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We introduce a new formalism to study nonequilibrium steady-state currents in stochastic field theories. We
show that generalizing the exterior derivative to functional spaces allows identifying the subspaces in which
the system undergoes local rotations. In turn, this allows predicting the counterparts in the real, physical space
of these abstract probability currents. The results are presented for the case of the Active Model B undergoing
motility-induced phase separation, which is known to be out of equilibrium but whose steady-state currents have
not yet been observed, as well as for the KPZ equation. We locate and measure these currents and show that
they manifest in real space as propagating modes localized in regions with non-vanishing gradients of the fields.

Statistical physics aims at describing large-scale phenom-
ena emerging from interacting elementary constituents, rang-
ing from chemicals to animals, from bacteria to traders. Ex-
cept when systems satisfy detailed balance, no general the-
ory can be systematically applied to study such systems. To
understand how microscopic mechanisms drive a system out
of equilibrium, physicists have been quantifying the distance
to equilibrium using diverse observables, such as the entropy
production [1–5], violations of the fluctuation-dissipation the-
orem [6, 7], or ratchet currents [8–11]. Among those, the
stationary probability current plays an important role since
its knowledge, together with the stationary probability mea-
sure, entirely determine the equations of motion [12–15]. For
systems driven out-of-equilibrium by external fields [16–18]
or boundary conditions [19, 20], probability currents directly
lead to real-space currents—e.g. of energy or mass—that can
be observed and quantified easily. In many other situations,
as in active systems [21–26], surface growth problems [27]
or reaction-diffusion processes [28], probability currents live
in high-dimensional configuration spaces and have no simple
low-dimensional projection in real space, which makes their
study challenging.

While probability currents are well understood for finite-
dimensional systems [29–39], collective behaviors are best
described at a macroscopic scale using field theory [40–42].
The nonequilibrium nature of such infinite-dimensional de-
scription has attracted a lot of interest recently [16, 22, 43–45]
but the identification of their probability currents remains el-
lusive. Progress has been made in specific situations [46, 47],
but a generic framework is crucially lacking.

In this Letter we address this challenge by introducing a
new mathematical framework that enables a systematic char-
acterization of steady-state probability currents in nonequilib-
rium stochastic field theories. This framework is based on a
generalization of the curl operator to functional spaces in the
form of a functional exterior derivative and on the identifi-
cation of the appropriate Riemannian metric on the space of
fields. We note that a related object, called ‘vertical deriva-
tive’, has been introduced for jet bundles [48], a context more
restrictive than what we present here. In addition, differen-
tial geometry has been formally extended to abstract math-
ematical spaces [49] but the corresponding level of abstrac-

tion makes such theory hardly applicable to concrete physics
problems [15]. Furthermore, these mathematical formalisms
have never been applied to characterize probability currents
in stochastic field theories. Below, we briefly recap the finite-
dimensional case to highlight the key steps of its generaliza-
tion to infinite dimension. We then detail the construction
of the functional exterior derivative for two important exam-
ples: the Active Model B (AMB) [50] and the Kardar-Parisi-
Zhang (KPZ) equation [27]. Importantly, when undergoing
motility-induced phase separation (MIPS), AMB leads to a
finite entropy production rate localized at the liquid-gas in-
terface [22, 51]. However, the corresponding probability cur-
rents have remained out of reach so far. Here, we show how
these currents can be decomposed into superpositions of lo-
cal 2D rotations, allowing for direct observation (see Fig. 1).
Our framework also reveals the direct manifestations of these
high-dimensional currents in real space, in the form of propa-
gating modes localized at the liquid-gas interface (see Fig. 2).
Similarly, for the KPZ equation, we show how fluctuations are
advected along height gradients (see Fig. 4).

To set the stage for stochastic field theories, we start with
a quick reminder of the well-known finite-dimensional case.
Consider the n-dimensional Langevin dynamics

ṙ(t) = F(r(t)) +
√

2Dη(t) , (1)

where r(t) ∈ Rn, η is a Gaussian white noise of zero mean
and unit variance,D is the diffusion constant, the mobility has
been set to 1, and F is an arbitrary smooth vector field. The
corresponding Fokker-Planck equation reads ∂tp = −∇ · J,
with J = pF − D∇p. In the steady state, the probabil-
ity current Js encodes the advection of the probability ps
by the velocity field vs ≡ Js/ps = F − D∇ log ps. The
flow lines of vs indicate the typical trajectories of the sys-
tem in the steady state [14]. Because it favors certain trajec-
tories over their time-reversed counterparts, the swirling be-
havior of vs is responsible for the irreversibility of dynam-
ics (1). When n = 3, it is characterized by the vorticity
ω(r) ≡ ∇×vs(r) = ∇×F(r) whose norm gives the angular
speed of the local swirls, and whose direction is orthogonal to
the local 2-dimensional planes in which the current undergoes
local rotations. Further, note that the entropy production rate
of dynamics (1) is given by σ = D−1

∫
Js ·Fdr [5]. Since Js
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is divergence free and Rn simply connected, there is a vector
field C such that Js = ∇×C. Integrating by parts, one gets
σ = D−1

∫
C(r) · ω(r) dr. Hence, ω(r) can be seen as the

local source of entropy production and C(r) as a weight over
the infinitesimal loops around r.

The generalization to arbitrary finite dimension n amounts
to replacing∇×F by dF[ in the vorticityω, where d is the ex-
terior derivative and F[ the one-form associated to F through
a Riemannian metric g [52]. Denote by (ei)i=1,...,d a local
basis and (dxi)i=1,...,d its dual, which satisfies dxi(ej) = δij .
Then, to F =

∑
i F

iei, we associate the one-form F[ =∑
i Fidx

i =
∑
i,j gijF

jdxi with gij ≡ g(ei, ej). The ex-
terior derivative of F[ is then the two-form dF[ whose action
on arbitrary pairs u,v of vector fields reads

dF[(u,v) =

n∑
i,j=1

(∂Fj
∂xi
− ∂Fi
∂xj

)
uivj . (2)

Denoting by dxi ∧ dxj the bilinear maps such that dxi ∧
dxj(u,v) = uivj − ujvi, the vorticity reads

ω ≡ dF[ =
∑

1≤i<j≤n

(∂Fj
∂xi
− ∂Fi
∂xj

)
dxi ∧ dxj . (3)

The prefactor of dxi ∧ dxj in Eq. (3) measures the local ro-
tation induced by F in the (ei, ej) plane: its sign gives the
direction of the rotation and its amplitude the angular speed.
Finally, note that dynamics (1) is reversible if and only if
dF[ = 0. Then, F is a gradient and Eq. (1) is a stochastic
gradient descent.

We now turn to the core results of this Letter: the general-
ization of Eq. (3) to infinite-dimensional stochastic field the-
ory and the physical insight it provides on the corresponding
systems. For an arbitrary field theory, this requires generaliz-
ing the [ and d operators. The former amounts to finding the
Riemannian metric that identifies a reversible dynamics with
a gradient descent of the free-energy; it also associates a one
form to the deterministic drift. The exterior derivative then
extracts the skew-symmetric part of the corresponding Jaco-
bian, which vanishes for equilibrium dynamics and identifies
the non-equilibrium circulations otherwise. In this Letter, for
sake of clarity, we present these ideas on two important exam-
ples, AMB and the KPZ equation. Details of the underlying
construction are provided in [15].

Active Model B. We start with the study of AMB, which has
attracted a lot of interest recently [22, 50], and whose proba-
bility currents have remained elusive so far. AMB describes a
scalar field whose dynamics is given by

∂tρ = −∇ · j , where j = −∇µ+
√

2DΛ , (4)

where Λ(r, t) is a centered Gaussian white noise field of unit
variance and µ a nonequilibrium chemical potential defined
by

µ([ρ], r) = aρ+ bρ3 − κ(ρ)∆ρ+ λ(ρ)|∇ρ|2 . (5)

Note that a, b andD are constants but λ and κ depend on ρ(r).
To carry out the aforementioned geometric program, as

detailed in [15], we first introduce the space of vector
fields µ(r, [ρ]) generated by all chemical potentials µ(r, [ρ])
through

µ(r, [ρ]) ≡ −∆µ(r, [ρ]) . (6)

This allows rewriting Eq. (4) as ∂tρ = −µ + ∇ ·
√

2DΛ
and we now turn to construct the vorticity of −µ. Following
Otto [53], we define the Riemannian metric

gρ(µ1,µ2) ≡
∫
∇µ1(r, [ρ]) · ∇µ2(r, [ρ])dr . (7)

As in finite dimension, this allows associating to any vec-
tor field µ1 a funtional one-form, µ[1, through µ[1(µ2) ≡
g(µ1,µ2). An integration by parts in Eq. (7) gives

µ[1(µ2) =

∫
µ1(r, [ρ])µ2(r, [ρ])dr . (8)

By analogy with the finite-dimensional case (2), we define the
functional exterior derivative of any one-form µ[ through its
action on an arbitrary pair φ,ψ of vector fields:

dµ[(φ,ψ) =

∫ [
δµ(r, [ρ])

δρ(r′)
− δµ(r′, [ρ])

δρ(r)

]
φ(r′)ψ(r)drdr′ .

(9)
For the chemical potential (5), integrating by parts and rear-
ranging the terms leads to:

dµ[(φ,ψ) =

∫
(2λ+ κ′)∇ρ · (ψ∇φ− φ∇ψ)dr (10)

where κ′(ρ) ≡ dκ(ρ)
dρ . Finally, dµ[ can be rewritten as

dµ[ =

∫
dr(2λ+ κ′)∇ρ · δr ∧∇δr , (11)

where δr is the Dirac delta at position r and ∧ the extension
of the finite-dimensional wedge product to distributions such
that δr ∧∇δr(φ,ψ) ≡ ψ(r)∇φ(r)− φ(r)∇ψ(r).

The vorticity ω of the deterministic drift of Eq. (4) is then
given by ω ≡ −dµ[. Equation (9) shows that ω = 0 cor-
responds to the Schwarz condition for µ to be the functional
derivative of a free energy [54, 55]. For AMB, this amounts
to 2λ+ κ′ = 0 [50, 56].

Comparing Eq. (11) to Eq. (3), the discrete sum over dxi ∧
dxj has been replaced by an integral over δr ∧∇δr. Equation
(11) can thus be interpreted as follows: the flow lines of −µ
swirl around a given point ρ in F as soon as (2λ+κ′)∇ρ 6= 0.
As in the finite-dimensional setting, such a local swirl corre-
sponds to an infinitesimal rotation that can be decomposed
into the superposition of rotations occurring in the spaces
(ρ(r), ∂xρ(r), ∂yρ(r)) wherever (2λ + κ′)∇ρ(r) 6= 0. All
in all, the flow lines of the deterministic drift tend to rotate in
the 2D plane (ρ(r), ∂kρ(r)):{

counter-clockwise iff [2λ+ κ′]∂kρ(r) > 0
clockwise iff [2λ+ κ′]∂kρ(r) < 0

(12)
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FIG. 1. Measurements of the stationary probability currents in the planes (ρ(r0), ∂xρ(r0)) at representative points in phase-separated systems,
using numerical resolution of Eq. (4). The rows corresponds to 2λ+κ′ < 0 (top), 2λ+κ′ = 0 (center), and 2λ+κ′ > 0 (bottom), respectively.
The average stationary profiles are shown in the left column. Other columns show the current vector fields measured at the corresponding points
r0 = A,B,C in the phase-separated profiles. (Arrow colors encode their angles with respect to ex.) Parameters: a = −1, b = 1, κ = 0.1,
average density ρ0 = −0.4, D = 10−3, Lx = Ly = 10 and λ = −2 (top), 0 (center) and 2 (bottom). See [15] for numerical details.

at speed given by the amplitude of (2λ+ κ′)∂kρ(r).
Let us now show that these predictions allow measuring the

steady-state currents of a phase-separated AMB. We denote
by ρs(r) ≡ 〈ρ(r)〉 the stationary average profile of the fluctu-
ating field ρ. We then measure the probability current in the
plane (ρ(r), ∂xρ(r)) at three different positions (points A, B
and C - see Fig. 1) along the horizontal diameter of the liquid
droplet. As predicted, changing the sign of 2λ + κ′ (top vs.
bottom row of Fig. 1) or that of ∂xρ (column A vs. C) changes
the direction of the circulation. Furthermore, the probability
current vanishes in the equilibrium case 2λ + κ′ = 0 (center
row), as expected.

Note that, at the interface, ρ(r) ' ρs(r) and ∇ρ(r) '
∇ρs(r) so that dµ[

∣∣
ρ
' dµ[

∣∣
ρs

, which corresponds to uni-
form rotations in each space (ρ(r),∇ρ(r)). The latter give
rise to the leading order terms of the current in the noise
amplitude (columns A and C). On the contrary, in the bulk,
∇ρ(r) ' ∇δρ(r), where δρ ≡ ρ − ρs. This leads to weaker,
higher order currents (column B).

It is tempting to split the chemical potential into µ =
µeq +µact, where µeq is the functional derivative of a free en-
ergy F whereas µact is not integrable, so as to identify µact as
the source of irreversibility. Unfortunately, such a decomposi-

tion is not unique, since adding a functional derivative δG/δρ
to µeq and subtracting it from µact yields another equivalent
decomposition. On the contrary, dµ[ can unambiguously be
identified as the source of irreversibility since the set of func-
tional derivatives exactly coincides with the kernel of d, so
that

dµ[ = dµ[act = d(µ[act + δG/δρ) . (13)

Propagating modes. Let us now show how our formalism
yields a valuable insight into the dynamics of fluctuations. In
Fig. 2a-c, we show the short-time relaxations of a perturbation
δρ = ε cos(qx) around a phase-separated profile ρs for 2λ+κ′

negative, null or positive. To best compare the three cases,
we use the same ρs, corresponding to a stationary droplet for
2λ+ κ′ = 0 (see Fig. 2d). The analysis, detailed in Fig. 3, of
the current constructed in Fig. 1 predicts that the perturbation
propagates at the interface, from the liquid to the gas when
2λ+ κ′ < 0 and vice versa if 2λ+ κ′ > 0. In the equilibrium
case, on the contrary, the perturbation is predicted to relax
to δρ = 0 while remaining stationary. These predictions are
confirmed by the simulations shown in Figs. 2a-c.

Figure 2 shows the advection of initial perturbations by
the deterministic drift. In the presence of a finite noise, su-
perpositions of the corresponding propagating modes will be
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FIG. 2. Evolution of a perturbation δρ around the equilibrium profile
ρs under the AMB dynamics (4) using periodic boundary conditions
and δρ(x, y, t = 0) = ε cos(100πx/Lx). Panels (a-c) are kymo-
graphs representing the evolution of δρ(x, Ly/2, t). Panel (d) is a
cut of ρs at y = Ly/2. Parameters: ρ0 = −0.45, a = −1, b = 1,
κ = 0.15, dt = 10−7, dx = dy = 10−2, Lx = Ly = 10, ε = 0.05,
and λ = −4, 0 and 4 for panels (a), (b) and (c), respectively. Time
axis unit of the kymographs is ∆t = 10−5.

(1)
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∂xδρ(r0)

δρ(r0)
x0

x0

x0
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x
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x
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FIG. 3. Analysis of the currents shown in Fig. 1 predicting the mode
propagation reported in Fig. 2. Consider the case 2λ + κ′ < 0 and
a point r0 = (x0, Ly/2) on the left boundary of the droplet (top
row, column A of Fig. 1). In the central panel above, we show the
circulation induced by the current in the (δρ(r0), ∂xδρ(r0)) plane.
Consider a perturbation such that δρ(r0) is a local maximum at t = 0
(panel (1), red star). As time goes on, the current drives the fluctu-
ation sequentially from (1) to (2) (orange dot), to (3) (yellow trian-
gle), to (4) (green square). Each panel shows the fluctuation profile
δρ(x, Ly/2) around x0 (blue curves). These successive states of δρ
shows that the probability current corresponds to a leftward prop-
agation of δρ in the real space, from the liquid to the gas phase.
Inspection of Fig. 1 allows predicting all the dynamics reported in
Fig. 2.

constantly excited. Hence, to leader order in the noise, den-
sity fluctuations propagate radially at the interface, outwards
or inwards, depending on the sign of 2λ + κ′. This is the
main real-space manifestation of the steady-state probability
current. It suggests a natural mechanism to account for the
continuous expulsion of bubbles, from the bubbly liquid to
the gas phase, observed in the active model B + [57]. We
note that higher order contributions will also include orthora-
dial fluctuations. The latter are particularly interesting since
their dynamics could offer insight on surface tension effects
or capillary waves, which have recently attracted a lot of in-
terest [58–66].

KPZ equation. Consider the celebrated KPZ equation [27]

∂th = −µ+
√

2DΛ , µ(r, [h]) = λ|∇h|2 − κ∆h . (14)

Here, −µ can be directly considered a vector field on F and
the appropriate Riemannian metric to construct the vorticity is
the usual L2-scalar product [15]:

gh(µ1, µ2) =

∫
µ1(r, [h])µ2(r, [h]) dr . (15)

In this geometry, the one-form µ[(·) ≡ g(µ, ·) associated to a
vector field µ(r, [h]) again corresponds to integration against
µ, and the vorticity of the deterministic drift of Eq. (14) is
again ω = −dµ[ where dµ[ =

∫
dr(2λ + κ′)∇h · δr ∧ ∇δr.

The analysis conducted above for AMB can then be directly
transposed to KPZ. We thus predict that fluctuations around a
height profile h should again propagates upward or downward
∇h, depending on the sign of 2λ + κ′. These predictions are
confirmed by the simulations shown in Fig. 4.

We stress that the KPZ equation and AMB describe funda-
mentally different physics: the unbounded growth of a fluc-
tuating interface and the nonequilibrium phase separation of
a conserved field leading to a well defined stationary profile.
These distinct long-term behaviors stem from the different ir-
rotational component of their determinist drifts. Importantly,
our analysis reveal that, on the contrary, these systems share

δρ

(a)

(b)

(c)

105t

105t

105t

x

x

x

FIG. 4. Kymographs showing the zero-noise relaxation of a perturba-
tion δh(x) = 0.1 sin(40πx), added at time t = 0 to a linear profile
h(x) = 10x, under the KPZ dynamics (14) with Dirichlet bound-
ary conditions. Parameters: ν = 2 and λ = −16, 0, 16 for panels
(a), (b) and (c), respectively. System size L = 1. Space and time
discretization: dx = 10−3 and dt = 10−7.
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the same vorticity. In turn, this leads to an unexpected sim-
ilarity in the dynamics of fluctuations, as seen by comparing
Figs. 2&4.

Discussion. In this Letter, we introduced a new formalism
to characterize the infinite-dimensional probability currents of
(stochastic) field theories without requiring the knowledge of
their stationary probability. This allowed us to determine their
low-dimensional measurable projections as well as to predict
their manifestations in the real, physical space. Our formal-
ism is based based on the generalization to functional spaces
of the exterior derivative. The latter offers a new, local and un-
ambiguous criterion to characterize the departure from equi-
librium of coarse-grained systems.

While we have focused here on AMB and the KPZ equa-
tion, both for sake of clarity and due to the interest they have
attracted over the years, we note that our theoretical frame-
work can be generalized to any overdamped fluctuating hy-
drodynamics with Gaussian noise. Suppose for instance that
the chemical potential of Eq. (4) or (14) is given by a fourth or-
der expansion in gradient of ρ, i.e. µ = µ0 +λ|∇ρ|2−κ∆ρ+
α1∆2ρ+α2|∇ρ|4 +α3|∇ρ|2∆ρ+α4(∆ρ)2 +α5∇ρ ·∇∆ρ,
where µ0 is a local function of ρ and where, for the sake of
clarity, all the other coefficients are taken to be constant. This
situation leads to dµ[ =

∫
dr([2λ∇ρ+ 4α2|∇ρ|2∇ρ+ (α5−

2α4)∇∆ρ]·δr∧∇δr+α5∇ρ·δr∧∇∆δr). Our framework thus
predicts the probability currents to be localized in the spaces
(ρ(r),∇ρ(r)) and (ρ(r),∇∆ρ(r)). More generally, general-
izing our framework to non-local interactions, vector or ten-
sor fields, as well as for active mixtures [67–69] is an exciting
program for the future.

Acknowledgments. The author thanks Yariv Kafri, Julien
Tailleur and Frédéric van Wijland for useful comments on the
manuscript.
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