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A mean-field Fokker-Planck equation approach to the dynamics of ferrofluids in the presence of
a magnetic field and velocity gradients is proposed that incorporates magnetic dipole-dipole interac-
tions of the colloidal particles. The model allows to study the combined effect of a magnetic field
and dipolar interactions on the viscosity of the ferrofluid. It is found that dipolar interactions lead
to additional non-Newtonian contributions to the stress tensor, which modify the behavior of the
non-interacting system. The predictions of the present model are in qualitative agreement with exper-
imental results, such as the enhancement as well as the different anisotropy of the magnetoviscous
effect and the dependence on the symmetric velocity gradient.
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1. Introduction

The so-called magnetoviscous effect in ferrofluids –
the dependence of the rheological behavior of col-
loidal suspensions of nano-sized ferromagnetic parti-
cles in a carrier liquid on external magnetic fields –
has attracted quite some attention in the recent liter-
ature, both from a scientific and an application point
of view [1 – 4]. In dilute ferrofluids, the magneto-
viscous effect is successfully explained by the hin-
drance of rotation of individual, non-interacting mag-
netic dipoles [5]. Experiments on commercial ferroflu-
ids have revealed a quantitative and qualitative differ-
ent behavior compared to the dilute regime, such as an
order of magnitude increase of the magnetoviscous ef-
fect, a dependence not only on the local vorticity but
also on the local strain rate of the flow, shear thinning
behavior and the occurrence of normal stresses [3, 6].
The failure of the kinetic model [5] to describe these
phenomena is generally attributed to the neglect of
magnetic dipolar interactions of the colloidal particles.
Since dipolar interactions are long-ranged, they be-
come important at concentrations as low as a few per-
cent which are easily attained in commercial ferroflu-
ids. The present contribution provides an extension of
the non-interacting model to moderately concentrated
ferrofluids with weak dipolar interactions.
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A general statistical theory of magnetic fluids that
covers dilute as well as concentrated suspensions with
arbitrary strength of dipolar interactions is not avail-
able at present. For strong dipolar interactions the for-
mation of chain-like aggregates is expected. A corre-
sponding kinetic model has been proposed in [7]. In
many ferrofluids, the strength of the dipolar interac-
tions is comparable to the thermal energy [3], such that
permanent aggregation is not expected. We here pro-
pose an extension of the kinetic model [5], that does
not assume the existence of permanent chainlike ag-
gregates but that incorporates magnetic dipole-dipole
and excluded volume interactions in a mean-field ap-
proximation. The model is expected to apply in the di-
lute and semi-dilute, weakly interacting regime. Sev-
eral results are obtained: A correction to the Langevin
function describing the equilibrium magnetization of
non-interacting magnetic dipoles is obtained, in agree-
ment with results of [8]. The additional contributions
of dipolar interactions to the hydrodynamic stress ten-
sor are worked out. Contrary to the case of non-
interacting magnetic dipoles, the stress tensor now de-
pends also on the symmetric part of the velocity gra-
dient. In case of uniaxial symmetry, the hydrodynamic
stress tensor is of the same form as in the Ericksen-
Leslie theory of nematic liquid crystals. The predic-
tions of the present model agree qualitatively with ex-
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perimental results and address the shortcomings of the
non-interacting model [5], such as the modified con-
centration dependence and anisotropy of the magne-
toviscosity. Some quantitative comparison to the ex-
perimental results of [9] are offered also. It should be
mentioned that a similar approach has been proposed
already in [10], where, however, no dependence on the
rate-of-strain tensor is considered, while such a depen-
dence has been found experimentally in [11]. In addi-
tion, we keep higher order contributions in the strength
of dipolar interactions compared to [10].

This paper is organized as follows: In Sect. 2, the ki-
netic model of semi-dilute ferrofluids is developed for
equilibrium conditions. It is shown that the equilibrium
behavior of this model agrees with the results of [8]. In
Sect. 3, the kinetic model is extended to describe the
dynamics of ferrofluids in the presence of an external
flow field. The kinetic model is supplemented by the
definition of the hydrodynamic stress tensor. The dy-
namical and rheological behavior of the present model
is studied in Section 4. In case of uniaxial symme-
try, the hydrodynamic stress tensor is found to be of
the general form proposed in the Ericksen-Leslie the-
ory of nematic liquid crystals. Explicit expressions for
the viscosity coefficients are obtained. We also derive a
closed magnetization equation within the so-called ef-
fective field approximation. The magnetization equa-
tion is a special case of the general equation proposed
in [12] within a thermodynamic framework. Finally,
some conclusions are drawn in Section 5.

2. Model Definition and Equilibrium Properties

Consider a system of N interacting, spherical col-
loidal particles in a volume V . All particles are as-
sumed to be identical, ferromagnetic monodomain par-
ticles of diameter d. Let xi = {r(i), u(i)} denote the
five-dimensional vector describing the position r (i) and
orientation u(i) of particle i, where u(i) is a vector on
the three-dimensional unit sphere. The particles are as-
sumed to carry a permanent magnetic moment µ (i) =
µu(i). The total interaction potential may be written as

U = −µ

N∑
i=1

u(i) ·Hloc +
∑
i<j

ws
ij +

∑
i<j

wdd
ij . (1)

Here and in the sequel, we use the following nota-
tion for dot products: a · b ≡ ∑

µ aµbµ and A : B ≡∑
µν AµνBνµ. The first term denotes the potential en-

ergy of an ideal paramagnetic gas in the local magnetic

field Hloc. The second term is the potential energy of
the non-magnetic system, where ws

ij = ws(rij), with
rij = r(i) − r(j), r2ij = r2ij , is a spherical symmetric,
short range, repulsive potential. In particular, we con-
sider the case of hard spheres, ws(r) = ∞ if r < d and
zero otherwise, and soft spheres, ws(r) = (r/d)−12.
The dimensionless energy of two magnetic dipoles is
described by

βwdd
ij (rij , u(i), u(j)) = −3λ(d/rij)3u(i)· r̂ij r̂ij ·u(j),

(2)

where β = (kBT )−1, kB and T are Boltzmann’s
constant and temperature, respectively, rij = rij r̂ij ,
a = (a + aT )/2 − (tr a)1/3 denotes the symmet-
ric traceless part of the matrix a and 1 is the three-
dimensional unit matrix. The dimensionless interaction
parameter

λ =
µ2

4πµ0kBTd3
(3)

is given by the ratio of the magnetic dipole-dipole en-
ergy of two colloidal particles of diameter d in contact,
over the thermal energy. It is well-known that due to
the long range nature of the dipolar interactions, the
magnetic properties of the system depend on the ge-
ometry of the container. In order to deal with this sit-
uation, we follow [8] and introduce a virtual cut-off
radius Rc of the dipolar interactions. The effect of the
dipole j on dipole i with rij > Rc is treated in a con-
tinuum approximation. Within the Weiss model, the re-
sulting far-field contribution leads to a local magnetic
field Hloc which is given by

Hloc = H +
1
3

M, (4)

where M denotes the magnetization of the sample. Fi-
nally, the virtual cut-off is removed, Rc → ∞. For
further details see [8].

Exact results for the thermodynamic properties of
the model system (1) are not available. Since the typi-
cal volume fraction of magnetic material in ferrofluids
is low, the free energy of the system is conveniently
expressed by the virial expansion. Let f(u) denote the
one-particle distribution function of finding the orien-
tation u of an individual colloidal particle. The nor-
malization is chosen such that

∫
d2u f(u) = 1, where

integration over the three-dimensional unit sphere is
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denoted by
∫

d2u. The free energy functional per par-
ticle of the system, F [f ], may be split into an ideal,
F0[f ], and an excess part, Fex[f ]. For the ideal sys-
tem we choose an ideal gas of noninteracting magnetic
dipoles,

F0[f ] = kBT
[
lnn− 1 −

∫
d2u f(u)u · hloc

+
∫

d2u f(u) ln f(u)
]
,

(5)

where n = N/V denotes the number density and
hloc = µHloc/kBT the dimensionless local magnetic
field. For low concentrations, the excess part may be
written in terms of the virial expansion as [13]

Fex[f ] = −1
2
nkBT

∫
d2u

∫
d2u′ f(u)f(u′)b2(u, u′)

+ O(n2). (6)

The function b2 is defined by

b2(u, u′) =
∫

d3r (e−βwdd
12 (r,u,u′) − 1)gsp(r), (7)

where gsp denotes the pair correlation function of the
reference system (wdd

12 = 0). The function b2 can be
interpreted as the change of the second virial coeffi-
cient due to the dipolar interactions. The integration
over the three-dimensional spherical volume is denoted
by

∫
d3r.

The function b2, (7), can be expressed as a power se-
ries in the interaction parameter λ. Using the fact that
the pair correlation function gsp(r) is spherical sym-
metric, we arrive at

b2(u, u′) = 24v
∞∑

k=2

λk 3k−1

(k − 1)k!
c2,k

·
∫

d2r̂
4π

(u · r̂̂r · u′)k,

(8)

where v = πd3/6 denotes the hydrodynamic volume
of the colloidal particles. The numerical coefficients

c2,k = 3(k − 1)
∫ ∞

0

dxx2−3kgsp(x) (9)

depend on the particular choice of the short range po-
tential ws and the corresponding pair correlation func-
tion. Due to the spherical integration volume the term

k = 1 is missing in the sum of (8). In the low den-
sity limit, gsp(x) can be approximated by gsp(x) ≈
exp(−βws). If we consider the case of hard spheres,
gsp(x) can thus be identified in the low density limit
with the Heaviside step function at x = r/d = 1.
In this case we have c2,k = 1. For power law repul-
sions, βws(x) = x−ν , the coefficients c2,k are given
by c2,k = k̄Γ (k̄), where k̄ = 3(k − 1)/ν. The so-
called soft sphere potential is recovered for ν = 12. In
this case, the coefficients c2,k are close to 1 for k ≤ 5
and therefore similar to the value of the hard sphere
system.

Inserting the expansion (8) into (6) one obtains

F [f ] = F0[f ]−φkBT

∞∑
k=2

λkc2,kGk[f ]+O(φ2), (10)

where φ = nv is the hydrodynamic volume fraction.
We have found explicit expressions of the functionals
Gk for k < 5,

G2[f ] =
2
5

(
〈 uu 〉 : 〈 uu 〉 +

10
3

)
, (11)

G3[f ] = − 2
105

(
〈 uαuβuγ 〉

· 〈 uαuβuγ 〉 − 42
5
〈u〉 · 〈u〉

)
,

(12)

G4[f ] =
1

210

(
〈 uαuβuγuδ 〉〈 uαuβuγuδ 〉

+
48
7
〈 uu 〉 : 〈 uu 〉 +

56
5

)
.

(13)

Angular averages of arbitrary functions a(u) with re-
spect to the distribution function f are denoted by

〈a〉 =
∫

d2u a(u)f(u). (14)

Note, that functionals Gk[f ] depend on the distribution
function only via moments of f up to order k.

The equilibrium distribution feq is found by min-
imizing the functional (10) subject to the constraint
of fixed normalization,

∫
d2u feq(u) = 1. The result

reads feq(u) = exp [−βV MF(u; feq)]/Zeq, where Zeq

denotes the normalization constant. The mean-field po-
tential is

βV MF(u; f) = −u · hloc − φ
∞∑

k=2

λkc2,k
δGk[f ]
δf(u)

. (15)
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Note that, due to the occurrence of moments in (15),
the equilibrium distribution feq has to be determined

self-consistently signaling the mean-field character of
the present model. Linearization in the volume fraction
φ leads to

feq(u) = fαs(u)
[
1 +

8
15

λ2φc2,2L2(αs)
{
P2(u · Ĥ) − L2(αs)

}

− 8
525

λ3φc2,3

(
L3(αs)

{
P3(u · Ĥ) − L3(αs)

} − 21L1(αs)
{

u · Ĥ − L1(αs)
})

+
8

3675
λ4φc2,4

(
L4(αs)

{
P4(u · Ĥ) − L4(αs)

}
+ 20L2(αs)

{
P2(u · Ĥ) − L2(αs)

})

+ O(λ5φ) + O(λ2φ2)
]
. (16)

In (16) we have used functions Lj which are defined
recursively by Lj+1(x) = Lj−1(x)−(2j+1)Lj(x)/x
with L0(x) = 1 and the Langevin function L1(x) =
coth(x) − x−1.

The functions

fα(u) =
α

4π sinh(α)
eαu·Ĥ (17)

are the equilibrium distribution functions in the ab-
sence of dipolar interactions. In (17) we have intro-
duced the Langevin parameter α by h = µH/kBT =
αĤ with Ĥ the unit vector in the direction of the
magnetic field. Thus, α is a measure for the strength
of the magnetic field relative to the thermal energy.
The macroscopic magnetization is expressed as M =
Msat〈u〉. Thus, the local field hloc can be expressed
as hloc = αsĤ, with the effective Langevin parameter
αs = α + χLL1(αs). The Langevin susceptibility is
defined by χL = 8φλ.

Evaluating the free energy functional (10) with the
equilibrium distribution feq one obtains the equilib-
rium free energy F (α) = F [feq] up to linear order
in φ,

F (αs)/kBT = ln
(

αs

sinh(αs)

)
−φ

∞∑
k=2

λkc2,kGk(αs).

(18)

The functions Gk(αs) are defined by Gk(αs) =
Gk[feq]. Explicit expressions for the first functions
Gk, obtained from (11) – (13) combined with (16), are
given in the appendix . We have confirmed that (18)
and (A1) – (A3) agree with the results of [8] in the case
of hard spheres where c2,k = 1. The advantage of the

present formulation compared to the results of [8] is,
that (A1) – (A3) simplify the discussion of the proper-
ties and asymptotic behavior of the functions G i(x).

We define equilibrium order parameters by S eq
j ≡

〈Pj(u · Ĥ)〉eq, where Pj are Legendre polynomials of
degree j. The function S eq can be obtained by multi-
plying (16) by u · Ĥ and subsequent integration over u,
or from (18) by S eq

1 (αs) = dF (αs)/dαs. Lineariza-
tion in the small quantity φ leads to the final result

Seq
1 (α) = L1(α) + χLL1(α)L′

1(α)

+ φ

∞∑
k=2

c2,kλ
kG′

k(α),
(19)

where the prime denotes the total derivative. Equa-
tion (19) is identical with (4.24a) of [8] for c2,k = 1.
Figure 1 shows a comparison of (19) with c2,k = 1
for k ≤ 4 and c2,k = 0 for k > 4 to the results of
the molecular dynamics simulations of [14]. In [14],
the volume fraction was chosen as φ = 0.157, and the
dipolar interaction was λ = 1, which is rather large for
the present study. From Fig. 1 one notices that appre-
ciable corrections of the Langevin magnetization occur
for intermediate values of α. For the parameters con-
sidered, the simulation results are in remarkable agree-
ment with (19) if truncated at k = 4. In the regime
of strong dipolar couplings, λ � 2, where corrections
to the Langevin magnetization are stronger [14], the
truncation of the expansion (19) is not admissible. This
regime is left for future research. The truncation of the
expansion at k = 2 gives similar results to the trunca-
tion at k = 4 for λ ≈ 1. In Fig. 1 we include also the
function L1(αs), which is obtained by neglecting all
higher order corrections in λ in (19) if the linearization
in φ is not performed. As has been noted in [14], this
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Fig. 1. Equilibrium magnetization as a function of the
Langevin parameter for volume fraction φ = 0.157 and
λ = 1. Symbols are the result of molecular dynamics simula-
tions presented in [14]. The dashed line is the Langevin func-
tion L1(α), while the solid line corresponds to (19), where
the infinite sum has been truncated at k = 4. The dotted line
is the result of the approximation L1(α + χLL1(α)).

approximation describes their numerical data very well
for the present choice of parameters. For later use, we
give the expression for S eq

2 in linear order in φ:

Seq
2 (α) = L2(α) + χLL

′
2(α)L1(α)

+ φ

∞∑
k=2

c2,kλ
kJ ′

k(α),
(20)

where

J ′
2(α) =

8
525

L2(α)[18L4(α)

+ 10L2(α) + 7 − 35L2(α)2].
(21)

3. Mean-Field Kinetic Model

The model introduced in Sect. 2 is now extended to
describe the nonequilibrium dynamics of ferrofluids in
the presence of an external flow field v(r). The one-
particle distribution function f(u) now becomes time-
dependent, f(u; t), and denotes the probability den-
sity of finding the orientation u of an individual col-
loidal particle at time t. For convenience, the explicit
dependence of f on t is frequently suppressed in the
sequel. The orientational dynamics of a ferromagnetic
colloidal particle under the combined action of the lo-
cal vorticity of the flow Ω = 1

2 × v, Brownian mo-

tion, and the action of the potential V eff is given by the
kinetic equation [2, 5]

∂tf = −L·[Ωf ]+L·Drot

[Lf + fL(βV eff)
]
. (22)

The rotational diffusion coefficient is Drot =
1/(2τrot). τrot = 3ηsv/kBT denotes the rotational re-
laxation time. The rotational operator is L = u×∂/∂u
with ∂/∂u the gradient on the unit sphere. In the ab-
sence of flow, we assume that the effective potential
V eff can be identified with the static mean-field po-
tential V MF, (15). A similar approach was proposed
by one of the authors in [15] in order to describe the
dynamics of nematic liquid crystals. For simple flu-
ids such an approach has been proposed and tested re-
cently in [16].

In the presence of a symmetric velocity gradient
D = v , an additional contribution to the effective
potential V eff of the kinetic equation (22) arises. In the
case of non-spherical particles, this contribution leads
to the so-called flow alignment phenomenon [15, 17].
In the present case, the additional contribution is due
to flow-induced structures that can be formed even in a
hard sphere system. The distortion of the pair correla-
tion function due to shear flow has been studied exper-
imentally [18] and theoretically [19]. For small distor-
tions, the pair correlation function g(r; t) satisfies the
time evolution equation [19]

∂tg + r · ( rv) · rg +
1
τ

(g − gsp) = 0, (23)

where τ denotes a translational relaxation time. The
stationary solution to (23) is given by

g(r) = gsp(r) − τD : r̂r̂rg′sp(r). (24)

Results of recent nonequilibrium molecular dynamics
simulations of a dipolar model fluid confirm that (24)
provides a reasonable description of the shear-induced
distortion of the pair correlation function [20]. The dis-
tortion of the pair correlation function leads to an ad-
ditional contribution to the effective potential which to
lowest order in λ reads

V D(u; f) = n

∫
d2u′ f(u′) (25)

·
∫

d3r wdd
12 (r, u, u′)(g(r)−gsp(r)).

Equation (25) has an immediate interpretation as the
flow-induced modification of the (self-consistently av-
eraged) mean dipolar interaction potential. The effec-
tive potential V eff entering the kinetic equation (22) is
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obtained as V eff = V MF+V D. Inserting (24) into (25),
the kinetic equation (22) takes to form

∂tf = −L · [{Ω − σ0χLu × D · 〈u〉 (26)

−DrotL(βV MF)f
]
+ DrotL2f,

where σ0 = 3τ/(5τrot). In (26), we have assumed
gsp(r) → 1 for r → ∞ and gsp(0) = 0 due to ex-
cluded volume interactions. The kinetic equation for
non-interacting dipoles, [5], is recovered from (26) in
the limit λ → 0. The use of (24) for the flow-induced
distortion of the pair correlation function limits the va-
lidity of (26) to weak flows. More precisely, we ex-
pect (24) to apply for τ |D| � 1. In addition, the back-
reaction of the orientational on the translational dy-
namics is neglected. Since in (25) we have kept only
the lowest order term in λ, further considerations are
restricted to the regime of weak dipolar interactions
λ � 1. In this regime, the mean-field potential (15)
simplifies to

βV MF(u; f) = −u·hloc− 4
5
λ2φc2,2 uu : 〈 uu 〉. (27)

As has been noted in Sect. 2, the truncation (27) of the
mean-field potential provides a good approximation
for the equilibrium magnetization even for χL ≈ 1,
λ ≈ 1.

It is interesting to compare the hydrodynamic drag
appearing in (22) to the corresponding terms in case of
ellipsoidal-shaped particles with axis ratio r. For the
latter, the contribution of D to the hydrodynamic drag
is quadratic in u and proportional to the so-called shape
factor B = (r2 − 1)/(r2 + 1) as well as to the rota-
tional relaxation time τrot [17]. Spherical particles cor-
respond to r = 1 and B = 0. If it would be allowed
to replace 〈u〉 in the second term on the right hand side
of (26) by u, the flow contribution of the present model
would be identical to a dilute solution of ferromagnetic
ellipsoidal particles with shape factor B = −σ0χL . A
negative value of B is characteristic of an oblate ellip-
soid. This finding has an intuitive interpretation, since
dipolar interactions favor a head-to-tail arrangement in
contrast to side-side configurations. Thus, the particles
effectively appear extended in the direction perpendic-
ular to the magnetic moment. In Sect. 4 the validity
and limitations of the analogy are discussed for special
quantities.

For irrotational flows Ω = 0, the stationary
solution to the kinetic equation (22) reads f st =

exp (−βV eff)/Zst, where Zst denotes the normaliza-
tion constant. Note that fst is formally identical to
the equilibrium distribution feq, if the magnetic field
hloc is replaced by the effective field heff = hloc −
(6/5)χLτD · 〈u〉.

From the kinetic equation (22) a hierarchy of mo-
ment equations can be derived. Multiplying (22) by u
and integration over u leads to

∂t〈u〉 = Ω × 〈u〉 + σ0χL(〈uu〉 · D · 〈u〉 − D · 〈u〉)
+Drot(h−〈uu〉·h)+DrotχL(〈u〉−〈uu〉·〈u〉)

+
1
5
c2,2DrotχLλ(〈 uu 〉 · 〈u〉−〈uuu〉 : 〈 uu 〉)

− 2Drot〈u〉. (28)

Analogously, higher order moment equations are de-
rived. In order to study the magnetoviscous effect,
the kinetic equation (22) has to be supplemented by
the expression for the hydrodynamic stress tensor T.
Considering only rotational degrees of freedom, the
stress tensor is antisymmetric and has the form T rot =
3ηsφε · (Ω − 〈ωp〉), where ε is the conventional total
antisymmetric (Levi-Civita) tensor of rank three. The
average angular velocity 〈ωp〉 of the colloidal particles
can be inferred from the kinetic equation (22), which
can be cast into the form ∂tf = −L·[ωpf ]. Thus, T rot

is given by 2T rot = nε · 〈LV eff〉 and becomes upon
inserting (25) and (27)

T rot =
nkBT

2

(
α[Ĥ〈u〉 − 〈u〉Ĥ] − 6

5
τχL (29)

· [D · 〈u〉〈u〉 − 〈u〉〈u〉 · D]
)
.

One has χL = 0 in the non-interacting model [5], so
that the hydrodynamic stress arises from hindered rota-
tions of individual magnetic moments in the magnetic
field. The configurational contribution to the hydrody-
namic stress is given by

T conf =
n2

2

∫
d3r

∫
du

∫
du′ f(u)f(u′) (30)

·g(2)(r, u, u′)r rΦ12(r, u, u′),

where Φ12(r, u, u′) = wsp(r) + wdd
12 (r, u, u′) is the

full two particle interaction potential and g (2) denotes
the full pair correlation function. The distortion of g (2)

from its equilibrium g
(2)
eq is assumed to be described
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also by (23), where g is now replaced by g (2). In this
case, the stationary solution reads to leading order

g(2)(r, u, u′) = g
(2)
eq (r, u, u′)

− τ( rv) : r rg
(2)
eq (r, u, u′).

(31)

Note, that (31) reduces to (24) only if the (anisotropic)
contribution of the dipolar potential to the pair correla-
tion function is neglected.

Inserting (31) into (30), the deviation of T conf from
the equilibrium stress becomes

∆T conf
µν = ηconfµναβ αvβ (32)

with the viscosity tensor

ηconfµναβ =
n2τ

2kBT

∫
d3r

∫
du

∫
du′ f(u)f(u′) (33)

· g(2)eq (r, u, u′)rµ( νΦ12)rα( βΦ12).

From (33) we notice that the viscosity tensor ηconf

obeys ηconfµναβ = ηconfαβµν and is positive semi-definite, i.e.
ηconfµναβaµνaαβ ≥ 0 for arbitrary second-rank tensors a.

Inserting the spherical and the dipole-dipole interac-
tion potential into (33) yields symmetric and antisym-
metric contributions to the stress tensor, such that the
total hydrodynamic stress tensor becomes

T = T rot + T conf = T s + T a, (34)

with the symmetric part,

T s =
(

2η0 − 2
3
(c1 − 3)a〈u〉2

)

· D − 7
2
a [W · 〈u〉〈u〉 − 〈u〉〈u〉 · W]

+ a(c1 − 3) [D · 〈u〉〈u〉 + 〈u〉〈u〉 · D]

(35)

and the antisymmetric part

T a =
αnkBT

2
(Ĥ〈u〉 − 〈u〉Ĥ). (36)

In (35) we have introduced W = [( v)T − v]/2 and
the quantity a = 2ηsσλφ2, where σ = 72τ/(35τrot).
The shear viscosity of the isotropic suspension is

η0 = ηs(1 +
5
2
φ + bφ2), (37)

where ηs is the shear viscosity of the pure solvent,
b = 7

6c4σ. Note, that the isotropic interactions alter the

value of the Newtonian viscosity, while dipolar interac-
tions lead to additional, non-Newtonian contributions
to the stress tensor. Diagonal contributions to T s have
been suppressed in (35), since they can be compen-
sated by the scalar pressure. Note also that the stress
tensor T is symmetric in the absence of an applied
magnetic field. The quantities c1 and c4 result from the
short range interaction contribution to the stress ten-
sor and depend on the detailed form of the interaction
potential,

ck =
∫ ∞

0

dxxk[βw′
s(x)]2gsp(x), (38)

where prime denotes the total derivative and x = r/d.
The coefficients ck are non-negative, ck ≥ 0. Evalua-
tion of the coefficients c1 and c4 for the case of hard
spheres suffers from the discontinuity of the potential.
For power law repulsion, βws(x) = x−ν , the integra-
tion in (38) can be done analytically in the low density
regime, giving ck = νΓ ((2ν + 1 − k)/ν). For soft
spheres, ν = 12, we find c1 = 12 and c4 ≈ 11.0.
We mention that the φ2 contribution to η0 in (37)
stems from the non-magnetic interactions of the col-
loidal particles. This contribution is of the form Gsτ ,
where Gs is the Born-Green expression of the equilib-
rium shear modulus of a system of spherical particles
interacting with the potential ws [21].

Equations (26), (27), (34), (35) and (36) are our
main result and constitute the mean-field kinetic model
of the nonequilibrium dynamics of dilute, weakly in-
teracting ferrofluids proposed here. The present model
extends the work of [5] to the regime of weak dipo-
lar interactions, λ � 1. If the dimensionless dipo-
lar interaction parameter λ goes to zero, the model of
non-interacting magnetic dipoles proposed in [5] is re-
covered with a renormalized zero-field viscosity η0.
The present model contains the additional parameter
σ, which is a measure for the ratio of translational
and rotational relaxation times. Simple estimates of
the translational and rotational relaxation times lead to
σ ≈ 6 (r0/d)2, where r0 is a typical length scale asso-
ciated with the formation of flow-induced structures. If
r0 is identified with the typical distance between col-
loidal particles, the parameter σ can be estimated as
σ ≈ 2φ−2/3. On the other hand, if r0 is identified with
the diameter d of the colloidal particles, one obtains
σ = 6. These estimates of σ agree with each other for
φ ≈ 0.2, which is slightly above the expected range
of validity of the present model. Alternatively, if one
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Fig. 2. Shear viscosity η0/ηs of the isotropic suspension
(H = 0) as a function of the volume fraction φ. The dashed
an full lines are the theoretical predictions η0/ηs = 1 +

2.5φ + bφ2 with b = 0 (Einstein) and b = 6.2 (Batchelor),
respectively.

requires the expression (37) for the zero-field viscosity
to correspond to Batchelor’s result, (37) with b = 6.2
(see [3] and discussion therein), the parameter σ is
given by σ = 186/(35c4), and thus related to the inter-
action potential ws. In case of soft spheres, agreement
with Batchelor’s result leads to σ ≈ 0.5. In the sequel
we consider σ as parameter with σ = O(1). Figure 2
shows zero-field zero-shear viscosity η0 of a kerosene
based ferrofluid as a function of the volume fraction φ.
The data are taken from [3]. From Fig. 2 we notice that
Batchelor’s result describes the experimental data well
for volume fractions φ � 0.25.

4. Results for Uniaxial Symmetry

The stress tensor T, (35, 36), depends explicitly
on the first moment of the distribution function only.
However, all the moments are coupled dynamically,
as can be seen already from the first moment equa-
tion (28), such that the values of second and third
moments are needed in order to determine the first
moment and the stress tensor. Therefore, closed form
equations for the dynamics of the stress tensor (34)
in terms of low order moments necessarily intro-
duce approximations to the underlying kinetic model.
In a previous work [22], we have studied the as-
sumption of uniaxial symmetry of the distribution
function applied to the non-interacting kinetic model
of [5]. Motivated by the good accuracy of the as-
sumption of uniaxial symmetry for that model found

in [22], we employ this assumption also for the present
case.

In the uniaxial phase, the distribution function
f(u; t) is symmetric with respect to rotations around
the director n, f(u; t) = funi(u · n; t), such that f can
be represented as

funi(u ·n; t) =
1
4π

∞∑
j=0

1
2j + 1

Sj(t)Pj(u ·n). (39)

The scalar orientational order parameters Sj are de-
fined as Sj = 〈Pj(u · n)〉, where, as before, Pj are
Legendre polynomials. In case of uniaxial symmetry,
the first moments take the form

〈u〉 = S1n, 〈 uu 〉 = S2 nn ,

〈uαuβuγ〉 = S3nαnβnγ (40)

+
S1 − S3

5
(δαβnγ +δαγnβ +δβγnα).

For example, the distribution functions (16) and (17)
are uniaxial symmetric with respect to the direction of
the magnetic field, n = Ĥ. Expressions for the equilib-
rium order parameters S eq

i are given in (19) and (20)
for i = 1, 2.

Inserting Eqs. (40) into (28), the following time evo-
lution equation for the orientational order parameterS 1

is obtained:

Ṡ1 = −2
3
σ0χLS1(1 − S2)(D : nn)

+
2
3
Drot(1 − S2)hloc · n − 2DrotS1,

(41)

with the local magnetic field hloc = h + χLS1n.
From (41), the angle between the direction of the mag-
netic field and the magnetization can be calculated:

Ĥ · n =
3S2

1

h(1 − S2)

[
1 − 1

3
χL(1 − S2)

+
2
3
σ0χL(1 − S2)τrotD : nn.

]
.

(42)

In equilibrium, where Si = Seq
i , the magnetization is

perfectly aligned with the magnetic field, Ĥ · n = 1.
From (40) and (28), also the balance equation for the
director n is derived,

(1 − nn) · [Hmol − γ1N − γ2D · n
]

= 0, (43)
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Fig. 3. Dimensionless viscosity coefficients γi/6ηsφ defined
in (44) as a function of the Langevin parameter α. The up-
per solid line corresponds to γ1, the lower solid line to γ2.
The dashed line is the result for γ1 in the absence of dipolar
interactions. In this case γ2 = 0. Weak flow conditions are
assumed so that the orientational order parameters are well
approximated by their equilibrium values. The Langevin sus-
ceptibility was chosen as χL = 1 and σ = 0.5.

which is of the general form assumed in the Ericksen-
Leslie theory of nematic liquid crystals [2]. N = ṅ −
Ω × n is the corotational derivative of the director n.
Here, the molecular field H mol = nkBTS1h and the
viscosity coefficients are given by

γ1 = 6ηsφ
3S2

1

2 + S2
,

γ2 =
7
4
ηsφσχLS

2
1 .

(44)

The dependence of the viscosity coefficients γ i on the
magnetic field is illustrated in Fig. 4 for weak flow
conditions, where the orientational order parametersS i

are well approximated by their equilibrium values S eq
i .

From Fig. 3 we observe that dipolar interactions in-
crease the value of the viscosity coefficient γ1 and lead
to non-vanishing coefficient γ2.

Inserting (40) into (35) and (36), and using (28), the
hydrodynamic stress tensor is of the form assumed in
the Ericksen-Leslie theory [2],

T = α1(D : nn)nn + α2nN + α3Nn

+ α4D + α5nn · D + α6D · nn,
(45)

where the Leslie coefficients αi are given by

α1 = 0,

α2 = −3ηsφ
3S2

1

2 + S2
+ 7ηsσλφ2S2

1 ,

α3 = 3ηsφ
3S2

1

2 + S2
+ 7ηsσλφ2S2

1 ,

(46)

α4 = 2η0 + 4(1 − c1/3)ηsσλφ2S2
1 ,

α5 = (c1 − 13/2)2ηsσλφ2S2
1 ,

α6 = (c1 + 1/2)2ηsσλφ2S2
1 .

(47)

The viscosity coefficients γi are given in terms of αi as
γ1 = α3−α2 and γ2 = α6−α5. A relation between the
Leslie coefficients can be derived from Onsager’s reci-
procity relation, α2 + α3 = α6 − α5, which is known
as Parodi’s relation [2, 17]. Parodi’s relation is read-
ily verified from (46) and (47). Note, that in the limit
λ → 0, the result of the noninteracting model of [22]
is recovered from Eqs. (45), (46) and (47). From (46)
and (47) we observe that dipolar interactions increase
the number of independent viscosity coefficients com-
pared to the noninteracting model.

4.1. Effective Field Approximation

In the so-called Effective Field Approximation
(EFA) [5], a special family fξe of uniaxial distribution
functions is considered that is obtained by replacing
the magnetic field h in (17) with an effective field ξe.
Motivated by the good accuracy of the EFA for the
non-interacting model [5], we consider the EFA also
for the present model.

In more general terms, the EFA can be interpreted
as the Quasi-Equilibrium Approximation, where only
the magnetization is kept as macroscopic variable (see
e.g. [17]). Extremizing the free energy functional (10)
subject to the constraint of fixed normalization and
fixed value of the first moment yields the quasi-
equilibrium distribution fξe . Also in the present case,
fξe is obtained from the equilibrium distribution feq if
the magnetic field h in (16) is replaced by an effective
field ξe. Since the equilibrium distribution feq is uni-
axially symmetric around the magnetic field direction
Ĥ, the distribution function fξe is uniaxially symmet-
ric with respect to the direction of the effective field
n = ξ̂e, where ξe = ξeξ̂e and ξe denotes the norm
of ξe. Consequently, the result of the previous section
applies to the EFA. In particular, the moments 〈u〉 and



598 P. Ilg and S. Hess · Nonequilibrium Dynamics and Magnetoviscosity of Magnetic Liquids

〈uu〉 within the EFA are given by (40), where the scalar
orientational order parameters are obtained from their
equilibrium values by Sj = Seq

j (ξe).

M a g n e t i z a t i o n E q u a t i o n

From the moment equation (28) a closed equation
for the magnetization M = Msat〈u〉 can be derived
within the EFA which reads

Ṁ − Ω × M = − 1
ν1

Λ − 1
ν2

Λ · MM

+ λ2D · M + λ3D : MMM,
(48)

where Λ = kBT (ξe − h)/µ is the (dimensional) devi-
ation of the effective field from the magnetic field. The
coefficients νi and λi are defined as

1
ν1

= 3DrotχLA(ξe),
1
ν2

= − µ0
6ηsφ

B(ξe), (49)

λ2 = −σ0χLA(ξe), λ3 =
σ0χL

M2
sat

B(ξe). (50)

The functions A(ξe) and B(ξe) are given by

A(ξe) ≡ 2 + S2(ξe)
3

= 1− L1(ξe)
ξe

+χL

L1(ξe)
ξe

· (L1(ξe)2−L2(ξe))

+
1
3
c2,2φλ

2J ′
2(ξe), (51)

and B(ξe) ≡ S2(ξe)/S1(ξe)2,

B(ξe) =
L2(ξe)
L1(ξe)2

(52)

+ χL

(
1 + L2(ξe)

[
1 − 5 + L2(ξe)

3L1(ξe)2
])

+ c2,2λφ
2L1(ξe)J ′

2(ξe) − 2L2(ξe)G′
2(ξe)

L1(ξe)2
.

The magnetization equation (48) is a special case of
(15) of [12], which has been derived within a ther-
modynamic framework. The coefficients appearing in
the magnetization equation, however, cannot be deter-
mined within the thermodynamic approach. For the
special case λi = 0, (48) has been derived in [10]
in linear order in λ and φ, within the EFA, starting
from an N -particle Fokker-Planck equation. The ex-
pression for A(ξe) given by (51) is identical to the re-
sult of [10] to first order in λ, while the result of [10]

for the coefficient B(ξe), coincides with (52) only for
λ = 0. However, correcting (15) of [10] for the miss-
ing factor L1(ξe)/ξe [23], also the results for the co-
efficient B(ξe) agree with (52). In [17], the magne-
tization equation (48) has been derived within a ki-
netic model of non-interacting, ferromagnetic colloidal
particles with an ellipsoidal shape. Comparing (50)
to (77) of [17], we notice that the transport coeffi-
cients λi are of a similar form in both cases. For weak
fields, the coefficient λ2 approaches a constant value
λ2(0) = − 2

3σ0χL . This result is identical to that of
a non-interacting system of ellipsoidal particles with
shape factor B = − 10

9 σ0χL , see [17]. It should be
mentioned that the coefficient λ2 has recently been
measured experimentally in [11] for a commercial fer-
rofluid. Since strong dipolar interactions occur in the
fluid used in this experiment, the present model cannot
be used to explain the experiment quantitatively.

R e l a x a t i o n T i m e s

Analytical results for the magnetization dynamics
(48) can be obtained for small deviations from the
equilibrium values. To linear order in Λ and in the ab-
sence of velocity gradients, (48) becomes

Ṁ = − 1
νeq1

Λ − 1
νeq2

Λ · M eqM eq, (53)

where νeqi denote the equilibrium values of the coef-
ficients νi. Decomposing the off-equilibrium magneti-
zation into components parallel and perpendicular to
the magnetic field direction, M = M‖ + M⊥, one finds
from (53)

Ṁ = − 1
τ⊥

M⊥ − 1
τ‖

(M‖ − M eq), (54)

where the field-dependent relaxation times are defined
by

τ⊥ =
3Seq

1 (α)
Drotα(2 + Seq

2 (α))
, τ‖ =

3S′eq
1 (α)

2Drot(1 − Seq
2 (α))

.

(55)

Linearization in the volume fraction φ leads to

τ⊥ = τ⊥0 (1 + χLt
⊥
1 + λ2φt⊥2 ), (56)

τ‖ = τ
‖
0 (1 + χLt

‖
1 + λ2φt

‖
2), (57)

where

τ⊥0 =
L1(α)

Drot(α− L1(α))
, τ

‖
0 =

αL′
1(α)

2DrotL1(α)
(58)
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Fig. 4. a) Reduced transverse, τ⊥/τrot, and b) parallel,
τ‖/τrot, relaxation times as functions of the applied mag-
netic field α. The volume fraction was chosen as φ = 0.15.
Curve 1 corresponds to λ = 0, curve 2 to λ = 1, and curve 3
to λ = 1.5. Solid lines are the result of (56) and (57), dashed
lines are the result of [10].

are the corresponding relaxation times in the non-
interacting system and the functions t⊥i and t

‖
i are de-

fined in appendix . For the case of vanishing mag-
netic field, α → 0, the above expressions coincide,
τ⊥(0) = τ‖(0) = τrot(1+χL/3). Note, that no contri-
bution from O(λ2) remains in this limit. Thus, dipolar
interactions lead to an increase of the zero-field relax-
ation time compared to the dilute suspension. In Fig. 4
we plot the relaxation times τ⊥ and τ‖ as functions of
the magnetic field α for φ = 0.15 and λ = 0, 1, 1.5,
respectively. From Fig. 4 we notice that the transverse
relaxation time is enhanced due to dipolar interactions
for arbitrary values of the magnetic field. As the mag-
netic field increases, however, the differences between
τ⊥ and τ⊥

0 decrease. The relaxation time parallel to

the magnetic field is increased compared to τ
‖
0 only for

small magnetic fields, while it is decreased in case of
strong magnetic fields. For comparison, we included
in Fig. 4 also the corresponding results of [10]. Note,
however, that due to the dependence of τ ⊥ and τ⊥

0 on
the coefficient B, the results of [10] for the relaxation
times are incorrect [23].

5. Conclusion

In the present work we have proposed a kinetic
model of dilute, weakly interacting ferrofluids that ex-
tends the classical noninteracting kinetic model of fer-

rofluids [5] by the incorporation of dipolar interactions.
Our model predicts several extensions compared to the
classical kinetic model which are in qualitative agree-
ment with experimental results, such as an enhanced
magnetoviscous effect, modified anisotropy of the vis-
cosity and the dependence of viscosity on the hydrody-
namic volume fraction and the symmetric velocity gra-
dient. For a quantitative comparison with experimen-
tal results, two additional parameters have to be speci-
fied which are absent in the non-interacting model [5]:
the dipolar interaction parameter λ and the ratio of the
rotational over the translational relaxation time of the
colloidal particles σ. While λ is defined by (3) and also
tabulated for several ferrofluids, determining σ is not
straightforward. As has been discussed above, estima-
tions of σ can give information only about the order
of magnitude of σ, rather than a certain value. On the
other hand, the value of σ can be inferred from mea-
surements, e.g. of the zero-shear zero-field viscosity
η0, (37).
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Appendix A

The functions Gi(αs) are defined by Gi(αs) =
Gi[feq], where the functionals Gi[f ] for i = 2, 3, 4 are
given by (11) – (13), and feq is defined in (16). Evalu-
ating the functionals Gi[f ] with the equilibrium distri-
bution function feq one obtains

G2(x) =
4
15

(
L2(x)2 + 5

)
, (A1)

G3(x) = − 4
525

(
L3(x)2 − 21L1(x)2

)
, (A2)

G4(x) =
4

3675
(
L4(x)2 + 20L2(x)2 + 49

)
. (A3)

The functions Gi(x), defined in (A1 – A3), are
monotonously increasing functions of x. These func-
tions depend only weakly on x and have the following
expansion for x → 0 and x → ∞:

G2(x) =




4
3

+
4

3375
x4 + O(x5) for x → 0

8
5
(1 − x−1) + O(x−2) for x → ∞,

(A4)



600 P. Ilg and S. Hess · Nonequilibrium Dynamics and Magnetoviscosity of Magnetic Liquids

G3(x) =




4
225

x2 − 8
3375

x4 + O(x5) for x → 0

16
105

(
1 − 8

5
x−1

)
+ O(x−2) for x → ∞,

(A5)

G4(x) =




4
75

+
16

165375
x4 + O(x5) for x → 0

8
105

(
1 − 67

35
x−1

)
+ O(x−2) for x → ∞.

(A6)

Appendix B

The contribution of dipolar interactions to the trans-
verse and parallel relaxation times are described by the
functions

t⊥1 (x) = L′
1(x)− L1(x)

x− L1(x)
(L1(x)2 −L2(x)), (B1)

t⊥2 (x) =
G′
2(x)

L1(x)
− xJ ′

2(x)
3(x− L1(x))

, (B2)

t
‖
1(x) =

L1(x)
x

(B3)

+
2L1(x)
L′
1(x)

[
L1(x)(L1(x)2−L2(x))−L2(x)

x

]
,

t
‖
2(x) =

G′′
2(x)

L′
1(x)

+
xJ ′

2(x)
3L1(x)

. (B4)

The functions t⊥i are positive, while the functions t
‖
i

are not sign-definite. In the limit x → ∞ we find
t⊥i → 0 and t

‖
i → 0, while for x → 0 the follow-

ing asymptotic behavior is obtained: t⊥1 (x) = 1/3 −
4x2/45, t⊥2 (x) = 4x2/375, t‖1(x) = 1/3 − 7x2/45,

and t
‖
2(x) = 56x2/1125.
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[8] B. Huke and M. Lücke, Phys. Rev. E 62, 6875 (2000).
[9] G. P. Bogatyrev and V. G. Gilev, Magnetohydrodynam-

ics 20, 249 (1984).
[10] A. Y. Zubarev and A. V. Yushkov, JETP 87, 484 (1998).
[11] S. Odenbach and H. W. Müller, Phys. Rev. Lett. 89,

037202 (2002).
[12] H. W. Müller and M. Liu, Phys. Rev. E 64, 061405

(2001).

[13] L. Onsager, Ann. (N. Y.) Acad. Sci. 51, 627 (1949).
[14] Z. Wang, C. Holm, and H. W. Müller, Phys. Rev. E 66,

021405 (2002).
[15] S. Hess, Z. Naturforsch. 31a, 1034 (1976).
[16] U. M. B. Marconi and P. Tarazona, J. Chem. Phys. 110,

80328044 (1999).
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