo

1
?

 
2

.4
0

 
x 

1
0

" 

4
.3

0
 

x 
1

0
' 

6
.8

0
 

x 
lo

L
3

 

3
.0

0
 

x 
1

0
l0

 

3
2

,4
0

0
 

B 

-1
 S

O
 

-1
 .O

 

-1
 .O

 

-1
 .O

 
-
 

-
 

-0
.5

 

-1
.5

 

-0
.5

 

-1
.5

0
 

-1
.5

0
 

-1
.5

0
 

1
 .O

 

0
.0

 

E 

5
9

,4
0

0
 

5
9

,4
0

0
 

5
9

,4
0

0
 

5
9

,4
0

0
 

1
1

3
,1

0
0

 

1
1

3
,1

0
0

 

1
1

3
.1

0
0

 

7
6

,5
0

0
 

7
6

,5
0

0
 

7
6

,5
0

0
 

1
9

,7
0

0
 

3
7

,5
0

0
 

B
 

-1
.0

 

-1
.0

 

-1
.0

 

-1
 .

O
 

-1
.0

 

-1
.0

 

-1
 .

O
 

-0
.5

 

-0
.5

 

-0
.5

 

1
.5

 

0
.0

 

0
.0

 

-
 

E 

5
9

,4
0

0
 

5
9

,4
0

0
 

5
9

,4
0

0
 

5
9

,4
0

0
 

1
1

3
,2

0
0

 

1
1

3
,2

0
0

 

1
1

3
,2

0
0

 
- 

7
5

,5
0

0
 

7
5

,5
0

0
 

7
5

,5
0

0
 

1
9

,1
0

0
 

3
7

,7
5

0
 

6
1

,6
0

0
 





5.2 WFECP OF NUMBFR OF NODAL POINT 

The BLIMP computational procedures uses sp l ine  f i t s  of the  primary 

var iables  across the  boundary layer  and therefore require a l e s s e r  number of 

nodes than l inear ized  f i n i t e  difference methods. Appropriate nodal point  d is -  

t r ibut ions  f o r  equilibrium chemistry a re  recornended ir. Reference 1 and it 

appears logica l  t o  determine i f  s imi lar  d i s t r ibu t ions  a r e  v a l i d  f o r  nonequilib- 

rim conditions. A typica l  nodal d i s t r ibu t ion  has 7 nodes f o r  laminar boundary 

layers and 13 nodes f o r  turbulent  boundary layers.  These d i s t r ibu t ions  a r e  

not  sacred, however, they and similar d i s t r ibu t ions  provide good s t a r t i n g  

points  f o r  comparitlg the e f f e c t  of nodal d i s t r i b u t i o n  on predicted bounCary layer  

variables. I n  t h i s  and most of the subsequent comparisons, the  mass f r ac t ions  of 

N,  0, and NO w i l l  be shown and used a s  c r i t e r i a  f o r  determining the  magnituee 

of any discrepancies. 

The stagnaticn point  specie d i s t r ibu t jons  f o r  a c a t a l y t i c  wall  and a 

near-noncatalytic wall a re  shotjn i n  Figures 5-4 and 5-5, respectively. The 

s o l i d  l ines  represent  a 13 node distribution and the  indicated "data" points  a re  

from a 7 node d is t r ibut ion .  B o t h  d i s t r ibu t ions  a r e  shown i n  Figure 5-1. Also 

shown i n  Figure 5-4 i s  t h ~  cqujlibrium d i s t r ibu t ion .  The strong resemblance 

between the two p r o f i l e s  i n  Figure 5-4 is a r e s u l t  of t!~e high ca ta lyc i ty  which 

redusis  atomic species t o  zero a t  the  wall .  Between the 7 and 13 node d is t r ibu-  

t i o n  there is a small bu t  noticable discrepancy i n  the  NO concentrations f o r  a 

c a t a l y t i c  wall.  However, t h i s  is accented somewhat by the  f a c t  t h a t  the  NO 

sca le  is magnifies by an order of magnitude. A l l  dif ferences  between 7 and 12 

node d i s t r ibu t ions  a r e  considered small and r e s u l t  i n  no s ign i f i can t  difference 

i n  predicted hea t  t r ans fe r  rater  a s  shown i n  Table 5-1. 

5.3 EFFECT OF SURFACE CATALYCITY 

The e f f e c t  of ca ta lyc i ty  on the  specie d i s t r ibu t ion  within the  boundary 

layer  a r e  shown i n  Figures 5-6 t o  5-8. It  was assumed t h a t  the  surface c a t a l y t i c  

react ions were given by 
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The catalycity fo r  a l l  three reactions were assumed equal although it w i l l  be 

subsequently shown i n  Section 5.6 tha t  the apparent catalycity of t k ~ i c i l  zhuttle 

matexials is greater fo r  0 reccmbination than f o r  N recombhatian. FinalLy, it 

was assumed tha t  a l l  reactions were f i r s t  order so t ba t  the catalycity can be 

defined as  

.- where A represents 0, N o r  NO and SP(A1 represents, the mass fraction of A. 

I t  can be seen from S'igures 5-6, 5-7 a d  5-8 t h a t  the extent t o  which 

the reactions a t  the wall influence the boundary dis t r ibut ion is much greater 

fo r  N than for  0. This is  a result. 'of the strong influence of the n i t r i c  oxide 

shuffle reactions which has the net  e f f ec t  of wanting t o  deplete N i n  favor of 

0.  T -, 0 at- concentrations even f o r  highly ca ta ly t ic  w a l l s  are  v i r tua l ly  

frozen for  about 3/4 of the boundary layer. This e f fec t  w i l l  be shown i n  

Section 5-4 t o  decrease (i.e.,  a smaller frection of the boundary lcyer being 

frozerr) as *.c pressure docreases and vice versa. 

The r a t i o  q/q is  shown i n  Figure 5-9 as a function of the cata1ycit.y 
ca t  

for the a b v e  cases which correspond t o  a velocity and a i t i tude  of about 

21,600 f t /sec  %nd 225,OCO f t ,  respectively. This is comparad with the  resu l t s  

of Reference 40 which used a SI s l l e r  nose radius (1.95 f t  a s  opposed t o  2.325) and 

P l w e r  wall tenperature (7C0°K as opposed t o  1800°K). It can be seen from 

Figure 5-': t!at a s ignif icant  difference ex i s t s  between the t w o  predictions. 

Ths ef fec t  of the differecce i-I nose radlus is expected t o  be s m a l l .  An increase 

i n  wall temperature would s h i f t  tl.e curves t o  the r ight  s l igh t ly ,  howeverr most of 

the difference is probably due t o  the binary gas behavior used i n  Reference 40. 





It is c l e a r  from F i g ? ~ r e  5-7 t h a t  f!O d i s t r ibu t ions  a r e  s trongly dependent on the 

wall  ca ta lyoi ty  and the  r e su l t ing  in tercc t ion  with t h e  shuf f l e  reactior! w i i i  

doubtless have s igni f icant  e f f e c t s  on thc w a l l  values of 0 and N concentrations 

ithereby af fec t ing  tho, heating r a t e s ) .  It is, therefore,  necessary t o  exercise 

some caution i n  the speci f ica t ian  of wal i  c a t a l y c i t i e s  frcrr! expr imen ta l  da ta  

s ince  homogeneous react ions,  even i n  near frozen flows, z re  int imately coupled 

t o  the wall  reactions. 

The e f f e c t  of stagnation pressure on specie d i s t r i b ~ t i s n s  is shown i n  

Figures 5-10 an3 5-11 f o r  a low cata1ycii.y wall  (144 cm/sec) and a high ca ta lyc i ty  

wall  (3600 cm/sec). Since the boundary layer  thickness is highly dependent upon 

the  pressure the  normal cordinatz y was normalized with respect  t o  a reference 

value represe~st ina the  value of y a t  a f ixed value of u/ue (in t h i s  case u/ue = 

0.6).  The degree of h s s o c i a t i o n  a t  the  boilndary layer  edge f o r  equilibrium is  

a l s o  dependent on the  pressure, however, no normalization was uiade i n  p lo t t ing  

the  qrashs. Al+hcccjh +there axe differences i n  *e b i s t r ibu t ions  a t  ZIifferent 

pressures, these differznzcs u o ,  act dramatic as ].on9 as  the  wall  ca ta lyc i ty  is 

I f ixed . 
k oo~:pa-ison af 'die heat t-=-?sfe~ r a t e s  as a function of pressure a r e  

shown i n  Figure 5-12. Also shown sre the  slcpez f o r  q - 5 . A s  might be 

expected, c a t a l y t i c  wall heat  t r ans fe r  can be scaled by this clsss;z zelationslip 

with moderate accuracy, however, low ca ta lyc i ty  walls  can not  be scaled i n  t h i s  

form. 

5.5 COMPARISON Ok CURRENT PREDICTIONS WITH REFERENCE 61 

The r e l a t i v e  accuracy of predict ions f rw .  the current  code were ccmpared 

with those from the  computer code described i n  Reference 63. This latter cede 

was made available t o  Aerofherm by F. G. Blottner  s o  t h a t  ou"-ut from both codes 

could be compared rlirectly. A case frcn Refereccc 6 1  was used foi contpariso~., 

namely, a spherical  nose w i t h  a rad;us cjf n.0833 f e e t  a t  s tagnation conditions 

of 6.026 atmospheres and 7866 Btu/lbm. The rate c m s t a n t s  used i t ,  both codes 

w e r c  those shown i n  coiumn i of Y & i c  5-2 ar:3 edge z~n2iticns werc Lh.csa git'cr. 

i n  Reference 61. Specie d i s t r ibu t i cns  a re  shcwn i n  Figure 3-13 f o r  a wall  which 
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is c a t a l y t i c  t o  N and 0 recombination, bu t  nuncatalyt ic  t o  NO react ions.  Similar 

d i s t r ibu t ions  a r e  shown i n  F i c p r ~  5-14 f o r  a noncatalyt ic  wall.  For c a t a l y t i c  

walls ,  the dirferences are  r e l a t ive ly  small, however, a s ign i f i can t  d i f ference ,  

especia l ly  i n  the  concentration of 0, is noted f o r  the  noncatalyt lc  case. 

The probable reasons f o r  these differences h ~ v e  not been resolved bu t  would ap- 

pear t o  be e i t h e r  i n  the  computationn!. procedure o r  the thermodynamic models. 

5.6 ANALYSIb cjr' &",(I JET DATA 

P l a s m  a r c  jets hsse been used extensivsly f o r  the  simulation 0.2 reentry 

heating environments and some recent  da ta  was reported i n  Reference 62 f o r  

candidate s h u t t l e  materihls ,  namely, oxidation inhibi ted  carbon-carbon composites 

(LTV), coated s i l i c a  ref rac tory  insula t ion  (LI-900) and coated columbiun. The 

surface coating on the carbon-carbon is believed t o  be primari ly s i l i c o n  carbide. 

Coaposition of the other  coatings is  given i n  Table 5-3. A l l  coatings have a 

s ign i f i can t  =aunt of s i l i c a  hhich a t  ligh temperatures is expected t o  form a 

glassy surface with a low t o  moderate ca ta lyc i ty .  The referenced data  was 

obtained foz dissociated a i r  over a range of enthalpies between 3000 and 20,000 

Btu/lbm and a t  a pressure of about 0.01 atm with f l a t  faced cylinder models. 

A t  the  low enthalpy concij-tions, oilly oxygen would be  d issocia ted  under equilibrium 

ccnditions whereas a t  the higher enthalpies both oxygen and nitrogen would be 

dissociated.  The maximum enthalpy of 20,000 Btu/lbm is s ign i f i can t ly  g rea te r  than 

would be experienced by an ea r th  o r b i t  reentry veilicle and would resu1.t i n  some 

i o ~ i z s t i o n  which is not  considered i n  the  current  analysis .  The da ta  was not  

obtained w i t h  the  i n t e n t  of caiculat ing c a t a l y t i c  e f f i c i e n c i e s  s o  t h a t  there  is 

no data  f o r  any one of the  materials  which span the  whole enthalpy range. However, 

s ince  a l l  coatings contain s i l i c a  and ,lave glassy proper t ies ,  it was assumed t h a t  

t h e i r  c a t a l y t i c  behavior would 5e similar. Thus, t h e  da ta  was considered a s  a 

complete s e t  and the aLIMP/KIMET code used Lo est imate the average c a t a l y t i c  

e f f i c i enc ies  f o r  both 0 and N rccombinatioil i n  dissociated a i r .  

The calculat ions were performed on the  assumption t h a t  the  edge of the  bound- 

ary layer  a t  the  stagnation point  was i n  chemical equilibrium. Although the  chemi- 

'. c a l  s t a t e  of the  a r c  j e t  flow was not measured, t l e  staynation point  would be a t  o r  

close t o  equilibrium s ince  a high pressure dissociated equilibrium s t a t e  i s  at.- 

tained i n  the plenum and the  rapid expansion i n  the nozzle r e t a rds  chemical recom- 

brnation. Thus only a small change i r ~  cheinic~il composition would b? reauirad,  a s  

the flow transverses th'e bow shock, t o  reach a stagnation point  equilibrium s t a t e .  
x 





TABLE 5-3 

ELEMENTAL COMPOSITION OF COATINGS, % BY WEIGHT 

Cr .I 5 

(1 i (2) 

(1) Proprietary but believed to be mostly Sic 

(2) SI 1 icon csrbide, bcrosi 1 icate glass. Ref. 22 i" 1 



Stagnat ion po in t  so lu t ions  were then obtained over t he  prescr ibed  enthalpy 

range f o r  various values of t he  sur face  c a t l l y c i t y  f o r  0 and N recombination. For 

a l l  but  one s e t  of computations, t h e  Wall was assumed t o  have no e f f e c t  on NO 

chemistry. The assignment of a w a l l  t h a t  i s  n o x a t a l y t i c  t o  NO react iol is  was 

simply an expedient t o  reduce w a l l  c a t a l y t i c  e f f e c t s  t o  t w o  parameters,  namely, 

t h e  c a t a l y c i t i e s  of N and 0. I t  is c l e a r  t h a t  a s i g n i f i c a n t  number of  coupled 

chenical  reac t ions  occur simultaneously on t h e  wal l  and i n  a zone near t h e  wall. 

Further  it is known t h a t  t he  gas  phasa NO shuf2 le  r eac t ions  a r e  very r ap id  s o  

t h a t  slow generat ion o r  deple t ion  r a t e s  of NO a t  t h e  wall would be r ap id ly  compen- 

s a t ed  f o r  by homogeneous gas phase reac t ions .  Even s ., s ince  it is  n o t  pos s ib l e  

t o  determine t h e  r ;ks  f o r  a l l  pos s ib l e  simultaneoi:~ sur face  r eac t ions ,  t h e  d a t a ,  

from which multi-component c a t a l y c i t i e s  a r e  aeduced, should be  obtained a t  p ressure  

l e v e l s  which a r e  represen ta t ive  of the  f l i g h t  environment. 

.*he v r ~ l l  r eac t ion  r a t e  parameters (FKF) a r e  shown i n  Table 5-4 f o r  each set 

of ca lcu la t ions  an? t h c  r a t i o  of  q/q is shown i n  Figtire 5-15. Also shown a r e  
c a t  

the da t a  f o r  the t h r ee  ma te r i a l s  a s  determined from t h e  equi l ibr ium r a d i a t i o n  sur -  

face  temperature. A t  low enthalpie; ,  where only oxygen is d i s soc i a t ed ,  t h e  curves 

a l l  come together  a t  a value of FKF(0) equal  t o  0.02. A t  highzr  en tha lp i e s  where 

both oxygen and ni t rogen i s  d i s soc i a t ed ,  extensions of t h e  curve f o r  FKF(N) equal  

t o  0.006 ?ppear t o  b e s t  represen t  t h e  da t a ,  a t  l e a s t  for en tha lp i e s  less than 

14,000 Btu/lbm. A t  higher  en tha lp i e s  t he  r a t i o  q/q e i t h e r  rcmains cons tan t  o r  
c a t  

increases  s l i g h t l y .  This  may be due t o  i on i za t i on  e f f e c t s  o r  a s h i f t  i n  composi- 

t i o n  of  sur face  adsorbed atoms from 0 t o  bl, thereby increas ing  t h e  c a t a l y t i c  ef-  

f ic iency f o r  N recombination. ~t the higher en tha lp ies ,  due t o  t he  f a c t  t h a t  ioniza-  

t i o n  was not included and complete d i s soc i a t i on  was achieved, t h e  amount of energy 

s tored  a s  c h ~ m i c a l  energy no longer increased with the  t o t a l  enthalpy of t h e  rlow. 

Thus, fo r tu i t ous ly ,  t he  pred ic ted  r a t i o s  of q/qcat a l s o  increased a t  the higher  

. entha lp ies .  

The values of FICF i.;e r e l a t e d  t o  Kw ( a s  shown i n  t h e  Appendix) by t h e  

r e l a t i onsh ip  

FKP x 'w 

Kw = 
f t / s ec  

0.761 

when the  sur face  r eac t ion  is  considered a s  
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SECTION 6 

APPROXIklATION OF KOXEQU ILI BRIU:*l CONDITIONS AT 
EDGE OF BOUNDARY LAYER 

The development of a nonequilibrium computer code for calculating the 

inviscid flow field ab3ut a three-dimensional shuttle body is a formidable task 

being pursued by several investigators. Until these codes become operational, 

however, some approximate methods'are required to obtain realistic boundary 

layer calculations. In this section, an approximate procedure is prese~ted for 

specifying the edge boundary conditions. The computations are perforned in t::ree 

steps. The first step is an approximation of the pressure history along varlous 

streamlines in the inviscid flow field. The second step uses the pressure his- 

tory and initial conditions of the streamline to calculate the thennochemical 

state, including entropy, along the streamline. The final step is to match the 

boundary layer mass flow with the mass flow represented by the streamline. 

clcariY or axi aIAtY.4cLr~c .....-.---& . ass~irtljtions are necessary in order thaL litass flows 

be defined. 

Although in the current context, this procedure is applied to shuttle 

flow fields, it is not necessarily limited to this application. For instance, 

the chemical relaxation code (step 2)  can be used for the conpntation of chemi- 

cal re3ctions on any prescribed pressure streamline. 

6.1 CORRELATION OF INVISCIU SHOCK LAYER FLOW FIELD 

The inviscid flow field on the windward pitch plane of a spacc shuttle 

was calculated over a range of flight conditi-ons representative of a typical 

entry trajectory. In particular, thc initial conditions iminediately behind the 

detached shock wave and the spatial pressure history of several streamlines 

were calcul3ted. The correlations presented here were the data base for these 

calcul.ations. 

The crucial features known to d~minate khc flow field property distribu- 

tion arc, the shock surface anc? the body which supports it in a hypersonic ang~e 

of attack flow. For this rcaso.,curve fits were prepared for second-order (cur- 

vature variation) smooth shock and body surfaces and used as defining boundaries 

in the correlation functions. 



In addition it is convenient to characterize the equilibrium hypersonic 

shock layer equation of state properties using an analytic representation as 

oppo~ed to more cumbersome table look-up. These state functions are also pre- 

sented heze. 

The eata correlations are supplied in graph and tabular form and where 

available, in functional Zorm for subsequent use. Included are pressure distri- 

butions, enthalpy ratios at the shock entrance position (transition ratios) for 

each of the selected streamlines, streamline traces (distance along the stream- 

line as a function of body axial coordinate station) and quantitative comparisons 

with available measurements or exact inviscid calculations. 

6.2 GEOMETRY 

Figure 6-1 shows the body oriented coordinate system adopted for the code 

solutions as well as the correlations. Here the windward qenerator axis is 

rotated abc*~t its origin at positive angle of attack, a. The axial distance is 

measured frsm the origin 2 = 0 at nose. The basic coordinates are the distance 

along the body measured from the forward stagnation point, C O ,  or along selected 

stxeamlines, measured where they enter the shock, Ci = 0, fur example, which is 

the entry position for the ith strearnlire. The strezmiines selected for the 

correlations are traced through the shcck lsyer a distance 5 which corresponds 

to a body station distance (axj ' dimensien) ?, given in the graph, Figure 6-2. 

All length measures in the correlations are ratioed to the nose radius, 
- 

Ro. 
r is the dimensionless radial dinension of a point in the shock l~yer meas- 

ured from the body generator axis while Fk,(xi is the radial surface dimension 
at station GI and r (x) is the radial shock dimension at x. y is the coordinate 

6 
measure of r: point in the shock layer measured along a :.orma1 from the body and 

has a valVle 7 (the shock star!doff) at the shock. O6 and Ow refer to shock and 

body inclination angles, respzctively. Both are measured as clockwise angular 

deviations from the normal tc tb.e body axis as shown. The effective shock angle 

at positlve angle of attack, a, is simply 

Thc cocponents of velocity, u, v are orie~ted positive along streanlines 
5 and outwsx-1 f i~n~~c ' .  to them,respectively. Velocities and components appear as 

ratios to the free stream velocity, U,. Shock layzr density p is ratioed to 
the free stream density pm. Shock layer pressure p is ratioed to twice the free 
stream dyn?!'rii~ pressure, although in the ccrrelations, it always appears as ra- 

tioed to the -t~gnation point pressure or the local streamline total pres- 
TO ' 

sure, FTd. The sta.ic enthalpy is ratioed to the square cf the free stream 
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velocity, although in the correlations it is normally ratioed to the total 

enthalpy , 
H ~ o  ' 

Figure 6-3 shows details of the shock layer stand-off geometry. Once 
- - - - 

the body surface variables rw (x) , Ow (F) , K (x) are computed from the curve fit 
W 

expressions, the necessary shock values may t3en be readily computed from the 

wall variables and one additional correlatable paraeter, the shock stand-off, 
- - 
6(x) The geometry of Figure 6-3 is zharacterized by a simple set of defining 

shock wave-surface relations: 

-- - - - 
r6 = r + 6 (x) sin Ow 

W 
(151) 

The mass flow calculations which are used to obtain the y displacements 
of the streamlines in the shock layer, and to establish the position at which 

a streamline enters the boundary layer are based on some additional geometric 

considerations. 

Figure 6-4 shows the geometry illustrating the mass £?.ow balance used 

for the inviscid streamline displacements. Ad~ption of a generator axis nose 

intercept origin for the axial dis2lacement (G = 0) necessitates accounting for 

both the radial offset of the generator axis (A in the figure) and the normal 
- 

dimension, So, which is a measure of the shift of the forward stagnation point 

at angle of attack. The mass flow intercepted by the shock over an annular - 
section of radius, So, is spilled over tiii. leeward side of the body at angle 

of attack. This is accounted for by subtracting this leeward mass flow when 

computing the dimensionless mass flow for a given streamline. 





The geometry leads t o  the following s e t  of r e l a t i o n s  f o r  dimensionless 

mass flow associated with the  i t11 streamline. I n  these equations 2 is the  

rotated angle of at tack  annular radius while p i s  the  l o c a l  flow angle. 

.- - 
Ai = (x .  tan a) 

1 

6.3 CASES 

A selected number of cases from a typica l  s h u t t l e  t r a j ec to ry  (see Section 7) 

were covered i n  the correlat ions and snbsequent c a l c u l ~ . t i o n s .  F l igh t  conditions 

f o r  these cases, which span a Mach number range Erom 9.61 t o  30.2 and an angle-of- 

a t t a c k  range f r ~ m  30 t o  3 4 O ,  are shown i n  Table 6-1. Although the correlations -..:ere 

obtained for a limited angle-of-attack range they a r e  expected t o  be va l id  over a 

much wider range. 

TABLE 6-1 

NAR EWELINE TRAJECTORY 



6.4 EQUATION OF STATE 

The s t a t e  r e l a t ions  f o r  the  equilibrium a i r  shock layer  ca lcula t ions  were 

correlated from the  normal shock parameters given i n  the  Corneil Aero Lab t ab les  

prepared by Witl i ff  and Cur t i ss  (Ref. 63) .  These a r e  based on the  1959 ARDC Model 

Atmosphere. 

The equation of s t a t e  model i s  a pa r t i cu la r ly  simple form yielding sur- 

pr is ing  accuracy i n  nipersonic equilibrium blunt  body shock layer ca lcula t ions  

of many invsst igators .  I n  par t i cu la r  we use the forin suggested by Swigart ( R e f -  

erence 64)  i n  h i s  1963 theore t i ca l  inves t iga t ion  of the b lunt  body angle 'of a t tack  

problem i n  equilibrium a i r  

where y i s  an e f fec t ive  ca lo r i c  r a t i o  on a par t i cu la r  adiabat  (shock ent ry  point )  

and A is the  energy deviation from polytropic due t o  equilibrium gas phase 
0 

chemistry. 

The current  range of cz lcula t ions  co r re la t e  within about 5 percent maximum 

deviation from the  shock t ab le  values t o  the  following forms 



The e f f e c t i v e  shock Mach number, M& f o r  the  angle  of a t t a c k  cases  is given 

These shock s t a t e  c o r r e l a t i o n s  a r e  a l t i t u d e  i n v a r i a n t  over t h e  range of 

a l t i t u d e s  t r ea t ed  i n  t he  7 cases  (Table 6-1). The shock Mach number range of 

a p p l i c a b i l i t y  is  recorded with Equations (160) and (161). 

6.5 BOCP SURFACE AND SHOCK SURFACE FEPFUSENTATIONS 

To insure  smoothness i n  both l o c a l  body sur face  s lope  and curva ture ,  t h e  

body sur face  was represented b y  a connected sequence of f i v e  second order  poly- 

qomials. The r ep re sen t a t i cn  is i n i t i a t e d  a t  t h e  generator  a x i s  i n t e r c e p t  a t  t he  

s h u t t l e  nose (x = 0 ) .  Pivoidanca of higher  o rde r  polynomial r ep re sen t a t i ons  o r  

a l t e r n a t e  func t iona ls  insured  t imely smooth sur face  p r o f i l e  and d e r i v a t i v e  gem-  

r a t i o n  without e ~ b a r k i n g  on a lengthy process of c e d i ~ u s  a n a l y t i c a l  smoothing. 

The body gcaerator  equation i n  t h e  windwara p i t c h  plane i s  

TABLE 6-2 

EODY COEFFICIENTS 

(cy l inder )  

Section 

I 

I I 

I11 

I V  

I 

- 
x a 

-- 

b 

----------- - !-- ---- -- -- 

c 

1.92059 

0.94915 

1.45843 

0.9950:! 

0. 

[o,  0.525) 

] ~ . s 2 5 ,  2-60] 

12.60, 15.2[ 

L15.2, 46.5[ 

146.5, 80[ 

-- - -- 

-0.64868 

0.07651 

-0.02143 

-0.00619 

0. 

I 

0. 

0.2550 

-0.40705 

3.11583 
- 
rw (46.5) 



The symbols [a ,  ,b [  i nd i ca t e  whether o r  n o t  t h e  range l i m i t s  a , b  a r e  

included o r  excluded from the  i n t e r v a l ,  respec t ive ly .  No at tempt  was made t o  f i t  

t h e  boat  t a i l  region. 

The body and shock curves were based on ex tens ive  wind tunne l  shadowgraph 

measurements of s h u t t l e  p r o f i l e s  a t  angle of l t t a c k  repor ted  i n  previous Aero- 

t h e m  ana lys i s  (Reference 65) .  These d a t a  were supplemented by experimental 

shddowgraph t r a c e s  reported by Marvin e t  a l .  (Reference 66) and numerically exac t  

i nv i sc id  angle of a t t a c k  model s h u t t l e  ca l cv l a t i ons  presented by Rakich and 

Kutler  (Reference 67 ) .  

A p a r t i c u l a r l y  s i g n i f i c a n t  f a c t o r  i n  t h e  development of t h e  shock shape 

co r r e l a t i on  f o r  angle of a t t a c k  s h u t t l e  flow f i e l d s  was t h e  observa t ion  t h a t  

t h e  geometrical r e l a t i onsh ips  between Lady and shock su r f ace  were i n v a r i a n t  de- 

 spit^ changes t o  t h e  angle of a t t ack .  The angle  of a t t a c k  e f f e c t s  on shock 

t r a e i t i o n  va r i ab l e s  betwecn about 25O and 50' p o s i t i v e  p i t c h  were recoverable 

by r o t a t i o n  of an assumed f ixed  shock surface-body su r f ace  u n i t .  The shock 

star,;;- ,li: adjusknent was co r r e l a t ed  by accounting f o r  Mach ~lui!ber change with 

6ens i ty  jump across  t he  ro t a t ed  shock. 

A set of r e l a t i o n s  f o r  p red ic t ing  t he  l o c a l  shock stand-off a t  a  spec i f i ed  

body s t a t i o n ,  together  with t h e  shock shape equat ions,  (151) through (1551, a r e  

s u f f i c i e n t  t o  generate  t he  shock sur face  of a  given Mach number, a l t i t u d e  and 

angle  of a t t ack  of i n t e r e s t .  The stand-off c o r r e l a t i o n s  a r e  a s  follows. 

I n  the "afterbody" region (';: 2 1.) t h e  r a t i o  of t h e  "bascl ine" (No;, - 9.61, 

a = 30°, a l t i t u d e  = 164 k f t )  t o  i ts  value a t  the genera tor  a x i s  i s  curnp~ted i n  

t h r e e  segments: 



The base l ine  "de l tas"  may then be cor rec ted  f o r  t he  p a r t i c u l a r  Macb 
"-- 

her altitude and anqle of a t t ack  

The ef  l e c t i v e  shock angle,  h ,  was introduced previously.  

I n  t he  foregoing Equation (165) t h e  dimensionless normal shock wave 
- - 

stand-offs,  6 and 6B0 ( for  the  p a r t i c u l a r  and base l ine  cases)  a r e  computed from 
0 

t h e  hypersonic s i m i l a r i t y  s p h t r i c a l  shock expansion w r i t t e n  i n  terms of t he  in-  

verse of t he  nonnal shock wave dens i ty  r a t i o ,  € 

I n  t he  forebody region t h e  shock stand-off var ia t io :  from its value a t  

t he  generator  a x i s ,  t o  its value a t  t he  s h i f t e d  s tagnat ion  po in t ,  on the  
0 ' SP ' 

windward s i d e  i s  co r re l a t ed  by combining rhe r e s u l t s  of Kaat tayi  (Reference 68) 

and Swigart (Reference 64) .  F i r s t  compute the  r a d i a l  pos i t i on  of t h e  forward 

s tagnat ion  po in t  

- 
(rw) SP 

= 1.34 s i n  a - 0.682 s i n z g 2  a 

- 
Next compute the  v a r i a t i o n  i n  stand-off from rw = 0 t o  (rw) Sp 



where 

Over t he  s h o r t  d i s tance  between forebody s tagnat ion  po in t  and t h e  a f t e r -  

body range cor re la ted  by Equation (164),  a l i n e a r  growth of stan2-off c o r r e l a t e s  

t he  da ta  

- - X - X  

3. = a,, + (T11) - 6sp) 
(1 - F S P )  SP 

* - 
Two addi t iona l  dimensionless met r ics ,  t he  shock wave normal, N(x) and t h e  

shock wtve tangent metr ic ,  e ,  a r e  used i n  the  shock r e l a t i o n s  developed subsequently.  

Both depend on the der iva t ive  of the shock wave t r ace  a i i / a ~ ~ ,  a s  does the  l o c a l  

shock slope. This der iva t ive  is  obtained as follows. Combine Equations (i! 

(152) cbtaining 

... - - 
x = x + 8', - c o t  ewGa - rw) 

Differen t ia te  and rearrange,  obtcining 

Differer l t ia te  Equation (151) and neglect ing terms B ( E )  o r  smaller  we obta in  

and dew/drw can be obtained d i r e c t l y  



Introducing (171) and (172) int-o (170) the expression used for the re- 

quired derivative is obtained 

For ew > 0 

andxl = 0, for Ow = 0 

- 
The body slope, x1 and the body curvature are obtained directly from 

w 

differentiating Equation (163) . 
A comparison of the accuracy of the shock and body correlation vs xeasured 

values is presented in the fAlouing graphs. 

Figures 5-5, 6-6, and 6-7 show comparisons 3f computed ~s measured 

(shadowgraph) traces of the shock slope supported by the shuttle model bodics 

(Refc--'-ncer P1 and P3). The more sensitive body and shvck siope results are ccm- 

pared in Figure 6-7. Figures 6-5 and 0-6 show the overall results and details 

restricted to the forebody region respectively. Profile 2, is the selected body 

shape function generated by the coefficierlts in Table 6-1. 

6.6 COMPUTATIOS OF THE SHOCK TRANSITION VARIAELES 

In the generalized body-oriented coordinate systems for the shock layer 

previous1;r introduced, a formal development of the jump relations is obtained. The 

metric direction normal and tangential to the shock suxface are readily detcnnined 

in terms of the forcgoing bcdy and s'-r~ck surface re1't.i 1s and their derivatives. 

With this information, the remaining shock transition variables are readily 

computed for shock intercepts in terms of arbitrary body stations F, selected for 

th? analysis. 

Formulation of the shor;k rclati~ns are an extension of the previously re- 

ported NASA supported work of References 69 and 70 with modifications suggested by the 
4 

formulation of Webb e r  al., (Reference 71). 
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R e f e r ~ n c e  is  made t o  t h e  pr inc ipa l  a x i s  vec tor  d i r e c t i o n  cosines s h c m  i n  

FIgure 6-8, t he  geometry introduced i n  Figures  6-1 and 6-2 and the  non-dimensional 

scheme used f o r  t h e  flow q u a n t i t i e s ,  introduced i n  Sect ion 2. 

+ 4 

Y e  choose e  = - 
Q 

e where $ i s  the aximuthal angle  and t h e  d i r e c t i o n  
z ' 

metr ic  is outward. 

The d i r e c t i o n  cosines a r e  w r i t t e n  

(body normal) 

(body tangent)  

(binormal) 

+ -b + 
rj, = ex cos eb - e s i n  0 

Y h 

+ -+ + 
tb = e s i n  8 + e cos 8 

X b Y b 

-f 4 

Kult iplying % by cos eb and $ by s i n  Bb and adding, y i e l d s  fol; e X 

-P + 4 

e = r c s s  Ob + tb sin Bb 
X b  

-+ + 
Multiplying n by -s in  0 amd < by cos 0 and adding, y i e l d s  f a r  e  

b b b Y 



-* -+ 
e = - r sin €Ib + fb cos €Ib 
Y b 

While, quite simply 

-, 

The normal and tangent surface metrics of a shock surfme X(r6,$) arbi- 

trarily oriented in our body geometry for positive angle of attack may then be 

written 

-. 
C = cos a + sin a 

The derivative of the shock trace is obtained using Equation (173), 

the $ derivatives are neglected close to the plane of symmetry on the windward 

side. 

The free stream velocity can next be decomposed into components exterior 
+ -* 

and tangent (t-) or normal (n61 to the shock surface at angle of attack, under 
0 

the pitch plane symmetry simplification. See, for example, Reference 71. 

The components are 

and 



To obtain the relations used first write the velocity component directions 

('179) and (180) in terms of the body direction cosines, equations (175) , (176) , 
a: 3 (177), obtaining 

+ z6 = (:)[< (-. 6, + sin 0, - - (i, cos 0 b - nbsin 0,) (%)I (181) 

d? dii ) a: J 

\ -, * -.. 

' 6  = -(i;)211pi a(-s ebb a -($))-sin %(f(i)- sin a) 

+ a (sin eb (cos a - $))+ cos (@) (3 sin a) \ i (182) 

Now ' .e free stream vector velocity may be expressed compactly in terms 

of the developed normal and tangential metric coefficients, Equations (181) and 

(182). 

' 
3 Rankine-Hugoniot relations for an oblique shock wave are summarized 



For computation we combine t h e  foregoing metric expression f o r  t h e  f r e e  

, stream ve loc i ty ,  Equation (183) , t h e  Rankine-Hugonict r e l a t i o n s ,  Equation (184) 

and the equat ion of s t a t e ,  Equation (1591, ob ta in ing  t h e  r e l a t i o n s  i n  o rde r  of 

their c a l c u l ~ t i o n .  For any se l ec t ed  s t a t i o n  2 ,  following c a l c u l a t i o n  of a l l  of 

t h e  body sur face  ar - -hock sur face  v a r i a b l e s  compute 

-, - 
V6 = - s i n  8 

C 

W 
a -.- (1 - (187) 

i 

and 

I n  addi t ion  we compute t h e  t o t a l  p r e s su re  a t  t h e  l o c a l  s t reaml ine  i n t e r -  

s e c t  with t h e  shock f r o n t  

and the  t o t a l  enthalpy 



Using these to form the streamline to streamline correlation ratios 

- - 
P - h - and 
P 

T6 H ~ 6  

Equations (185) through (1911, the shock surface and body surface relations 

and a streamtube integration of the streamwise momentum were calculated for the 7 

trajectory points using a desk calculator and the correlation relations for 9 

streamlines. 

6 . 7  STREAMTUBE CHEMICAL RELAXATION 

The streamtube code was developed to interface with the BLIMP/KIKET code 

and the prescribed pressure distribution presented in previous sections. By 

matching mass flow rates it is thus possible to approximate both nonequilibrium 

chemistry and variable entropy at the edge of the bocnZary lager. Although any 

available reacting streamtube code could be used, the code described below was 

written so that the calculation of themochemical data would be identical to that 

used in BLIMP/KINET. Thus there would be no incompatibilities In the chemistry. The 

computational procedure is implicit and is therefore numerically stable even for 

large step sizes. 

The equations to be solved are the combined energy and momentum equation 

and a set of n-1 specie equations 

subject to the co!lstraints that 



Let  m denote the  s p a t i a l  s t a t i o n  along t h e  s t r ean tube  and 2 be t h e  i t e r a t i o n  a t  

s t a t i o n  m. Then a Newton-Paphson procedure was used t o  so lve  t h e  above q u a -  

t i ons .  Assume t h a t  t h e  s o l u t i o n  is known a t  m-1  (which could f o r  i n s t ance  be 

t h e  i n i t i a l  condi t ions)  then t h e  independent v a r i a S l c s  h  and SPi a t  s t a t i o n  m 

f o r  the R - t h  i t e r a t i o n  is r e l a t e d  t o  the known n-1 s t a t i o n  and 2.-1 i t e r a t i o n  

by t h e  equat ions 



where 

Equations (195) and (196) represent n equations with an equal number of unknowns, 

namely Ah, Asp1, AspZ..   ASP^-^. Implicit unknowns are 

Equations (195) and (196) are solved iteratively.with a step size constraint 

based simply on the number of iterations required to obtain a converged solution. 



SECTION 7 

CALCULATIONS FOR REPRESENTATIVE SHUTTLE VEHICLE 

For these ca l cu la t ions  nonequ l lS r iun  chemistry i n  both the  inv i sc id  and 

viscous regions were considered. P i t ch  plane ca l cu la t ions  were made f o r  t h e  

windward s i d e  of t he  Rockwell In t e rna t iona l  o r b i t e r  (Figure 7-1) a t  f l i g h t  con- 

d i t i o n s  representa t ive  of t h e i r  2007 base l ine  t r a j e c t o r y  (Figure 7-2). The p i t c h  

plane ou t l i ne  of t he  vehic le  a t  angle of a t t a c k  was assumed t o  be t h e  generator  

of an axisymnetric body with a shock shape deterniined from co r re l a t ions  of wind 

tunnel  shadowgraphs (Reference 65) . 
A simple-in-theory bu t  involved-in-practice procedure was used t o  est imate 

t he  nol~eq??il I-briurr! . ~nhnan i se r . t rop ic  ccr?c?iticns a t  the edqe of t h e  bcnndx-11 layer.  

The.follotving s t eps  were required f o r  each t r a j e c t o r y  po in t .  

1. Calculate  body pressure d i s t r i b u t i o n  

2. For a  prescr ibed  shock shape, es t imate t h e  pressure  d i s t r i b u t i o n  along 

k v a i o u s  s t reaml ines  i n  t he  inv i sc id  flow. 

3. For each streaml.ine, s t a r t i n g  with a frozen obl ique shock s t a t e ,  

chemically r e l a x  along t h e  prescr ibcd pressure-dis tance h i s t o r y  t o  

y i e l d  the  then~~ochemical  s t a t e  along each s t reainl ine.  

4.  Estimate the  boundary layer  mass flow using equi l ibr ium assumptions 

and compare with t h e  mass flow represented by each s t reamline t o  de te r -  

mine where t h a t  s t reamline should e n t e r  t h e  boundary l aye r .  Then from 

3 the thcrmochemical s t a t e  a t  t he  edge of t he  boundary l a y e r  i; known. 

The cur ren t  invj-scid flow ca l cu la t ions  awe not  appl icable  i n  t h e  s tagnat ion 

reg ior~  except i n  an in tegra ted  sense. I n  f a c t  no s t reamline approach would be 

v a l i d  on the  s tagnat ion l i n e  fo r  nonequilihrium condit ions because of t h e  zero 

ve loc i ty  l i m i t .  Thus, t he  noncqu i l i b r im  so lu t ion  in  the s tagnat ion  region was 









c a l c u l a t e d  us ing  a  v i s c a u s  shock l a y e r  o p t i o n  and these s o l u t i o n s  were t h e n  matched 

with t h e  s o l u t i o n  from (4) &ove t o  u s e  a s  t h e  edge c o n d i t i o n s  f o r  a boundary l a y e r  

c a l c u l a t i o n .  

7.1 SURFACE PPESSURE DISTRIBUTIONS AND APPHOXIMATE BOUNDARY LAYER W S  FLOW MTE 

Surface  p r e s s u r e  d i s t r i b u t i o n s  for t h e  c a s e s  g iven  i n  Table 6-1 were 

computed us ing  t h e  modified c o r r e l a t i o n s  p resen ted  i n  Reference 71a and a r e  shovm 

in Figure  7-3. S imi la r  d i s t r i b u t i o n s  could be  c a l c u l a t e d  v i a  a  smooth t r a n s i t i o n  

f r :m modified Newtonian v a l u e s  i n  t h e  v i c i n i t y  o' t.hc noss t o  l o c a l  t a n g e n t  cone 

va lues  d o w ~ ~ s t r c m  a s  suggested i n  Reference 65. With t h e s e  p r e s s u r e  d i s t r i u u t i o n s ,  

boundary l a y e r  c a l c u l a t i o n s *  were used t o  determine t h c  bow ?ary l a y e r  c h a r a c t e r i s t i c s  

on an e q u i v a l e n t  axisymmetric body. Since  a x i a l  synmetry was assuiied, t h e  mass 

flow r a t e  a t  any g iven  body s t a t i o n  is  d e f i ~ l e d  and can b e  r e l a t e d  t o  a s t ream tube 

mass flow. Typical  mass flow r a t e s  f o r  4 c a s e s  a r e  show11 i n  F igure  7-4. Of t h e  

c a s c s  a iven i n  Table 6-1, on ly  c'ises 1, 2 ,  4 and 7 (t = 25C, 400, 80C, I400 seconds) 

were considered f o r  ccmplete h e a t i n g  a n a l y s i s .  

Since  chemical  r e a c t i o n s  alonq an i n v i s c i d  s t a g n a t i o n  s t r e a m l i n e  a r e  n o t  

w e l l  de f ined ,  t h e  FI,IbP/KINCT v i s c o u s  shock l a y e r  o p t i o n  was used t o  d e t c n , ~ i n e  t h e  

thexmochemicsl s t a t e  i n  t h e  shock l a y e r .  A n o r c a t a l y t i c  w z l l  was assurr,ed s ince  

primary i n t e r e s t  was i n  t h e  s t a t e  at some pcl in t  which would represent t h e  edge of 

t h e  boundary l a y c r .  It was a l s o  asalmed t h a t  t h e  shock wave was chemical ly  Frozen. 

A t y p i c a l  s e t  of d i s t r i h t i o n s  :or t = 300 seconds is showr! i n  E'igure 7-5 through 

7-7 f o r  t h r e e  body s t a t i o n s .  The r a p i d  d i s s o c i a t i o n  immediately d o ~ n s t x e a n ~  of 

t h e  shock wave is e v i d e n t  however t h e  remainder o i  t h e  shock l a y e r  is  n o t  v e r y  

r e a c t i v e .  S imi la r  shock l a y e r  s o l u t i o n s  were ob ta ined  f o r  t = 250, 400, and 1400 

seconds f o r  esLimating Lr1mdclry condi t iorrs  a s  desc r ibed  i n  Scctiorl  7-4. 

7.3 STREWINE Pf;T:SSURE N,!D ZNTHTiLPY CALCULATIONS 

The cn tha lpy ,  p r e s s u r e ,  d e n s i t y ,  and v e l o c i t y  c ~ r n r y ; ~ e n t s  were c ~ r ; p u t e d  

f o r  9 s c l c c t e d  s t reaml ine  e n t r a n c e s  a t  thc? shock f r o n t  incl i ld ing t h e  body s t r e a m l i n e .  

These s t reaml ine  shock jump c o l ~ d i t i o n s  and a dcterini .naticn of t h e  p r c s s u r c  cxpa l~s ion  

* I n t e g r a l  boundary l a y e r  c a l c u l a t i o n s  W C L L  used h e r e ,  however any r e l i a b l e  procedure 

incl-udincj t h e  BLIbiP code could be used.  4 
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downstream on individual stream tubes provided the  i n i t i a l  and boundary conCl;tioils 

f o r  the subsequent flow f i e l d  chemistry and react icg  boucljry layer  solut ioqs.  

The jump conditions a re  computed a t  a r b i t r a r i l y  selected p o s i t i o ? . ~  an tjle 

computed shock surface from the  shock re la t ions  developed i n  the  previous sects>;..- - - - 
In  the  presented analysis ,  the  r s t i o s  c2fiT2, k2/GT, p2, u2 , and v were found t o  

2 

be useful  parameters f o r  applicat ion t o  the  subsequent code solut ions.  

From the  shock wave surface re l a t ions ,  equations i 5 1  through 158 and Equ.-tion 
... - 

C - 
(173) , the  parameters 6, z6 , e 6 ,  X6, X6 , r6 a r e  obtained. Next the  i n i t i a l  swrep 

o r  arc of the streamline a s  it departs  from the  shock cor re la t e s  simply as the  

sec tor  of a cha rac te r i s t i c  circumscribed semicircle i n  the  forebody (and tends t o  

zero in the afterbody) 

The normal displacement, 

of any streamline is next computed fo r  a l l  streamlines which entered the  shock up- 

stream of the shock s t a t i o n  being compute8. This is  accomplished using Equation - 
(158) t o  determine the  dimensionless mass flow, h f o r  a l l  streamlines. The pro- 

cedure is, as follows. Consider a streamline entering the shock a t  the  jth s t a t ion .  

the  upstream entering streamlines (J-1 , J-2, . . . have normal displacements, measured 

?.t the j t h  s t a t ion ,  given by 

The streamline path lengths a r e  then computed, 



A p l o t  of the  calculated streamline path lengths a s  a function of body sta- 

t ion ax ia l  coordinate 2 appears i n  a previous sec t ion  (Figure 6-2). 

To compute the  pressure d i s t r ibu t ion  along the  streamlines co r re la t ive  

procedures were developed. Observations derived from wind tunnel da ta  and exact  

n\mte..rical inv i s r id  flow Zield ca lcula t ions  were used a s  a b a s i s  f o r  thu ~ L O L  I u e  

and r e l ~ t i o n s  developed. 

A r egu la r i ty  i n  the  body surface pressure d i s t r i b u t i o n  f o r  both adiabat ic  

aid nor-adiabatic shock layers  supported by long, a n a l y t ~ c a l l y  smooth, blunt- 

nosed body surface p r o f i l e s  a t  zero angle of a t t ack  has been exploi ted i n  many 

invisc id  flow analyses. In  p a r t i c u l a r ,  under a NASA sponsored study Buckingham 

and Hoshizaki (Reference 72) showed t h a t  f o r  a f f i n e l y  r e l a t e d  power law bodies 

with slenderness r a t i o s  (L/D > 3)  s e r i e s  co r re la t ions  e x i s t  f o r  both pressure 

and convective heat  t r ans fe r  t h a t  are independent of both Mach number and 

a l t i tude .  These corre la t ions  a r e  v e r i f i a b l e  f o r  a restr4.cted but  useful  range 

of hypersonic reentry t r a j e c t o r i e s .  The p r o f i l e s ,  vhich posses spher ica l ,  

obla te  and prola te  ogival ,  or paraboloid noses generate corre la table  pressure 

d is t r ibut ion=.  Success of the  corre la t ions  depended, i n  p a r t ,  on t r e a t i n g  the  

pressure d i s t r ibu t ion  as  a r a t i o  of  the  l o c a l  pressure t o  t h e  t o t a l  pressure on 

the streamline, P/PT. 

From s tudies  of exact numerical invisc id  flows on s h u t t l e  vehic les  a t  angle 

of a t tack  (Rakich and Kutler,  Reference 67) experimental wind tunnel s h u t t l e  da ta  

(Marvin e t  a1 Reference 66) and the  extensive data  tabulated by B a r t l e t t ,  Morse, 

and Tong a t  Aerotherm (Reference 6 5 ) ,  the  constancy of the  r a t i o  P/P on each 
T 

streamline along normal 7 a t  a pa r t i cu la r  body s t a t i o n  may be noted. Some r e s u l t s  

of previous theore t i ca l  s tud ies ,  using exact  numerical method of c h a r a c t e r i s t i c s  

and f i n i t e  differepze solu t ions  help t o  subs tan t i a t e  t h i s  observation. For in- 

s tanca,  Fizllres 7-8 and 7-9 a re  f o r  axisyrnmetric flow pas t  an ogive (L/D = 3.5) 

and sphere-cone-cylinder (L/D = 12) method of cha rac te r i s t i c s  with equilibrium 

a i r  (Reference 7 3 ) .  Similar r e s u l t s  have been obtained by reducing the  p r o f i l e  

da ta  of Rakich and Kutler (Reference 67) and experimental da ta  presented by 

Marvin (Reference 66). S igni f icant  deviat ion from constant P/P along a normal 
T2 

was r e s t r i c t e d  t o  the forebody region of t h i s  representat ive sample of both 
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s h u t t l e  and shut t le - l ike  slender bodies of revolut ion a t  various angles of 

attack. To an t i c ipa te  these r e s u l t s  examine the  X and Y invisc id  momentum 

equations. For the adopted coordinate system, in  d imensionles~ terms, these  

are : 

Dropping t e r n s  O(E) with respect  t o  terms re ta ined i n  t h e  shock layer  

it is seen t h a t  we recover the  usual  strem tube and normal manenturn equations. 

Dividing (202) by the  t o t a l  pxessure on the  streamline and in tegra t ing ,  

along the  body surface from the  stagnation point  y ie lds  

which i n  the  forebody a s  6 -+ 0 approaches the stagnation l i m i t  

LIM ~ ( 5 j  + 

c + o  
p(S)/p3 - 1 = 0 => - 

PT 

In  the  afterbody as  6 + m t h e  pressure approaches the  vacuum limit i t h e  stream tube 

"faul t" ,  unlimited decay of momenta) 

So t h a t  an expected solu t ion  of the s t r e m  tube momentum equa",ion subject  

t o  these limits near *.e stagnntiorl point  (variable area S ) would have the  form 
5 



= 1 - Constant * 5 N 

Equation (204) is  c l e a r l y  inappropriate f o r  the  stream tube a t  la rge  5 .  
iiowever, a s  noted, an asymptotic l i m i t  pressure must be app l i ed  t o  insure t h a t  

the  stream tube expansion lhit is  not exceeded. 

The dependence on curvature may be deduced from an in tegra t ion  of the  y 

momentum equation, Equation (203) following div is ion  by the  t o t a l  pressure. 

-- - - 
For 5 -+ UJ PU * and (L)' = f ( y )  = K 6  K w = o  (206) 

Pr 6 

Hence _o/p may be expected t o  approach a constant value along a given nor- 
T 

rnal. The strong entropy layer  e f f e c t  on pressure is  absorbed by using the  r a t i o  

of the  loca l  pressure t o  the  "local"  streamtube t o t a l  pressure. 

For 6 -' 0 on the  other  hand, bu2 + 0 and from (205) 

O r  the  t o t a l  pressure va r i a t ion  i n  the  forebody is l i n e a r l y  dependent on 

the  curvature variat ion.  In  our s impl i f ica t ion  it is assumed t o  vary proportional 

The present r e s u l t s  co r re la t e  i n  the  form implied by Equation (204). Along 

the  body streamline we f ind  



For (a) L) (A) 
PT PT Limit 

While 

(1) a 6in2a + 0.11 b i n  a For 150 5 a 1 .53.50 

P~ Limit 

(209) 

In the  shock layer  (0 < 5 8) t he  presented r e s u l t s  are adjusted t o  

co r re la t e  i n  accordance with Equation (207) 

- - 

Here 

- - - 
K = K (maximum) - ( j i  = 0) 

W W 
0 

- K" 

The r e l a t i v e  invariance of the  streamtube pressure co r re la t ions  t o  changes 

in reentry t r a j ec to ry  conditions is i l l u s t r a t e d  i n  the  accompanying corre la t ion  

p l o t s  Figures 7-10, 7-11 and 7-12 f o r t h e  7 cases ( t r a j e c t o r y  points)  previously 

l i s t o d  i n  Table 6-1. On these p l o t s  appear the  corre la t ion  ca lcu la t ions  developed 

by the  procedures introduced here p lo t ted  agains t  the  mean values taken from t h e  

references previously l i s t e d .  

Tables 7-1, 7-2, and 7-3 suunnarize the  numerics f o r  the 7 angle of a t t ack  

shock layer  flow s i tua t ions  t r ea ted  i n  the  invisc id  analysis .  The streamtube 

pressure d i s t r ibu t ions ,  i n  terms of p/pS shown i n  Table 7-2 a r e  v i r t u a l l y  in-  

va r i an t  over the  t r a j ec to ry  range considered in this analys is  however Mach number 

and angle of a t tack  e f f e c t s  a r e  present i n  the  pressures,  ps/pT v i a  the  computed 

l o c a l  conditions behind the  shock wave. These i n l t i a l  condit iogs behind the  shock 

wave a re  presented in  Table 7 ' f o r  each t r a j e c t o r y  point .  
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7.4 CHEMICAL RELAXATION ALONG STREAMLINES 

Using the  pressure dis t r ibut ions  given i n  Table 7-2, the i n i t i a l  conditions 

given i n  Table 7-3 and an i n i t i a l l y  undissociated gas; the  streamtube code was 

used t o  determine the thermochemical s t a t e  along the streamlines. The chemical re- 

action data given i n  Column 1 of Table 5.7 was used since the comparisons of Sec- 

t ion 5 indicate t h i s  s e t  t o  be the more reactive of the two examined, thus pre- 

dicted heating ra tes  should be conservatively high. Calculatims were made fo r  

t = 250, 400, 800, and 1400 seconds and typical  resul ts  fo r  t = 800 seconds are 

shown i n  Figures 7-13 through 7-17. The mass flow represented by each of the stream- 

l ines,  was calculated from Table 7-1 and compared with &e boundary layer flow ra tes  

shown i n  Figure 7-4. The 'match pdints'  are shown i n  Figures 7-13 through 7-14 and 

therefore specify the boundary layer edge conditions a t  various locations on the  

body. Blending of these soiutions with the viscous shock layer r+ . u l t s  (Section 

7.2) was achieved by plott ing shock layer entropy ( a t  constant TI) a s  a function 

of x and selecting the entropy which blended best  with the  predicted downstream 

boundary layer edge entropies. This is shown i n  Figure 7-13; then other variables 

enrhalpy and mass fraction, are taken a t  t h i s  same value of TI and compared with 

predicted downstream values. A s  shown i n  Figures 7-14 through 7-17, the tran- 

s i t ion  -mm shock layer ~ralues t o  predicted downstream values is surprisingly good 

e%cept in the case of NO mass f ract ion where due t o  an overshoot behavior, small 

changes i n  "matchpoint' location x can r e su l t  in large changes i n  mass fraction. 

Similar resu l t s  were obtained fo r  the t = 400 and 1400 second cases; however a 

significant interpretation d i f f i cu l ty  :as noted in  the t = 250 second case which 

is a t  a high a l t i tude  and therefore a low density. A t  these entry conditions, the 

shock layer is fu l ly  viscous so t ha t  the val id i ty  of a boundary layer analysis is 

questionable although shock layer solutions would still be valid. This question 

w i l l  be deferred t o  Section 7.6. 

Froan the above procedure, edge values of entropy, enthalpy and specie mass 

fractions for  t = 400, 800 and 1400 were obtained and are  shown i n  Figures 7-18 

through 7-22 a s  functions of the  boundary layer coordinate, S. These were the  

distr ibutions used i n  subsequent nonequilibrim boundary analyses. 
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7.5 HEAT TRANSFER ON SHUTTLE VEHICLE 

Using the  edge conditions given in Section 7.4 and the  surface c a t a l y c i t i e s  

given i n  Section 5.6, nonequilibrium heat  t r a n s f e r  r a t e s  t o  the  p i t ch  plane of the  

R I  s h u t t l e  vehicle were calculated.  The r e s u l t s  a r e  shown i n  Figure 7-23 along with 

the values predicted with equilibrium BLIMP and an i sent ropic  edge expansion. 

Only the  400, 800 and 1200 second cases a r e  shown s ince  the question of t h e  val i-  

d i t y  of boundary layer  assumptions a t  the  a l t i t u d e  corxesponding t o  t = 250 

seconds has not: ye t  been resolved. The nonequilibrium assumptions a r e  seen t o  

I reach a peak a t  a s t a t i o n  s l i g h t l y  removed from the  stagnation point  whereas the  

equilibrium, i sent ropic  edge solu t ions  place peak heating a t  the  stagnation point .  

This s h i f t  is  due to  entropy 'ayer 'effects  r a the r  t h a t  chemistry e f f e c t s  a s  shown 

i n  Figure 7-24 where solu t ions  using various assumptions a r e  shown. 

From Figure 7-33 it is seen t h a t  some small benef i t  is a t t a ined  by t h e  

reduced ca ta lyci ty  a t  the  stagnation point  however the re  is  an apparent penalty 

downstream. Again t h e  discrepancy is  dzle t o  entropy layer  e f f e c t s  a s  shown in 

Figure 7-24 where nonequilibrium and equilibrium solut ions  with entropy layer  a r e  

f conpared. 
L 

It appears from Figure 7-24 t h a t  the  b e n e f i t s  of the  s l i g h t l y  reduced 

c a t a l y c i t i e s  derived i n  Section 5.6 Cave only small benef i t s  however f u l l y  non- 

c a t a l y t i c  walls  can reduce heat ing r a t e s  ly- 25-50% throughout the  length of the  

vehicle. 

One other possible anmoly appears i n  Figure 7-24. The semicatalyt ic  and 

equilibrium entropy layer  curves i n t e r s e c t  a t  about s = 45 f t .  and is mainly a 

chemistry e f fec t .  In  the -nonequilibrium case the  boundary layer  was c lose  t o  fro- 

zen so  t h a t  equilibrium assumptions would r e s u l t  i n  th icker  boundary l aye r s  s ince  

homogeneous recombination behaves l i k e  a source. Thicker boundary layers  r e s u l t  

i n  reduced heat  t r ans fe r  which beyond s - 45 f t .  is apparently g rea te r  than the  

e f f e c t  of reduced surface recombination f o r  the  assmed surface c a t a l y c i t i e s .  

The accuracy of the  r e s s l t s  shown in Figure 7-23 can be improved by i t e r -  

a t ion  on the  edge boundary conditions. The cxis t ing  solu t ion  can be used a s  a 

b e t t e r  approximation t o  the boundary layer  mass flow f o r  matching t o  the  invscid 

solut ion.  Note t h a t ,  unless displacement e f f e c t s  a re  l a rge  (which would be the  

case a t  very high a l t i t u d e s ) ,  t he  invisc id  so lu t ions  do not change. 
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The s tagnat ion  pressure  f o r  t h e  t = 250 seconds case  is  an o rde r  of mgn i -  

f 
tude less than t h a t  at  t = 400 seconds, namely 0.0014 compared t o  0.018 atm. ~t 

6 

t = 400 seconds a matching of shock l aye r  and boundary l a y e r  s o l u t i o n s  s imi i a r  t o  

t h a t  shown i n  Figure 7-13 through 7-17 was obtained even though t h e  viscous zone 

occupied a s i g n i f i c a n t  por t ion  of t h e  shock l aye r .  However, a t  t = 250 seconds, 

boundary l aye r  pred ic t ions  with BLIMP and BLIMP/KINET show a th ickness  g r e a t e r  

than t he  predicted shock l aye r  thickness .  X comparisc.l of shock l a y e r  and 

boundary l aye r  so lu t ions  a r e  shown i n  Figures  7-25, 7-26 and 7-27. Shock l a y e r  

assumptions p red ic t  a stand-off d i s t ance  of about 0.16 f e e t  whereas var ious  

boundary condit ions imposed on t h e  boundary l a y e r  (see Figure 7-25) r e su l t ed  i n  

predicted boundary l a y e r  t h ~ c k n e s s e s  between 0.2 and 0.45. Since t h i s  i s  not  

physical ly  poss ib le  one mcst conclude t h a t  e i t h e r  t h e  shock l aye r  p red ic t ions  

o r  t he  boundary l a y e r  p red ic t ions  a r e  inva l id .  The l a t t e r  i s  most l i k e l y  s ince  

the  predicted shock stand-off d i s t ances  a r e  i n  general  agreement wi th  the  pre- 

d i c t ions  of Reference 76 f..r a hypersonic dens i ty  r a t i o  of 1/10. Fur ther ,  as 

sl~a::ii i n  tile shock layer i;urvc. i n  F i y u ~ c  7-25, t h e  i i ~ f l u e n c e  of the  w a l l  extends 

throughout t he  shock layer ;  t h a t  is, t h e r e  is no i n v i s c i d  region. From 

Figure 7-27 it is apparent t h a t  t h e  shock l a y e r  r e s u l t s  cannot be approximated 

r, 
; by frozen boundary l a y e r  edge condit ions (curves A and D). 

Although near t h e  s tagnat ion  poin t ,  b o u ~ d a r y  l a y e r  assumptions a r e  not  

va l id ,  t h i n  shock l aye r  assumptions can lead  t o  a b e t t e r ,  though r igorous ly  

no t  completely v a l i d ,  p red ic t ions .  However downstream from t h i s  region the  <. 

shock layer  is not  t h i n  so  t h a t  these  p red ic t ions  become i n v a l i d  and stil l  f u r t h e r  

downstream, condit ions may be such t h a t  boundary l aye r  assumptions a r e  once 

again va l id .  Thus, although so lu t ions  can be obtained wi th  boundary l aye r  

assumptions, one wouid be h e s i t a n t  t o  p lace  much confidence i n  them s i n c e  i n i t i a l  

condi t ions and boundary l aye r  edge condi t ions  cannot be adequately defined.  







SECTION 8 

SUMMARY AND CONCLUSIONS 

A nonequilibrium boundary l aye r  code has been developed which r e t a i n s  a l l  

of the  boundary condition genera l i t i e s  of M e  equilibrium BLIMP code. Both 

laminar and turbulent  boundary l aye r s  a re  permitted however no a t t c m ~ t s  were 

made t o  resolve the question about the  v a l i d i t y  of standard chemical k i n e t i c s  

models i n  turbulent flows. The code BLIMP/KINF': was used fcr  extensive 

s tudies  on the boundary layer  and shock layer  behavior i n  the  stagnation region 

of both s h u t t l e  and RV s i z e  vehicles.  

A procedure has been developed t o  approx.imate n o n c q u i l i b r i ~ ~ ~  and non- 

iscntxcpic tharmcchmicel s t a t e s  a t  the  ease of a boundary l.ay2r cn  the pitch 

plane of typica l  s h u t t l e  vehicles.  

The ca ta lyc i ty  of typica l  s h u t t l e  TPS mater ia ls  i n  d issocja ted  a i r  

was es t ix~ated  from a sampling of a r c  jet data.  This da ta  and the  boundary layer  

edge co;*ditions were used with the  BLIMP/KINET code t o  ca lcula te  s h u t t l e  heat ing 

r a t e s  i n  lminax  and turbulent  flows. Some conclusions from t h i s  inves t iga t ion  

are given below 

1) The ca ta lyc i ty  of typ ica l  TPS mater ia ls  such a s  LI-900, LTV coated 

carbon-carbon and coated columbium 1s estimated t o  be about 1020 cm/ 

second f o r  0 recombination and about 312 cm/second f o r  N recombina- 

t i o n  a t  enthalpies between 2000 and 14000 Btu/lbm and pressure of about 

0.01 atmospheres. 

2) Entropy layer  e f f e c t s  are e s s e n t i a l  whether equilibrium o r  nonequilib- 

rim e f f e c t s  a re  considered. 

3) Noncatalytic walls  can reduce h e a t h g  r a t e s  on t h e  s h u t t l e  vehic le  by 

25 -50% however,for the  c a t a l y c i t i e s  estimated from a r c  j a t  d a t a  only 

minimal nonequilibrium e f f e c t s  a r e  predicted. 



4)  For t1.e poxtion of the entry t r i j e c t o r y  betw.-?r. t = 250 and t = 1400 

seconds of pressure r a t i o ,  t2e d i s t r ibu t ion  (P/e ) along streamlines 
G 

i s  not  sensitive t o  a l t i t u d e ,  ve loci ty  and small angle of a t t ack  

changes. These e f f e c t s  a r e  impl ic i t  i n  the  i n i t i a l  ccndit ions behind 

the shock wave. 

5) In most cases nonequilfirium chemistry ca lcula t ions  do not  require any 

more nodal points  t.tan t he  comparable equilibrium calcula t ions .  
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APPEKDIX A 

INPUT DATA FOR SURFACE CATALYZED REACTIONS 

i 
t Surface reaction rates are calculated as i f  heterogeneous chemistry were 
I 
: of the same form as honogeneous chemistry, i .e. ,  for the recombination of oxyqen 
1 

t a t ~ m s ,  the net surface reac'ion is  

t 
I The molar production rate is then 
t 
i 

, 
The term pg /R w i l l  be small for noneqtcilibriurn conditions so that  ! 

f 
2 P 

i This relationship indicates that the catalysis reaction is second order due t o  

? the form of Equation (A-1 ) .  However there is some evidence that  the reaction 
t 
i is  f i r s t  order or possibly something intermediate since catalysis is  not really 

! a one step reaction. Any reaction order can be approximated by rewriting Equa- 
t 

I tion(A-1). For instance, t o  specify surface recombination as a f i r s t  order reac- 
t 

tion, one can write 

Then Equation (A-3) becomes 

I 



I n  order t o  express kf i n  terns of surface catalycity, one can write 

For perfect gases 

so that  

Thus for the f i r s t  order reaction (A-4), kw and kf are relate6 by 

where T (OK) and kw (cm/sec). In terms of input variable 

FKF = 0.025 kw 

POW = -1.0 

1 Similar relationships could be obtained for other reaction orders. Note that i n  

the above formulation a dependence of kw on temperature could be accounted for 

in the form of 



where kw is some reference value. Then 
ref 

FKF = 0.025 kw 
ref 

POW = -1.0 + n 

EAK = E 
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