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We study the nonequilibrium dynamics of one-dimensional Mott-insulating bosons in the presence of a tunable

effective electric field E which takes the system across a quantum critical point separating a disordered and a

translation symmetry broken ordered phase. We provide an exact numerical computation of the residual energy

Q, the log fidelity F , the defect density D/L, and the order parameter correlation function for a linear-in-time

variation of E with a rate v. We discuss the temporal and spatial variation of these quantities for a range of v

and for finite system sizes as relevant to realistic experimental setups [J. Simon et al., Nature (London) 472,

307 (2011)]. We show that in finite-sized systems Q, F , and D obey Kibble-Zurek scaling, and suggest further

experiments within this setup to test our theory.

DOI: 10.1103/PhysRevB.85.100505 PACS number(s): 67.85.−d, 75.10.Jm, 64.70.Tg

Universality is one of the central concepts of physics.

While in equilibrium it has long been known that systems

that share the same universality class also share critical

exponents, this is less clear with nonequilibrium dynamics. As

integrability has a strong influence on dynamical phenomena,

of particular concern is whether systems that share the same

universality class but differ in this aspect recover the same

critical exponents. Indeed, recent evidence in Ref. 1 suggests

that the dynamical exponents for a nonintegrable model

differ from the expected Kibble-Zurek ones seen in integrable

models.2

Ultracold atoms in optical lattices provide us with a unique

opportunity to study both equilibrium phases and nonequilib-

rium quantum dynamics of strongly coupled bosonic systems

near a quantum phase transition (QPT).3 One system, which

has been the subject of a recent experimental study, consists

of one-dimensional (1D) Mott-insulating (MI) bosons in the

presence of an effective electric field E .4 It has been shown that

this system can be described in terms of an effective quantum

dipole model or, equivalently, an Ising spin model with

infinitely strong nearest-neighbor coupling in the presence of

both a transverse and a longitudinal field.5 Furthermore, at zero

temperature, tuning E to a critical value Ec leads to a QPT.5

In the dipole language, this transition consists of a change in

the ground state from a dipole vacuum (which corresponds

to n̄ bosons at each site) to one with maximal dipoles (which

corresponds to alternating n̄ − 1 and n̄ + 1 bosons per site). In

the spin language, this transition is from the paramagnet (PM)

to an Ising antiferromagnet (AFM). The intermediate quantum

critical point (QCP) belongs to the Ising universality class.5

The appearance of this AFM order has recently been observed

using a quantum gas microscope.4 Theoretical studies of

the phases of the bosonic Mott insulator in an electric field

have also been extended to several two-dimensional (2D)

lattices.6

The study of nonequilibrium dynamics of closed quantum

systems has seen tremendous progress in recent years.2 One

reason for this intense effort has been the possibility of ex-

perimentally realizing these dynamics using ultracold atoms.

Indeed, experiments probing nonequilibrium phenomena with

strongly coupled 2D bosonic atoms, well described by the

2D Bose-Hubbard model, have been carried out recently.7

The corresponding theoretical studies show a reasonable

qualitative match with experiments.8 For the case of 1D

bosonic MI in the presence of an electric field, the dynamics

following sudden quenches of the electric field have also

been studied theoretically.9–12 However, to the best of our

knowledge, the case of finite velocity and, in particular, nearly

adiabatic ramps of E has not been previously explored.

In this Rapid Communication, we probe the nonequilibrium

quantum dynamics of the bosonic Mott insulators in the

presence of a linear-in-time varying electric field (chemical

potential gradient)

E(t) = Ei + (Ef − Ei)t/τ, (1)

where Ei and Ef are the initial and final values of the electric

field, and τ is the ramp time. We define the ramp rate to

be v = ∂tE(t). We look at ramps that start from the PM

phase with unit boson occupation per site and end either

in the AFM phase across the QPT or at the QCP. Based

on the resonant manifold model of Ref. 5, we provide an

exact numerical computation for finite system sizes (L),

using exact diagonalization (ED, L � 16) and time-dependent

matrix product states (tMPS, L � 96), of the residual energy

Q, the log fidelity F , the number of dipoles nd , and the dipole

correlation function Cij (t). We note that the experimental

setup of Ref. 4 constitutes systems of L � 50 lattice sites and

measures nd as well as Cij (t); hence our theoretical analysis

constitutes a quantitatively exact description of the dynamics

of the experimental system providing a valuable guideline

to future experiments.13 Further, for finite-sized systems,

our analysis reveals the manifestation of universal Kibble-

Zurek-like (KZ) scaling with Ising exponents.14–16 In the

past, KZ scaling has been shown to work well in integrable

systems;17 however, its manifestation in nonintegrable systems

has not been consistently demonstrated.1 Our work thus pro-

vides a realization of KZ scaling in finite-sized nonintegrable

systems which can be tested with an existing experimental
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U − E < −1.31J −1.31J < U − E

FIG. 1. (Color online) A pictorial representation of the dipole

(AFM) and the vacuum (PM) ground states for MI bosons with n̄ = 1

across the quantum phase transition. The transition occurs at U −
Ec = −1.31 (for J = 1).

setup. Furthermore, we investigate the crossover from Landau-

Zener (LZ) scaling15,18 to KZ scaling in finite-sized systems,

and show that it collapses onto a universal functional form, as

suggested in Ref. 19.

Model. Bosonic atoms in a tilted optical lattice (i.e., in

an effective time-dependent electric field) are well described

using the Bose-Hubbard Hamiltonian5

HB(t) = −t0
∑

〈ij〉

b
†
i bj +

U

2

∑

i

ni(ni − 1) − E(t)
∑

i

i · ni,

where 〈ij 〉 denotes the sum over nearest neighbors, bi the

boson annihilation operator at site i, ni = b
†
i bi the boson

number operator, t0 the hopping amplitude, and U the on-site

interaction. Under the condition U,E(t) ≫ |U − E(t)|,t0, the

low-energy dynamics of HB are captured by an effective dipole

model5

Hd (t) = [U − E(t)]
∑

ℓ

d
†
ℓdℓ − J

∑

ℓ

(d
†
ℓ + dℓ), (2)

where dℓ = bib
†
j/

√
n0(n0 + 1) denotes the dipole annihilation

operator which lives on a link ℓ between the neighboring

sites i and j as schematically shown in Fig. 1, n0 the

boson occupation of the parent Mott insulator, and J =
t0

√
n0(n0 + 1) the amplitude for creation or annihilation of

a dipole. Henceforth, we shall use the units in which h̄ = 1,

J = 1, and restrict ourselves to n0 = 1. The dipoles satisfy two

constraints: First, there can be only one dipole on any link ℓ

which renders d
†
ℓdℓ � 1, and second, two consecutive links can

not be simultaneously occupied by dipoles d
†
ℓd

†
ℓ+1dℓ+1dℓ = 0.

These constraints render Hd nonintegrable; however, they

also lead to a significant reduction in the Hilbert space of

Hd which makes ED and tMPS the methods of choice for

studying the dynamics of the model. In addition, we restrict

ourselves to studying Hd with periodic boundary conditions

so as to approach the thermodynamic limit with smaller

systems. We note that the dipole model can be represented

in terms of an Ising-like spin model via the transformation

Sz
ℓ = 1/2 − d

†
ℓdℓ, S

x(y)

ℓ = (−i)[dℓ + (−)d
†
ℓ ]/2.4,5 Note that

(−1)ℓ〈Sz
ℓ〉 is the order parameter for the transition from the

PM (dipole vacuum) to the AFM (maximal dipole density)

state.

To study the dynamics within exact diagonalization, we

evolve the wave function using the time-dependent Hamilto-

nian of Eq. (2), in which the electric field is tuned linearly in

time according to Eq. (1),

ih̄∂t |ψ(t)〉 = Hd (t)|ψ(t)〉. (3)

We supplement the time evolution with the initial condition

|ψ(t = 0)〉 = |ψG〉i , where |ψG〉i is the ground-state wave

function of the initial Hamiltonian. Integrating Eq. (3) from

t = 0 to t = τ we obtain the wave function at the end of the

ramp |ψ(τ )〉.
We supplement our exact diagonalization studies by tMPS,

which allows us to study larger system sizes. tMPS represents

the wave function as |ψ〉 =
∑

{σi } M
σ1

1 M
σ2

2 . . . M
σL

L |σ1,σ2 . . .〉,
where M

σi

i are a set of χ by χ matrices indexed by site i

and spin σi (except M1 and ML, which are row and column

vectors respectively).20 We take advantage of the fact that in

the reduced Hilbert space the Hamiltonian Hd (t), Eq. (2), is

a sum of single-site Hamiltonians to perform time evolution.

We evolve in time via |ψ(t + ǫ)〉 = P exp[−iǫHd (t)] by first

exactly applying the single-site Hamiltonian Hd (t) and then

projecting out configurations with neighboring dipoles using

the projection operator P . This projection increases the MPS

bond dimension which is then reduced back to its original

value χ , introducing a small error. The method becomes

exact in the limit ǫ → 0 and matrix size χ → ∞, and its

convergence has been numerically checked by extrapolating

in these parameters.21 Ground states are found by evolving the

same Hamiltonian to large imaginary time at fixed E .

For this work, the specific observables of interest will be

the residual energy Q, the log fidelity F , the dipole number

nd (i.e., the number of sites with even parity of the boson

occupation number), the defect number D (a defect, for the

ramps we address, is a decrease in the number of dipoles from

the ground state), and the spin-spin correlation function Cij

which, at any instant t , are given by

Q(t) = 〈ψ(t)|H (t)|ψ(t)〉 − EG(t), (4)

F (t) = ln[|〈ψ(t)|ψG(t)〉|2], (5)

nd (t) = 〈ψ(t)|
∑

ℓ

(

1 + 2Sz
ℓ

)

|ψ(t)〉, (6)

D(t) = |nd (t) − 〈ψG(t)|
∑

ℓ

(

1 + 2Sz
ℓ

)

|ψG(t)〉|, (7)

Cij (t) = 〈ψ(t)|Sz
i S

z
j |ψ(t)〉, (8)

where EG(t) [|ψG(t)〉] corresponds to the ground-state energy

(wave function) of the Hamiltonian Hd (t). For notational

brevity, we shall drop the index t from observables when

evaluating them at the end of the ramp (t = τ ).

We begin with a discussion of Q and F for finite-sized

systems (L � 96) undergoing ramps from the PM phase

(U − Ei = 100) to the QCP (U − Ef = U − Ec = −1.31) in

time τ . For a finite-sized system which is always gapped, Q and

F behave differently than their counterparts in the thermody-

namic limit (L → ∞) for which one expects KZ-like scaling

to manifest in both Q ∼ v(d+z)ν/(zν+1) and F ∼ vdν/(zν+1) for

small v (large τ ). Here d = 1 is the dimensionality, z = 1 is the

dynamical critical exponent, and ν = 1 the correlation length

critical exponent. For very fast ramps, the wave function does

not have time to evolve during the dynamics, and therefore

the behavior of finite- and infinite-sized systems is similar

but not universal. As the ramp rate becomes slower (v ∼ 1),

KZ scaling sets in for both infinite- and finite-sized systems.

However, while KZ scaling is expected to persist to infinitely

slow ramps in the thermodynamic limit, for finite-sized

systems it is cut off for ramps slower than a critical ramp

100505-2
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FIG. 2. (Color online) Residual energy Q (a) and log fidelity F (c) as a function of the ramp rate v = ∂tE(t) for various system sizes from

10 � L � 16 (ED) and 24 � L � 96 (tMPS), where error bars correspond to time step extrapolation error. Bond dimension errors are below

10−4. The ramps start in the PM (U − Ei = 100) and end at the QCP (U − Ef = −1.31). Dashed lines show the indicated power laws. Note

the extension of the intermediate Kibble-Zurek-like scaling regime to lower values of v for larger system sizes. (b) and (d) show finite-sized

scaling collapse for Q and F for several L. (e) and (f) show Q and F as a function of v for ramps starting in the PM (U − Ei = 100) and

ending in the AFM phase (U − Ef = −100) with 10 � L � 14. Note the change in Q power law from v1 to v1/2.

rate vc(L) ∼ L−(1/ν+z). For v � vc(L), Q and F are expected

to scale as v2 as in gapped systems.15,18 These expectations

may be formalized in the form of scaling functions

Q ∼ Ldv(d+z)ν/(zν+1)gr (vL1/ν+z), (9)

F ∼ Ldvdν/(zν+1)fr (vL1/ν+z), (10)

where gr (x ≪ 1) ∼ x2−(d+z)ν/(zν+1), fr (x ≪ 1) ∼
x2−dν/(zν+1) (very slow, i.e., LZ regime) and

gr (x ≫ 1) ∼ const, fr (x ≫ 1) ∼ const (KZ regime).19

The above-mentioned expectations are corroborated in

Figs. 2(a) and 2(c), which show the behavior of Q and F

as a function of the quench rate v1 for several system sizes

10 � L � 96 on a log-log scale. For both Q and F we find v2

scaling for very slow ramps and KZ-like scaling Q ∼ v1 and

F ∼ v1/2 for intermediate ramps. Finally, for fast ramps, we

find non-power-law behavior corresponding to the breakdown

of universality.22 The LZ-KZ scaling crossover [Eqs. (9) and

(10)] is further corroborated in Figs. 2(b) and 2(d). These plots

demonstrate both the scaling collapse of Q and F for slower

ramps (points to the left) and their deviations from scaling for

faster ramps (points to the right) in the nonuniversal regime.

The dashed lines indicate the expected form of the scaling

functions gr and fr in both the LZ and the KZ regimes. Note

that for the LZ regime, we see collapse even for relatively

small system sizes (L � 10). For the KZ regime, collapse

only occurs for larger system sizes, extending roughly from

v ∼ 70/L2 up to v ∼ 0.5.

Next, we study ramps that cross the QCP. As the system

progresses toward the QCP, the gap decreases, and quasipar-

ticle excitations are produced. After passing the QCP the gap

increases, and the evolution eventually becomes adiabatic.

Assuming that the dynamics is dominated by the integrable

behavior near the QCP, the number of quasiparticle excitations

in the final adiabatic part of the ramp is conserved. In particular,

for an ending point deep in the AFM phase, almost all

excitations would be converted into domain walls with energy

per excitation ∼|U − Ef |. Therefore, one naively expects Q

to become proportional to the number of excitations, and

hence scale the same way as F . These scaling expectations

are corroborated for our nonintegrable model in Figs. 2(e) and

2(f), in which we plot Q and F for ramps from PM (U − Ei =
100) to AFM phase (U − Ef = −100). Not only do we find

KZ-like scaling in F ∼ v1/2 as expected, but Q also scales

as v1/2. While our argument is hardly proof of the origin of

“anomalous” exponents, we suggest that anomalous scaling of

Q in ramps across the QCP should be interpreted with caution.

Having obtained the scaling behavior, we concentrate on

its manifestation for experimentally observable quantities. We

note that the existing experimental setup7 focuses on imaging

the parity of the number of bosons on each site, after projecting

the wave function into a Fock state.3,4,7 Effectively, this

imaging counts the number of empty and doubly occupied sites

(i.e., “defects” on the PM side). In addition to measuring this

dipole number nd , the existing experiments can measure the

dipole-dipole correlation function gd (ℓ) = 〈nd (i)nd (i + ℓ)〉 ∼
〈Sz

i S
z
i+ℓ〉 = Ci,i+ℓ at the end of the ramp. In Fig. 3(a), we

plot the dipole density nd/L as a function of the U − EF . We

note that the final saturation value of nd in the AFM phase

is a decreasing function of the ramp rate and lies between

those for a nearly adiabatic ramp and a sudden quench. In

Fig. 3(b), we show that the defect number D demonstrates

similar finite-sized KZ scaling as F . Since nd is experimentally

measurable, our work demonstrates that finite-sized scaling

100505-3



RAPID COMMUNICATIONS

KOLODRUBETZ, PEKKER, CLARK, AND SENGUPTA PHYSICAL REVIEW B 85, 100505(R) (2012)

20 10 0 10
0.0

0.2

0.4

0.6

0.8

1.0

U f

n
d

L

v 25

v 5

v 1

v 1

10
2 1 10

2

10
2

1

v

D
L

L=96

L=72

L=48

L=36

L=24

L=16

L=14

L=12

L=10

10
4

10
2

1v

5

0

5

0.25

0

0.25

Si
zSi

z

v1/2 

(a) (b) (c)

FIG. 3. (Color online) (a) nd/L as a function of the end point of the ramp U − Ef for several ramp rates (all ramps start in the PM phase

U − Ei = 50 with L = 16). (b) D/L as a function of v for several L showing KZ scaling (U − Ei = 100, U − Ef = −1.31). (c) Spin-spin

correlation function Cℓ = 〈Sz
i S

z
i+ℓ〉 at the end of the ramp as a function of ℓ and the ramp rate v for L = 16.

can be observed within an existing experimental setup. Finally,

in Fig. 3(c), we show the behavior of Ci,i+ℓ as a function of

v and ℓ. We note that for slow ramps to the QCP one finds

an oscillatory behavior of Ci,i+ℓ, indicating the precursor of

the AFM order present in the critical ground state. As v is

increased, the system ceases to reach the final ground state

and these correlations decay. Finally, the state of the system

at the end of fast ramps is essentially the PM ground state,

which has no AFM correlations, leading to a flat Ci,i+ℓ. These

features can be directly picked up in experiments, which can

serve as a test of our theory.

Beyond its intrinsic interest, we suggest two applications of

our work. The first application is to provide an alternative view

on how to probe universality. Traditionally, one would bring

the system to equilibrium in the vicinity of a quantum critical

point, and then probe it. Achieving equilibrium is particularly

difficult in ultracold atom systems. Directly studying dynam-

ical properties obviates the necessity of this equilibration.

Since our results are at the horizon of what is experimentally

achievable in cold atom experiments, they provide suggestions

for experimentally probing dynamic critical phenomenon.

A second application is guidance for initializing quantum

emulators to interesting quantum states; a quantum emulator

will likely have to start with an well-known ground state and

take the system through a QCP. Our method provides a direct

estimate of the fidelity of this procedure for a nonintegrable

system.

In conclusion, we have investigated the universal scaling

dynamics of a finite-sized nonintegrable bosonic system

following a finite rate ramp of the effective electric field.

Our investigation demonstrates two scaling regimes (LZ- and

KZ-like scaling) with conventional exponents and thus differs

from prior studies of other nonintegrable systems1,14,17 which

found various anomalous scaling exponents. Furthermore,

comparing ramps that cross the QCP (which show anomalous

exponents) to those that end at the QCP (which show expected

exponents), we suggest a possible origin of these anomalous

exponents: the adiabatic dynamics of the excitations following

the passage through the quantum critical regime. Our work

provides evidence of a real-time finite-sized scaling collapse

of dynamics in nonintegrable systems, which we postulate

should extend to other quantum phase transitions. Finally,

we compute experimentally measurable quantities such as the

dipole density nd/L and the dipole correlation function Cij ,

and demonstrate that the scaling behavior studied in this work

can be observed in realistic experiments.
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