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We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium

dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision

integral that includes contributions from electron-electron (e-e) and electron–optical phonon interactions. Taking

advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to

perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take

particular care of subtle collinear scattering processes—processes in which incoming and outgoing momenta of

the scattering particles lie on the same line—including carrier multiplication (CM) and Auger recombination

(AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue

that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide

a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb

collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including

screening in the matrix element of the Coulomb interaction at the level of the random phase approximation

(RPA), focusing in particular on the consequences of various approximations including static RPA screening,

which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely

suppresses them.
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I. INTRODUCTION

Graphene, a two-dimensional (2d) crystal of carbon atoms

tightly packed in a honeycomb lattice, is at the center of

an ever growing research effort, due to its potential as

a platform material for a variety of applications in fields

ranging from electronics to food packaging.1–7 In particular,

in optoelectronics, photonics, and plasmonics graphene has

decisive advantages, such as wavelength-independent absorp-

tion, tunability via electrostatic doping, large charge-carrier

concentrations, low dissipation rates, high mobility, and the

ability to confine electromagnetic energy to unprecedented

small volumes.8–12 These unique properties make it an ideal

material for a variety of photonic applications,8 including

fast photodetectors,13,14 transparent electrodes in displays

and photovoltaic modules,8,15 optical modulators,16 plasmonic

devices,10,17 microcavities,18 and ultrafast lasers,19 just to cite

a few. Therefore, understanding the microscopic interactions

between light and matter is an essential requirement to progress

these emerging research areas into technological applications.

When light arrives on a graphene sample it creates a highly

nonequilibrium “hot” electron distribution (HED), which first

relaxes on an ultrafast time scale to a thermalized (but still

hot) Fermi-Dirac (FD) distribution and then slowly cools,

via optical and acoustic phonon emission, eventually reaching

thermal equilibrium with the lattice. Pump-probe spectroscopy

is a very effective tool to study the nonequilibrium dynamics

of hot carriers and has been extensively applied to a variety

of graphene samples and other carbon-based materials.11,20–38

There is consensus in the literature on the fact that the time

scales of the thermalization process, primarily controlled by

electron-electron (e-e) interactions, are extremely short, of

the order of tens of femtoseconds. Indeed, early theoretical

calculations39–42 based on the equilibrium many-body dia-

grammatic perturbation theory for an interacting system of

massless Dirac fermions (MDFs) all pointed to ultrashort

e-e inelastic carrier lifetimes, with a sensitive dependence on

doping.

The theory of the nonequilibrium dynamics of hot carriers

in graphene has also been extensively investigated.43–51 Pre-

vious works, however, heavily relied on numerical analysis

and did not address the following issues. When electrons in

graphene are described by the low-energy 2d MDF model,2,4–6

a special class of two-body scattering processes poses a serious

conundrum. These are “collinear” events, in which incoming

and outgoing momenta of the scattering particles lie on the

same line52–55 (see Fig. 1). On one hand, due to the geometrical

nature of these events, one is very tempted to conclude that

they are irrelevant, since they lie on a one-dimensional (1d)

manifold embedded in a 2d space, i.e., a set of zero measure.

As we will see in Sec. III B, this intuitive statement can be

formally proven by employing conservation of energy and

momentum. Thus, the phase space for collinear scattering

events vanishes in the case of 2d MDF bare bands. On the

other hand, when e-e interactions are taken into account

going beyond the single-particle picture, several interesting

things happen. (i) MDFs moving in a collinear way along

the same directrix “spend a lot of time together” since they

travel with the same speed,54 the Fermi velocity vF ∼ 106 m/s.

They thus interact very strongly through the nonrelativis-

tic Coulomb interaction. A simple analysis based on the

Fermi golden rule shows that this yields53–55 logarithmically
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FIG. 1. Schematic of Coulomb-enabled two-body scattering pro-

cesses in graphene. The cones represent the linear dispersion εk,s =
sh̄vF|k| of electron states. Light-gray and dark-gray shaded areas

denote occupied states. These plots correspond to a nonequilibrium

hot-electron distribution. Arrows mark electron transitions from

initial to final states. The electron population in each band is conserved

in (a) and (b), but not in (c) and (d). (c) and (d) represent “Auger

processes,” which can only take place when the wave vectors of the

initial and final states are collinear.

divergent quasiparticle decay rates and transport coefficients,

such as viscosities and conductivities. (ii) Interactions (even

at the Hartree-Fock level56) are responsible for deviations

of the energy-momentum dispersion relation from linearity.

The renormalized quasiparticle spectrum, controlled by the

real part of the quasiparticle self-energy, displays a concave

curvature,6 an effect that suppresses collinear scattering.

(iii) The broadening of the energy-momentum dispersion,

which follows from the finiteness of the quasiparticle lifetime

(an effect beyond the Hartree-Fock theory), opens up the

phase space for collinear scattering, as thoroughly discussed in

Sec. III C. The broadening of the quasiparticle spectrum is con-

trolled by the imaginary part of the quasiparticle self-energy,

a quantity directly probed by angle-resolved photoemission

spectroscopy.57–62 (iv) The situation is further complicated

by the role of screening, a key phenomenon in systems with

long-range Coulomb interactions.63,64 As we will discuss in

Sec. IV, static screening does not have a detrimental effect

on collinear scattering. The opposite occurs when dynamical

screening is considered at the level of the random phase

approximation (RPA). (v) Nonlinearities and anisotropies in

the band structure beyond the MDF model (such as “trigonal

warping”2) may affect the efficiency of screening. These issues

were recently addressed in Ref. 65 by means of the equilib-

rium many-body perturbation theory, as we will discuss in

Sec. IV B.

All these issues raise the following question: Is collinear

scattering relevant or irrelevant to understand quasiparticle

dynamics and transport in graphene? Collinear (or forward)

scattering plays a special role in the dynamics of

quasiparticles39 and photoexcited carriers in graphene.11 The

finiteness of the quasiparticle lifetime on the mass shell39

can be traced back to the divergence of the density of

electron-hole pairs in the collinear direction. In this case, it

is the only configuration in which “impact ionization” (IMI)

and “Auger recombination” (AR) processes are possible52

(see Fig. 1). IMI and AR (which we will refer to with the

generic term “Auger processes”) have been studied since the

later fifties.66,67 In recent years they attracted attention in

the context of semiconductors68 and quantum dots.69,70 IMI

and AR are of fundamental interest because they strongly

influence the relaxation dynamics of a HED. For example,

AR in optically pumped 2d electron systems in the quantum

Hall regime is responsible24,71 for emission from states with

energy higher than those optically pumped, and thwarts the

realization of a Landau-level laser, i.e., a laser that would

operate under the 2d Landau quantization, with population

inversion in the Landau levels.71 Most importantly, Auger

processes can be exploited to design solar cells72,73 or

other photovoltaic devices that can overcome fundamental

limitations74 to photocurrent production by relying on “carrier

multiplication” (CM).

We reported evidence of Auger processes in graphene,11

proving the existence of IMI and CM in a short transient

following ultrafast photoexcitation in the optical domain.11

The excess energy of photoexcited electrons can also be

transferred to secondary electron-hole pairs by intraband

scattering, without CM from the valence to conduction band.

This process, also recently experimentally demonstrated,37

proceeds by promotion of electrons from below to above

the Fermi energy and does not involve processes (b)–(d) in

Fig. 1. On the other hand, Refs. 75 and 76, by probing

the nonequilibrium dynamics of MDFs by time- and angle-

resolved photoemission spectroscopy, found no evidence for

CM. We note, however, that Refs. 75 and 76 operated in

a regime of pump fluences ≫102 μJ/cm2 where CM is

not expected on the basis of calculations relying on static

screening.49 Moreover, both experiments lacked sufficient time

resolution to observe CM. Indeed, the higher the pump fluence,

the shorter is the time window in which CM exists.49 For

example, for a pump fluence ∼50 μJ/cm2 as in Ref. 11,

CM exists in a time window ∼100 fs (substantially larger

than the time resolution in Ref. 11). References 75 and

76 used much higher pump fluences, i.e., �1 mJ/cm2 and

∼346 μJ/cm2, respectively. Reference 75 reported strong

evidence of population inversion in graphene after intense

photoexcitation, similar to that reported in Ref. 77, where

evidence of stimulated emission was seen for pump fluences

�2 mJ/cm2. Because of the large fluences in Refs. 75 and 77,

the existence of population inversion cannot be ascribed to the

absence of Auger processes.

In semiconductors, IMI (AR) creates (annihilates) an

electron-hole pair and takes place when the energy transfer

to (from) one electron is sufficient to overcome the band gap.

Since graphene is a zero-gap semiconductor, the scattering

rates of Auger processes are generally larger than in most other

common semiconductors, as discussed in Ref. 52. However,

Ref. 52 did not address the issue of the vanishing phase space

for 2d MDF bare bands. Moreover, the IMI and AR rates
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calculated in Ref. 52 refer to FD distributions [Eq. (20) in

Ref. 52], and thus do not apply to generic nonequilibrium

situations. Finally, Ref. 52 did not discuss the role of dynamical

screening, now known to play a pivotal role in the electronic

and optoelectronic properties of graphene.5,6

Here we analyze in detail the interplay between collinear

scattering and e-e interactions in the context of the nonequi-

librium dynamics of photoexcited electrons. We first show

that electron lifetime effects open up a finite phase space

for collinear scattering processes, thereby regularizing the

pathologies mentioned above. Here we consider the broad-

ening of the energy-momentum dispersion, but we neglect

its deviations from linearity due to e-e interactions. Although

these two effects could be treated in principle on an equal

footing (since they are described by the imaginary and real

part of the quasiparticle self-energy, respectively), changes

in the dispersion due to the real part of the quasiparticle

self-energy are relevant only for low carrier densities.6,78

While our theory is general, the numerical calculations we

present in Sec. V are focused on a regime with large

density of photoexcited carriers, ∼1013 cm−2. This is a

value that is typically used in experimental time-resolved

techniques for mapping the relaxation dynamics of electron

distributions.11,35,76

We then discuss the contribution of collinear processes to

the Coulomb collision integral in the semiclassical Boltzmann

equation (SBE), which determines, together with electron–

optical phonon (e-ph) scattering, the early stages (sub-100-fs)

of the time evolution. Most importantly, we go beyond

the Fermi golden rule, by introducing screening at the

RPA level. Contrary to what happens in a conventional 2d

parabolic-band electron gas,64,79 the introduction of dynamical
screening brings in qualitative new features. On one hand,

RPA dynamical screening represents the most natural and

elementary way to regularize55 the logarithmic divergences

of quasiparticle decay rates and transport coefficients.53,54

On the other hand, due to a |ω2 − v2
Fq

2|−1/2 divergence that

arises in the polarization function42,80–83 χ (0)(q,ω) of 2d

MDFs when the collinear scattering condition ω = ±vFq is

met, RPA dynamical screening completely suppresses Auger

processes.

This article is organized as follows. Section II describes

the model MDF Hamiltonian and the SBE for the coupled

dynamics of electrons and optical phonons. It also reviews

the typical time scales, as set by e-e and e-ph interactions.

Section III introduces the isotropic SBE and discusses in

detail the treatment of collinear scattering in the Coulomb

collision integral. The role of screening is considered in

Sec. IV. Section V presents our main numerical results for the

electron and phonon dynamics, as obtained from the solution

of the isotropic SBE. Finally, Sec. VI summarizes our main

conclusions.

II. MODEL HAMILTONIAN AND THE SEMICLASSICAL

BOLTZMANN EQUATION

A. MDF Hamiltonian

Carriers in graphene are described in a wide range of

energies (�1 eV) by the MDF Hamiltonian,2,4–6

ĤMDF =
∑

k,ℓ,s,σ

εk,sψ̂
†
k,ℓ,s,σ ψ̂k,ℓ,s,σ , (1)

where the field operator ψ̂k,ℓ,s,σ annihilates an electron with

2d momentum h̄k, valley ℓ = K,K′, band index s = ±1 (or c,

v for conduction and valence band, respectively), and spin

σ = ↑,↓. The quantity εk,s = sh̄vF|k| represents the MDF

band energy, with a slope h̄vF ≃ 0.6 eV nm.

MDFs interact through the nonrelativistic Coulomb poten-

tial v(r) = e2/(ǭr) with the 2d Fourier transform

vq =
2πe2

ǭq
, (2)

where ǭ = (ǫ1 + ǫ2)/2 is an average dielectric constant6

calculated with the dielectric constants ǫ1 and ǫ2 of the media

above and below the graphene flake.

Intravalley e-e interactions are described by the following

Hamiltonian (in the eigenstate representation):

Ĥe-e =
1

2A

∑

ℓ

∑

σ1,σ2

∑

{si }4
i=1

∑

{ki }4
i=1

V
(ℓ)

1234

× δ(k1 + k2 − k3 − k4)

× ψ̂
†
k1,ℓ,s1,σ1

ψ̂
†
k2,ℓ,s2,σ2

ψ̂k4,ℓ,s4,σ2
ψ̂k3,ℓ,s3,σ1

, (3)

where A is 2d electron system area and the delta distribution

imposes momentum conservation. The matrix element of the

Coulomb potential reads

V
(ℓ)

1234 = v|k1−k3|F
(ℓ)
s1,s3

(

θk3
− θk1

)

F (ℓ)
s2,s4

(

θk4
− θk2

)

, (4)

where F (ℓ)
s1,s2

(θ ) = [1 + s1s2 exp (iℓθ )]/2 is the so-called “chi-

rality factor,”2,4–6 which depends on the polar angle θki
of

the wave vector ki . The following dimensionless coupling

constant6 controls the strength of e-e interactions (relative to

the typical kinetic energy):

αee =
e2

h̄vFǭ
. (5)

B. Electron-electron interactions

The distribution function fk,ℓ,s,σ represents the probability

that a given single-particle state with quantum numbers

k,ℓ,s,σ is occupied. The equation of motion (EOM) for this

distribution function in the presence of e-e interactions is given

by84–86

dfk1,ℓ,s1,σ1

dt

∣

∣

∣

∣

e-e

=
2π

h̄

1

A3

∑

k2,k3,k4

∑

s2,s3,s4

∑

σ2

∣

∣V
(ℓ,σ1,σ2)

1234

∣

∣

2

(

1 −
δσ1,σ2

2

)

δ(k1 + k2 − k3 − k4)δ
(

εk1,s1
+ εk2,s2

− εk3,s3
− εk4,s4

)

×
[(

1 − fk1,ℓ,s1,σ1

)(

1 − fk2,ℓ,s2,σ2

)

fk3,ℓ,s3,σ2
fk4,ℓ,s4,σ1

− fk1,ℓ,s1,σ1
fk2,ℓ,s2,σ2

(

1 − fk3,ℓ,s3,σ2

)(

1 − fk4,ℓ,s4,σ1

)]

. (6)
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The right-hand side of the equation is the collision integral and the Dirac delta distributions enforce conservation of momentum

and energy in each e-e scattering event. The quantity64

V
(ℓ,σ1,σ2)

1234 = V
(ℓ)

1234 − δσ1,σ2
V

(ℓ)
1243 (7)

in the collision integral includes a direct (Hartree) and an exchange (Fock) term, nonvanishing if two colliding electrons have

parallel spins (σ1 = σ2). This expression for the kernel in the collision integral corresponds to the second-order Hartree-Fock

approximation.84 If spin-flip processes are absent (as in the case considered here), the distribution function does not depend on the

spin label, which can be dropped. The summation over σ2 in Eq. (6) can be performed explicitly, obtaining the spin-independent

kernel

∣

∣V (ℓ)
s1,s2,s3,s4

(k1,k2,k3,k4)
∣

∣

2 ≡
∑

σ2

(

1 −
1

2
δσ1,σ2

)

∣

∣V
(ℓ,σ1,σ2)

1234

∣

∣

2 =
1

2

∣

∣V
(ℓ)

1234 − V
(ℓ)

1243

∣

∣

2 + |V (ℓ)
1234|

2, (8)

in agreement with Ref. 45.

C. Electron-phonon interactions

Electrons scatter with lattice vibrations and lose (gain) energy by emitting (absorbing) phonons. Only optical phonons in the

neighborhood of the Ŵ and K points of the Brillouin zone (BZ) matter for electrons with energy of several hundred meV above

the Fermi energy. At each point, both the transverse (T) and the longitudinal (L) phonon modes are considered. The distribution

function of the νth phonon mode with ν ∈ {Ŵ,L; Ŵ,T; K,L; K,T} and 2d momentum q is denoted by the symbol n
(ν)
q .

The electron-phonon (e-ph) contribution to the EOM for the electron distribution is87

dfk,ℓ,s

dt

∣

∣

∣

∣

e-ph

= −
2π

h̄

1

A

∑

q

∑

s ′,ℓ′,ν

A0

∣

∣g
(ν)

k,ℓ→k+q,ℓ′

∣

∣

2
fk,ℓ,s(1 − fk+q,ℓ′,s ′ )

[

δ
(

εk+q,s ′ − εk,s + h̄ω(ν)
q

)(

n(ν)
q + 1

)

+ δ
(

εk+q,s ′ − εk,s − h̄ω(ν)
q

)

n(ν)
q

]

+
2π

h̄

1

A

∑

q

∑

s ′,ℓ′,ν

A0

∣

∣g
(ν)

k+q,ℓ′→k,ℓ

∣

∣

2
fk+q,ℓ′,s ′ (1 − fk,ℓ,s)

×
[

δ
(

εk,s − εk+q,s ′ + h̄ω(ν)
q

)(

n(ν)
q + 1

)

+ δ
(

εk,s − εk+q,s ′ − h̄ω(ν)
q

)

n(ν)
q

]

, (9)

where A0 ≃ 0.052 nm2 is the area of the elementary cell

of graphene’s honeycomb lattice. The terms proportional to

fk,ℓ,s(1 − fk′,ℓ′,s ′ ) represent electronic transitions from the

single-particle state with quantum numbers k, ℓ, s, to the state

k′, ℓ′, s ′. The transition is suppressed if the value fk′,ℓ′,s ′ of

the distribution function in the final state is close to unity

(Pauli blocking). The terms proportional to n
(ν)
q correspond to

absorption of phonons, while the terms proportional to n
(ν)
q + 1

correspond to emission of phonons. The latter coefficient is

larger than the former (Bose enhancement) because phonons,

being bosonic excitations, experience bunching. The kernels

g
(ν)

k,ℓ→k′,ℓ′ can be written as

∣

∣g
(Ŵ,L)

k,K→k+q,K

∣

∣

2 =
〈

g2
Ŵ

〉

[1 + cos (θk,q + θk+q,q)],
∣

∣g
(Ŵ,T)

k,K→k+q,K

∣

∣

2 =
〈

g2
Ŵ

〉

[1 − cos (θk,q + θk+q,q)],
(10)

∣

∣g
(K,L)

k,K→k+q,K′

∣

∣

2 =
〈

g2
K,1

〉

,
∣

∣g
(K,T)

k,K→k+q,K′

∣

∣

2 =
〈

g2
K,2

〉

[1 + cos (θk,k+q)],

where θk,q denotes the angle between the wave vectors k and

q and 〈g2
X〉 are the electron-phonon couplings (EPCs).88–91

Phonons at the Ŵ (K) point are responsible for intravalley

(intervalley) scattering only.

The complete EOM for the electron distribution is the sum

of Eqs. (6) and (9), i.e.,

dfk,ℓ,s

dt
=

dfk,ℓ,s

dt

∣

∣

∣

∣

e-e

+
dfk,ℓ,s

dt

∣

∣

∣

∣

e-ph

. (11)

Finally, the SBE for the phonon distribution is

dn
(ν)
q

dt
=

2π

h̄

1

A

∑

k

∑

s,s ′,ℓ,ℓ′

A0

∣

∣g
(ν)

k,ℓ→k+q,ℓ′

∣

∣

2

× fk,ℓ,s(1 − fk+q,ℓ′,s ′ )
[

δ
(

εk+q,s ′ − εk,s + h̄ω(ν)
q

)

×
(

n(ν)
q + 1

)

− δ
(

εk+q,s ′ − εk,s − h̄ω(ν)
q

)

n(ν)
q

]

−
γph

h̄

[

n(ν)
q −

1

exp
[

h̄ω
(ν)
q

/

(kBT0)
]

− 1

]

. (12)

The right-hand side of the previous equation includes a phe-

nomenological decay term which describes phonon-phonon

interactions (due to the anharmonicity of the lattice). In-

deed anharmonic couplings play an important role in the

graphene lattice92–96 and, in principle, the decay coefficient

γph could be calculated by means of atomistic Monte Carlo

simulations based on a realistic description of interatomic

interactions.94,96,97 The decay term induces relaxation of the

phonon distribution towards the equilibrium value, given by a

Bose-Einstein distribution at the temperature T0 of the lattice.

D. Relaxation time scales of a hot-electron

distribution in graphene

Accurate calculations of relaxation time scales in,

e.g., semiconductors pose a challenging problem of great
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theoretical and practical relevance.85,86 In graphene, three

stages of the time evolution have been identified,11,19–22,31,43

which follow the creation of a HED due to the action of

a laser-light “pump” pulse promoting a certain density of

electrons from valence to conduction band.

In the first stage, t � 20 fs, the initial HED thermalizes to

a hot FD distribution and the two bands are characterized

by different chemical potentials. Recently, we were able

to track this initial stage with sufficient time resolution to

directly measure the transition from a nonthermal to a hot

FD distribution.11 Cooling of the hot FD distribution and

equilibration of the chemical potentials between the two bands

take place in the second and third stage, where the dominant

process is phonon emission. The second stage, t � 200 fs, is

dominated by the emission of optical phonons,98 which in

graphene are associated with an unusually large energy scale

(∼200 meV)88,99 and are moderately coupled to the electronic

degrees of freedom. This cooling channel experiences a

bottleneck when the phonon distribution heats up.43,98 The

third stage, which occurs when the bulk of the electron

distribution lies below the optical-phonon energy scale, is

characterized by the emission of acoustic phonons.19,100,101

These processes take place for t � ns, but can experience a

substantial speed-up (t ∼ 1 ns → 1 ps) in the case of disorder-

assisted collisions.102–104 Since here we focus on the electron

relaxation dynamics in the sub-100-fs time scale, we neglect

the contribution of acoustic phonons in our SBE formulation.

Throughout the relaxation dynamics, phonons dissipate energy

into the lattice by means of phonon-phonon interactions.

III. ISOTROPIC DYNAMICS AND COLLINEAR

SCATTERING PROCESSES

A. Semiclassical Boltzmann equation in the isotropic limit

In this section we simplify Eqs. (11) and (12) by assuming

that the electron and phonon distributions are isotropic. While

this assumption does not apply during the application of the

pump pulse (since this couples anisotropically45), it has been

shown that the HED is substantially isotropic at low energies

already after ∼10 fs (see central panel in Fig. 2 of Ref. 105).

However, one has to wait ∼50 fs for the HED to be fully

isotropic.105 We stress that both numbers are upper bounds

for the time needed to restore isotropy, since the simulations

of Ref. 105 are based on the use of a static screening model

which, as we have mentioned above and as we will see below,

strongly overestimates the strength of collinear processes.

The electron distribution fℓ(ε) is therefore assumed to

depend on the wave vector k only through the energy ε = εk,s .

Similarly, the phonon distribution n(ν)(q) is assumed to depend

only on the magnitude q of the phonon wave vector q. Since the

slope of the phonon dispersion h̄ω
(ν)
q is negligible with respect

to h̄vF, we drop the momentum dependence and use constant

values ω(Ŵ) and ω(K). Equations for isotropic distributions can

be obtained by performing the angular integrations in the

collision integrals of Eqs. (11) and (12).

We now outline our approach in the case of a single

summation over a wave vector k, involving a generic function

g(k,q), which depends on the direction of k and another wave

vector q, and a functional F[ε′,ε′′], which depends only on

the isotropic quantities ε′ = εk,s and ε′′ = εk+q,s ′ . We have85

∑

k

g(k,q)F[εk,s,εk+q,s ′ ]

=
∫ ∞

−∞
dε′

∫ ∞

−∞
dε′′ F[ε′,ε′′]Q[ε′,ε′′], (13)

where the kernel Q[ε′,ε′′] =
∑

k δ(ε′ − εk,s)δ(ε′′ − εk+q,s ′ )

g(k,q) depends now only on isotropic quantities.

The calculation of the isotropic kernels in Eqs. (11) and (12)

is summarized in the following. This approach is convenient

from a computational point of view since it reduces the number

of variables in the integrations that have to be carried out

numerically (see Appendix). Most importantly, it also allows

us to handle analytically the contribution of collinear scattering

to the e-e interaction in the Boltzmann collision integral.

The final results for the e-ph contributions are

dn(ν)(q)

dt
=

∑

ℓ,ℓ′

{

[n(ν)(q) + 1]

∫ ∞

−∞
dεfℓ(ε)[1 − fℓ′(ε(ν,−))]Q

(ν,−)
ℓ,ℓ′ (ε,q) − n(ν)(q)

∫ ∞

−∞
dεfℓ(ε)[1 − fℓ′ (ε(ν,+))]Q

(ν,+)
ℓ,ℓ′ (ε,q)

}

−
γph

h̄

[

n(ν)(q) −
1

exp [h̄ω(ν)/(kBT0)] − 1

]

(14)

and

dfℓ(ε)

dt

∣

∣

∣

∣

e-ph

=
2π

h̄

∑

ℓ′,ν

{

−fℓ(ε)[1 − fℓ′ (ε(ν,−))]

∫ ∞

0

dq(h̄vF)[n(ν)(q) + 1]I
(ν,−)
ℓ,ℓ′ (ε,q) − fℓ(ε)[1 − fℓ′(ε(ν,+))]

×
∫ ∞

0

dq(h̄vF)n(ν)(q)I
(ν,+)
ℓ,ℓ′ (ε,q) + fℓ′(ε(ν,+))[1 − fℓ(ε)]

∫ ∞

0

dq(h̄vF)[n(ν)(q) + 1]I
(ν,+)
ℓ,ℓ′ (ε,q)

+ fℓ′ (ε(ν,−))[1 − fℓ(ε)]

∫ ∞

0

dq(h̄vF)n(ν)(q)I
(ν,−)
ℓ,ℓ′ (ε,q)

}

, (15)

with the shorthand ε(ν,±) = ε ± h̄ω(ν).

035430-5



TOMADIN, BRIDA, CERULLO, FERRARI, AND POLINI PHYSICAL REVIEW B 88, 035430 (2013)

In Eqs. (14) and (15), we introduced the following

functions:

I
(ν,±)
ℓ,ℓ′ (ε,q) =

1

πh̄

∑

s ′

I

[

s ′ ε
(ν,±)

h̄vFq
,

|ε|
h̄vFq

,
A0

∣

∣g
(ν)
ℓ,ℓ′

∣

∣

2

h̄vF

]

(16)

and

Q
(ν,±)
ℓ,ℓ′ (ε,q) =

|ε|
h̄vFq

I
(ν,±)
ℓ,ℓ′ (ε,q), (17)

with

I [x0,x1,F] ≡ �(x0 − |x1 − 1|)�(x1 + 1 − x0)

×
2x0

√

4x2
1 −

(

x2
0 − x2

1 − 1
)2

×F
(

x1, arccos
[(

x2
0 − x2

1 − 1
)/

(2x1)
])

.

(18)

Here �(x) is the Heaviside distribution and the quantities x0,x1

are dimensionless. For notational convenience, we write the

wave vector dependence of the e-ph kernel |g(ν)

k,ℓ→k+q,ℓ′ |2 in

the form |g(ν)
ℓ,ℓ′ |2(r,θ ), where r = k/q and θ = θk,q .

Finally, the e-e contribution reads

dfℓ(ε1)

dt

∣

∣

∣

∣

e-e

=
∫ +∞

−∞
dε2

∫ +∞

−∞
dε3C

(ℓ)(ε1,ε3,E)

×{[1 − fℓ(ε1)][1 − fℓ(ε2)]fℓ(ε3)fℓ(ε4)

− fℓ(ε1)fℓ(ε2)[1 − fℓ(ε3)][1 − fℓ(ε4)]},
(19)

where the Coulomb kernel C(ℓ), with physical dimensions

fs−1 eV−2, represents a two-particle scattering rate. The

energies of the incoming (with indexes 1 and 2) and outgoing

particles (with indexes 3, 4) are fixed. The total energy

E ≡ ε1 + ε2 is conserved and, finally, ε4 ≡ E − ε3.

B. The Coulomb kernel

Simplifying Eq. (6) along the lines of Eq. (13) leads to the

following expression for the Coulomb kernel:

C(ℓ)(ε1,ε3,E)

≡
2π

h̄
lim
η→0

1

A2

∑

Q,k3

δ(|E − ε1| − h̄vF| Q − k1|)

× δ(|ε3| − h̄vFk3)δ(|E − ε3| − h̄vF| Q − k3| + η)

×
∣

∣V (ℓ)
s1,s2,s3,s4

(k1, Q − k1,k3, Q − k3)
∣

∣

2
. (20)

Here, the wave vector k1 has modulus ε1/(h̄vF), while its

direction can be fixed at will (i.e., along the x̂ axis) because

the final result C(ℓ)(ε1,ε3,E) is scalar under rotations. The

total wave vector Q = k1 + k2 is conserved in all scattering

processes. In the summation over Q and k3, the Dirac delta

distributions ensure that only scattering configurations that

are compatible with the choice of incoming ε1 and outgoing ε3

energies are considered. Moreover, the three delta distributions

restrict the 4d integral to a 1d integral (at most), after the usual

continuum limit A−1
∑

k → (2π )−1
∫

dk2 is performed. We

choose to reduce the summations to an integration over the

modulus Q of the total momentum, in terms of which we are

able to represent with clarity the phase space available for

Coulomb scattering (see Fig. 2).

−1 0 1 2

ε1/E

−1

0

1

2

ε 3
/
E

II III II

III I III

II III II

0

1

2

3

FIG. 2. (Color online) The integration domain [Eq. (22)] for the

variable Q in the integral [Eq. (21)]. The regions labeled by I, II,

and III identify the values of the parameters ε1 and ε3 for which

intraband, interband, and Auger processes take place, respectively.

At Q = |E|/(h̄vF) collinear scattering takes place. This value is the

maximum (minimum) of the integration domain in region I (II). The

minimum (maximum) of the integration domain in region I (II) is

shown in the color scale, in units of |E|/(h̄vF).

We stress that in Eq. (20) we introduced an infinitesimal
quantity η in the argument of one of the delta distributions. As

we will see in the next section, if the limit η → 0 is taken before
calculating the 4d integral in Eq. (20), collinear scattering

processes do not contribute to C(ℓ)(ε1,ε3,E). We introduced

η to slightly relax the condition of energy conservation.

The latter is recovered only in the limit η → 0. We can

justify this by considering the following physical explanation.

The delta distribution of conservation of energy in Eq. (6)

originates from the so-called “quasiparticle approximation,”

applied to the Kadanoff-Baym equations (KBEs), from which

the SBE is derived.84 More precisely, the KBEs involve the

true quasiparticle spectral function, which has a finite width.

In the quasiparticle approximation, the spectral function is

substituted with a delta distribution, which is a reasonable

approximation when the width of the quasiparticle spectral

function can be neglected. As we will see in this section, in the

quasiparticle approximation applied to 2d MDFs an entire class

of two-body collisions (collinear processes) yields vanishing

scattering rates. Our procedure takes effectively into account

the fact that quasiparticles have a finite lifetime,57–62 thereby

allowing for a finite collinear scattering contribution to the

Coulomb kernel. We first calculate the Coulomb kernel with a

finite η and then apply the quasiparticle η → 0 approximation

at the end of the calculation.

To make analytical progress, we now introduce elliptic

coordinates for the evaluation of the Coulomb kernel.106 This

is most natural because, for every fixed value of Q, the

equation E = s1h̄vFk1 + s2h̄vFk2 for the total energy defines

a conic section in momentum space. More precisely, if

s1 = s2 (s1 �= s2), the vector k = k1 − Q/2 lies on an ellipse

(hyperbola) with focuses located at ± Q/2 and major axis

of length |E|/(h̄vF). Elliptic coordinates (u,v) are related to

the Cartesian coordinates (kx,ky) by the transformation kx =
(Q/2) cosh(u) cos(v), ky = (Q/2) sinh(u) sin(v), with area

element dk2 = (Q/2)2[sinh(u)2 + sin(v)2] du dv. In these

coordinates, ki = (Q/2)[cosh(ui) + cos(vi)] and | Q − ki | =
(Q/2)[cosh(ui) − cos(vi)], so that nonlinear combinations
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between integration variables in Eq. (20) disappear. Elliptic coordinates are also extremely useful to prove that IMI and

AR can only occur when k1, . . . ,k4 are collinear [see Figs. 4(a) and 4(b) in Ref. 11].

Carrying out algebraic manipulations, we rewrite Eq. (20) in the following simplified manner:

C(ℓ)(ε1,ε3,E) =
2π

h̄

1

(2π )4

1

(h̄vF)3
lim
η→0

∫ Q1

Q0

dQ
∑′ ∣

∣V (ℓ)
s1,s2,s3,s4

(k1,k2,k3,k4)
∣

∣

2

×
(E1,max − E1,min)(h̄vFQ)

{[

E2
1,max − (h̄vFQ)2

][

(h̄vFQ)2 − E2
1,min

]}1/2

(E3,max + η)2 − (E3,min − η)2

{[

(E3,max + η)2 − (h̄vFQ)2
][

(h̄vFQ)2 − (E3,min − η)2
]}1/2

.

(21)

We stress that this is the most important analytical result of

this article.

Note that the integrand in Eq. (21) is given by the product

of the kernel (8) and a complicated expression arising from

the phase space of the e-e scattering processes, the term in

the second line of Eq. (21). In Eq. (21), si = sgn(εi) and

the dependence of ki on ε1, ε3, E, and Q is left implicit

for the sake of simplicity. The primed sum symbol indicates

summation over the available configurations of vectors k2,

k3, and k4. To identify these configurations, one may proceed

as follows. When ε1, ε3, E, and Q are given, the lengths of

all the sides of the two triangles (k1,k2, Q) and (k3,k4, Q)

are uniquely fixed. These two triangles, which share the side

of length Q, can be drawn on the same half plane (with

respect to a line containing the vector Q) or on opposite

half planes. Thus, four geometric configurations for the wave

vectors k2, k3, and k4 are available in total. However, when

all vectors ki are collinear, the triangles are degenerate and

only one configuration is possible. Finally, in Eq. (21) we also

introduced Ei,min = |εi | − |E − εi |, Ei,max = |E − εi | + |εi |,
and

h̄vQ0 = max(|E1,min|,|E3,min − η|),
(22)

h̄vQ1 = min(E1,max,E3,max + η).

Let us first discuss the case in which η is set to zero before

carrying out the integral in Eq. (21). In this case, one can prove

that Q0 � Q1 by using the triangular and reverse triangular

inequalities, ‖E − εi | − |εi‖ � |E| � |E − εj | + |εj |. When

the previous inequalities turn into equalities, the length of

the vector Q is fixed at Q = |E|/(h̄vF), Q0 = Q1, and the

integration domain vanishes. Figure 2 plots the integration

domain relative to the variable Q in Eq. (22), as a function

of ε1 and ε3, in the case η = 0. In region I, 0 < ε1,ε3 < E

implies 0 < ε2,ε4 < E (if the total energy is negative, all

the inequalities are reversed). All the particles are either

above (E > 0) or below (E < 0) the Dirac point. Region I,

therefore, pertains to intraband scattering events. Similarly,

one concludes that regions of type II pertain to interband

scattering (two electrons are in opposite bands before and after

the scattering). Finally, regions of type III pertain to IMI and

AR. In these regions the integration domain [and, therefore,

C(ℓ)(ε1,ε3,E)] in Eq. (21) vanishes. We note that classification

of regions I, II, and III holds true for arbitrary values of η.

Equation (21) is extremely helpful since it can be used

to solve the SBE (11) with arbitrary nonequilibrium initial

conditions, more so since analytical expressions for the

Coulomb kernel of 2d MDFs such as that in Eq. (21) were

not reported before, to the best of our knowledge.

C. Auger contribution to the Coulomb collision integral

We now proceed to calculate C(ℓ)(ε1,ε3,E) in regions of

type III. In this case, a finite value of η restores a nonvanishing

integration domain for IMI and AR and a finite contribution

to C(ℓ)(ε1,ε3,E) due to these processes. Note that the sign of

η should be chosen such that Q0 < Q1. Let us consider, for

the sake of definiteness, the region of type III where 0 <

ε1 < E < ε3. We have Q0 = (E − |η|)/(h̄vF) < E/(h̄vF) =
Q1. The integrand in Eq. (21) factors into two portions, one

that depends smoothly on Q and can therefore be evaluated

at Q = E/(h̄vF) and taken out of the integral, and another

singular at the boundaries of the integration domain. The

integral of the latter part must be carefully evaluated and is

∫ Q1

Q0

dQ

[(Q1 − Q)(Q − Q0)]1/2
= π. (23)

Note that the result of the previous integral does not depend

on η and therefore remains finite in the limit η → 0.

The final result for the Auger contribution to the Coulomb

kernel, valid in all regions of type III, can be written as

C(ℓ)(ε1,ε3,E)|Auger

=
1

8π2h̄5v4
F

√

∣

∣

∣

∣

ε2ε3ε4

ε1

∣

∣

∣

∣

∣

∣V (ℓ)
s1,s2,s3,s4

(k1,k2,k3,k4)
∣

∣

2
, (24)

where the convention for si and ki has been introduced after

Eq. (21). The last term of Eq. (24) comes from the smooth

portion of the integrand in Eq. (21). We stress that Eq. (24)

follows from the general expression (21) without a priori
restrictions to collinear scattering configurations. Although

Eq. (24) mathematically coincides with Eq. (14) of Ref. 52,

Ref. 52 does not report any discussion on how to bypass

the vanishing phase space problem for 2d MDFs. Here, the

finiteness of IMI and AR contributions to the Coulomb kernel,

as for Eq. (24), originates from electron-lifetime effects.
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Incidentally, since the value of the integral in Eq. (23) does

not depend on the value of η, the precise mechanism (e-e

interactions, electron-impurity scattering, etc.) responsible for

the broadening of the delta distribution in Eq. (6) into a

finite-width quasiparticle spectral function is unimportant.

Finally, we emphasize that IMI and AR scattering rates were

calculated in Ref. 52 for FD distributions only, as seen in

Eq. (20) of Ref. 52. On the contrary, Eqs. (21) and (24) can

be used to solve the SBE (11) with arbitrary nonequilibrium

initial conditions.

D. Logarithmically divergent collinear scattering rates

We finally consider C(ℓ)(ε1,ε3,E) in regions of type I and

II. The integrand in Eq. (21) diverges as |h̄vFQ − |E||−1 for

Q = |E|/(h̄vF), which coincides with the upper Q1 or lower

Q0 boundaries of the integration domain for regions of type I

and II. When Q = |E|/(h̄vF), intraband or interband scattering

occur in a collinear fashion. This strong divergence of the

integrand physically arises from the expression for the phase

space of e-e scattering, while |V (ℓ)
s1,s2,s3,s4

(k1,k2,k3,k4)|2 is well

behaved. Therefore, C(ℓ)(ε1,ε3,E) diverges for both intraband

and interband scattering processes. A possible way to cure this

divergence53,54,106 is to introduce an ultraviolet cutoff �, which

yields a Coulomb kernel ∝ ln(�). Logarithmic enhancements

for 2d fermions with a linear dispersion were discussed in

Ref. 106, and allow one to find a SBE solution in the form of an

effective equilibrium distribution, with parameters depending

on the direction of motion.54 Peculiar properties of MDFs,

which are sensitive to collinear scattering, include a finite

conductivity in the absence of impurities53 and an unusually

low shear viscosity.107

A different way to treat this divergence is to invoke screen-
ing, which suppresses the kernel |V (ℓ)

s1,s2,s3,s4
(k1,k2,k3,k4)|2 and

regularizes the behavior of the integrand in a neighborhood of

Q = |E|/(h̄vF). This approach is discussed in the next section

in great detail.

IV. GOING BEYOND THE FERMI GOLDEN RULE:

THE ROLE OF SCREENING

The SBE is a second-order expression in the bare Coulomb

potential vq and describes e-e interactions at the level of the

Fermi golden rule.64 This approximation neglects many-body

effects, and most importantly electronic screening. Formally,

screening can be taken into account64 by substituting the bare

Coulomb potential vq with a screened potential W . When the

2d MDF system is out of equilibrium, the screening properties

change in time and the screened potential depends on time t

as well.

It has been pointed out11,108,109 that screening may preempt

the strong collinear scattering singularity mentioned above

and suppress Auger processes. Indeed, the RPA dynamical

dielectric function at equilibrium ǫ(q,ω) diverges for collinear

scattering configurations for which ω = ±vFq (see Sec. IV A).

When substituted into Eq. (21), the screened potential W

vanishes like |h̄vFQ − |E||1/2, thereby compensating the

aforementioned divergence arising from the expression of the

phase space. The integral in Eq. (21) is then finite, while the

contribution to the Coulomb kernel due to Auger processes

vanishes.

A. Time-dependent dielectric screening

in a photoexcited 2d MDF fluid

The matrix element of the screened potential is obtained by

the replacement

V
(ℓ)

1234 → W
(ℓ)
1234 =

V
(ℓ)

1234

ǫ(q,ω)

∣

∣

∣

∣

∣ q = |k1 − k3|
ω = (ε1 − ε3)/h̄

, (25)

where V
(ℓ)

1234 is defined in Eq. (4) and ǫ(q,ω) is the dynamical

dielectric function.64 Here, h̄q = h̄|k1 − k3| and h̄ω = ε1 − ε3

are the momentum and energy transferred in the scattering

process, respectively.

We stress that the prescription (25) must be applied only

to the first term on the right-hand side of Eq. (7), i.e., to the

direct term. In principle, one could apply Eq. (25) to screen

both direct and exchange contributions in Eq. (7). The latter

procedure was previously used in Refs. 110–112 to compute

scattering rates, but has a major drawback: It is possible

to see that the corresponding SBE does not conserve the

particle number. In other words, the approximation obtained

by screening both direct and exchange terms in Eq. (7)

according to Eq. (25) is not conserving in the sense of

Kadanoff and Baym.84,113 On the contrary, retaining the

direct term only corresponds to the well-known “shielded

potential approximation,”84 which is conserving in the sense

of Kadanoff and Baym. This is the approach we follow below,

setting V
(ℓ)

1243 = 0 in Eq. (7).

In the RPA, the dielectric function is given by64

ǫ(q,ω) = 1 − vqχ
(0)(q,ω), (26)

where vq is the bare Coulomb potential, defined in Eq. (2),

and χ (0)(q,ω) is the noninteracting polarization function64 (or

Lindhard function) for 2d MDFs:

χ (0)(q,ω) = Ns

∑

ℓ

∑

ss ′

∫

d2k

(2π )2
Ms,s ′ (k,k + q)

×
fℓ(εk,s) − fℓ(εk+q,s ′ )

h̄ω + εk,s − εk+q,s ′ + iη
, (27)

where Ms,s ′ (k,k + q) = [1 + ss ′ cos (θk+q − θk)]/2 and the

factor Ns = 2 accounts for spin degeneracy. It is intended that

ǫ(q,ω) and χ (0)(q,ω) depend explicitly on time t through the

time dependence of the distribution function fℓ(ε).

One route to include screening in the SBE calculations is to

compute48 the polarization function χ (0)(q,ω) at each time t

according to Eq. (27) and use it to evaluate the expressions (21)

and (24) for the Coulomb kernel. In this article, however, we

prefer to use a more analytical approach, which turns out to

reduce dramatically the computational costs associated with

solving the SBE with screening. Since thermalization occurs

on a very fast time scale,11 we calculated the polarization

function analytically by employing the following thermal
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ansatz for the distribution function fℓ(ε) in Eq. (27):

fℓ(ε) → �(ε)F (ε; μc,T ) + �(−ε)F (ε; μv,T )

≡ F (ε; μc,μv,T ), (28)

where

F (ε; μ,T ) =
1

exp[(ε − μ)/(kBT )] + 1
(29)

is the usual FD distribution. In Eq. (28), μc and μv are chemical

potentials in conduction and valence band, respectively, and T

is the temperature.

The values of the three parameters μc, μv, and T can

be obtained at each time t by fitting Eq. (28) to the HED

derived by solving the SBE. In writing Eq. (28) we assumed

that conduction- and valence-band electrons thermalize at the

same T . This approximation is certainly valid for times longer

than ≃20 fs (see Sec. II D), because energy equilibration

between the two bands sets in on the time scale induced by

e-e interactions. At earlier times, the estimate of T and μs

obtained by fitting the profile (28) to the HED is certainly not

precise, but can be improved a posteriori by extrapolating to

t � 20 fs the results of the fits obtained at later times. Although

a common T between the two bands is established in the very

early stages of the dynamics, carrier equilibration between the

two bands, on the contrary, is mainly due to phonon-assisted

interband transitions, which act on a much longer time scale

(�200 fs). Assuming two different chemical potentials is thus

essential to obtain a correct representation of screening in the

nonequilibrium dynamics after photoexcitation. Our analytical

approach to the calculation of χ (0)(q,ω) allows us to describe

well the rapidly changing dielectric function and, at the

same time, to determine analytically its behavior for collinear

configurations, crucial to the issues discussed in Sec. III D.

In the rest of this section we outline the calculation of the

polarization function of a photoexcited 2d MDF fluid. We start

by noting that the polarization function χ (0)(q,ω) as obtained

from Eq. (27) with the thermal ansatz [Eq. (28)] physically

represents the polarization function χ (0)(q,ω; T ) of a 2d MDF

fluid with two chemical potentials μc and μv, at a finite T . To

the best of our knowledge, this function is unknown.

We therefore proceed to calculate χ (0)(q,ω; T ) following

a well-known procedure due to Maldague.64,114 This route

allows us to write this polarization function in terms of an

integral involving the well-known Lindhard function �0(q,ω)

of a 2d MDF fluid at zero T and at a Fermi energy εF.80–83 The

final result is

χ (0)(q,ω; T ) =
∫ ∞

−∞
dε′�0(q,ω)|εF→ε′

× [�(ε′)G(ε′; μc,T ) + �(−ε′)G(ε′; μv,T )]

−�0(q,ω)|εF→0[F (0; μc,T ) − F (0; μv,t)],

(30)

where

G(ε′; μs,T ) =
1

4kBT cosh2
(

ε′−μs

2kBT

) . (31)

Note that �0(q,ω) is particle-hole symmetric (therefore iden-

tical for positive and negative values of the Fermi energy εF)
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FIG. 3. (Color online) Color plots of (a) the real and (b) imaginary

parts of the thermal polarization function χ (0)(q,ω; T ) as calculated

from Eq. (30). Re[χ (0)(q,ω; T )] and Im[χ (0)(q,ω; T )] are plotted

in units of the 2d MDF density of states ν(ε) = NsNvε/(2πh̄2v2
F)

evaluated at the conduction-band Fermi energy ε = εF,c. Here Ns =
Nv = 2 are spin and valley degeneracy factors. These plots refer to

the following parameters: kBT = 0.01 eV, μc = −μv = 0.6 eV.

and that �0(q,ω)|εF→0 is the Lindhard function of an undoped

2d MDF system.80–83 Here we have �0(q,0) < 0.

Equation (30) is the main result of this section and

reveals that the thermal polarization function χ (0)(q,ω; T )

naturally decomposes into the sum of two contributions

stemming from each band. However, the extra correction in

the second line of Eq. (30) needs to be taken into account

at finite T . The following three identities are necessary

to derive Eq. (30): (i) F (εk,s ; μc,μv,T ) = F (εk,s ; μs,T ),

(ii) F (ε; μc,μv,0) = �(μc)F (ε; μc,0)+�(−μv)F (ε; μv,0) +
[�(μv) − �(μc)]F (ε; 0,0), and (iii)

1

ex + 1
=

∫ +∞

−∞
dy

�(y − x)

4 cosh2(y/2)
. (32)

Illustrative plots of the real and imaginary parts of the

polarization function (30) are reported in Figs. 3 and 4. In

these plots we rescaled h̄ω with the conduction-band Fermi

energy εF,c � 0,

εF,c = kBT
√

2
√

|Li2(−eμc/(kBT ))| T →0→ μc �(μc), (33)

and the wave vector q with the conduction-band Fermi wave

number kF,c = εF,c/h̄. In Eq. (33), Li2(x) is the Spence’s

function.115 We note that the reactive part of the polarization

function manifests a singularity along the “light cone” ω =
vFq, entirely inherited from �0(q,ω). The dissipative part

displays a striking difference with respect to Im[�0(q,ω)]: The
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FIG. 4. (Color online) Dependence of the real, panel (a), and

imaginary, panel (b), parts of the thermal polarization function

χ (0)(q,ω; T ) on the wave vector q (in units of kF,c). The parameters

are the same as in Fig. 3. The legends show the values of h̄ω/εF,c.

usual triangular region above the light cone where both intra-

and interband particle-hole pairs are suppressed6,42,80,81 is not

present in Fig. 3(b). Moreover, above the light cone and for

h̄ω < 2μc, a region where the imaginary part of χ (0)(q,ω; T )

is positive appears. Here we approximate the time-dependent

polarization function χ (0)(q,ω) in Eq. (27) as:

χ (0)(q,ω) ≈ χ (0)(q,ω; T )|μs→μs (t);T →T (t). (34)

B. Screening models for the semiclassical Boltzmann equation

In this article we focus on the following three screening

models:

(i) Dynamical screening. In this case the polarization

function χ (0)(q,ω; T ) in Eq. (34) is evaluated “on shell,”

i.e., at h̄ω = ε1 − ε3, which is the energy transferred in the

two-body scattering process. As mentioned above, in this case

interband and intraband scattering rates are finite while the

Auger contribution (24) to the Coulomb kernel vanishes.

(ii) Static screening. In this case the polarization func-

tion χ (0)(q,ω; T ) in Eq. (34) is evaluated at ω = 0. This

approximation is justified when the energy h̄ω = ε1 − ε3

transferred in the two-body scattering process is significantly

smaller than the energy �pl(|k1 − k3|), necessary to excite

a plasmon.41,42,80 In the static screening approximation,

interband and intraband scattering rates diverge and can

be regularized by employing an infrared and an ultraviolet

cutoff54 (further details are reported in the Appendix). We

find, however, that the resulting nonequilibrium dynamics does

not depend on the values of these two cutoffs. The reason is

the following. Intra- and interband scattering processes are

responsible only for redistributing energy, rapidly driving the

two bands towards thermal equilibrium. Therefore, for ε1 and

ε3 varying in regions of type I and II (see Fig. 2) the quantity in

curly brackets in Eq. (19) vanishes. In the static approximation

the Auger contribution (24) to the Coulomb kernel is finite.

(iii) Regularized screening. Finally, we introduce a “regu-

larized” screening model11 in which the polarization function

χ (0)(q,ω; T ) in Eq. (34) is evaluated on shell, but its singularity

around the light cone ω = vFq is smeared by means of a cutoff

�E (see Appendix for more details). In the limit �E → 0

this model reduces to dynamical screening, as described at

point (i) above. Various physical mechanisms can smear the

singularity of the polarization function on the light cone,

including many-body effects beyond RPA (as suggested in

Ref. 11) or single-particle effects beyond the 2d MDF model,

e.g., trigonal warping (as suggested in Ref. 65). In our

regularized screening model the Auger contribution (24) to

the Coulomb kernel is finite and, in particular, its magnitude is

intermediate between that evaluated within the dynamical and

static screening models.

V. NUMERICAL RESULTS

In this section we summarize our main numerical results,

obtained from the solution of the isotropic SBE within the

three screening models listed in Sec. IV B.

We compared the outcome of a closely related approach

with our experimental measurements in Ref. 11. There we

applied screening to both direct and exchange terms in Eq. (7).

The data that we present in this section are in agreement with

our previous results in Ref. 11, and therefore fully support

the interpretation of the experimental data given there. More

precisely, very good quantitative agreement is found for the

static and dynamical screening models, which do not depend

on free parameters. There are some differences, however,

between the dynamical behavior illustrated in Ref. 11 and that

discussed in this section, when the regularized screening model

is used. Although the mathematical definition of the cutoff �E

here is analogous to the definition of � in Ref. 11, the equations

of motion induced by the regularized screening models differ.

As repeatedly stressed above, in the present paper we never

screen dynamically the exchange contribution to Eq. (7).

Moreover, here we mostly focus on undoped samples, although

some results for n doping are presented in Fig. 10. On the

other hand, Ref. 11 reported experiments and calculations for

a p-doped sample. Even though Ref. 11 already allowed us

to conclude that RPA dynamical screening is not capable of

explaining the experimental results, in this article for the sake

of completeness we will present a comparative study of all

screening models listed in Sec. IV B.

A. Choice of the initial hot-electron distribution

As initial condition for the solution of the SBE we use a

distribution function which is the sum of a FD distribution,

with chemical potential μ and temperature T0, and two

Gaussian-shaped peaks (one below and one above the Dirac
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point):

fℓ(ε)|t=0 = F (ε; μ,T0) + gmax exp

[

−
(

ε − h̄ωP/2

h̄�ωP/2

)2]

− gmax exp

[

−
(

ε + h̄ωP/2

h̄�ωP/2

)2]

. (35)

The initial distribution function is identical in both ℓ = K,K′

valleys.

The choice (35) is motivated by pump-probe spectroscopy

experiments on graphene, where electrons are promoted from

valence to conduction band by using a laser light pulse. Before

the pump pulse is applied, the electronic subsystem is at

equilibrium with the lattice at a given T , say T0 = 300 K

(room T ). The momentum transferred by the laser light to the

electrons is negligible, hence the transitions are “vertical” in

momentum space, from energy ε = −h̄ωP/2 in valence band

to energy ε = h̄ωP/2 in conduction band. The width h̄�ωP

of the light pulse determines the width of the resulting HED.

Consistent with our recent experiments,11 and for the sake

of definiteness, we take h̄ωP = 2.25 eV, h̄�ωP/2 = 0.09 eV,

and gmax = 0.5. We point out that these parameters correspond

to a strongly nonequilibrium distribution, obtained by shining

a light pulse with fluence �μJ/cm−2.

Finally, we note that although in general the light-matter

coupling is anisotropic, the HED has been shown to relax

to an isotropic profile in ∼10 fs at low energies.105 As we

mentioned above, the description of these very early stages of

the nonequilibrium dynamics, which comprise the buildup of

the HED, is beyond the scope of the present article. Here, we

study the time evolution of the isotropic initial state (35), as

dictated by the SBE.

B. Values of the electron–optical phonon coupling constants

The energies of the phonon modes are89 h̄ω(Ŵ) ≃ 0.150 eV

and h̄ω(K) ≃ 0.196 eV. The EPC of the E2g phonon at the

Brillouin-zone center (Ŵ point), associated with the G peak

of the Raman spectrum, is taken from Ref. 88: 〈g2
Ŵ〉 ≃

0.0405 eV2. This value, which we use in our numerical

calculations, is in good agreement with experimental results.89

On the other hand, the value of the EPC relative to the

transverse mode at the K point has been debated.89 The

value calculated by density-functional theory88 is 〈g2
K,2〉 ≃

0.0994 eV2, but e-e interactions renormalize this value by a

factor 2–5.89,99,116,117

In our numerical calculations we take 〈g2
K,2〉 ≃ 0.2 eV2.

The EPC of the longitudinal phonon mode at the K point is

taken to be 〈g2
K,1〉 ≃ 0.00156 eV2, as in Ref. 43. Following

Ref. 48, we take γph/h̄ ≃ 0.26 ps−1 for the phenomenological

phonon decay rate in Eq. (12).

C. Role of Auger scattering

We start by discussing the role of different screening

models, and choose a strength of e-e interactions αee = 0.9,

appropriate6 for graphene on a SiO2 substrate; see Eq. (5).

The corresponding SBE solution for undoped graphene is

shown in panels (a)–(c) of Fig. 5 for static, regularized, and

dynamical screening, respectively. In all cases we see that
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FIG. 5. Time evolution of the electron distribution function fℓ(ε)

as dictated by the isotropic SBE with static screening, panel (a),

regularized dynamical screening, panel (b), and dynamical screening,

panel (c). In all panels different line styles refer to three different

times: t = 0 (dash-dotted line), t = 100.0 fs (dashed line), t =
500.0 fs (dotted line), and t = 1.0 ps (solid line). The creation of

a large inverted carrier population around the Dirac point ε = 0 is

seen in panel (c).

the peak (dip) of the HED above (below) the Dirac point

shifts rapidly towards the Dirac point. There is however a

striking difference between panels (a), (b) and panel (c):

In dynamical screening, panel (c), a much larger electron

(hole) population persists in conduction (valence) band even

at times as long as t = 1.0 ps. The reason is that dynamical

screening suppresses AR events, and thus delays equilibration

of the electron populations across the two bands. Indeed,

in the initial stage of the time evolution, Auger processes

are the most important processes for the equilibration of the

electron populations. On a longer time scale, relaxation by

phonon emission allows the system to reach interband equi-

librium. However, in this case, the existence of a substantial
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FIG. 6. (a) Time evolution of T (in K) and chemical potential μc

(in meV) in conduction band (inset). Different line styles refer to the

three screening models: static (dashed line), regularized (solid line),

and dynamical (dotted line). Dynamical screening reduces T at the

expense of a much larger μc. (b) Color plot of the electron density in

conduction band (in units of 1012 cm−2). The lines show the relation

between T and μc during the time evolution [line styles as in panel

(a)]. Note that, in the presence of dynamical screening, a much longer

stage of the time evolution exists in which no loss of electrons from

conduction band takes place.

inverted carrier population around the Dirac point at times as

long as 1 ps is due to the suppression of AR processes. We

point out that thermal equilibrium between the two bands, on

the contrary, mainly occurs via interband scattering, and is

reached after a much shorter time ≃20 fs.

A more quantitative analysis of the interband equilibration

dynamics is shown Fig. 6. Here we also report numerical

results based on the regularized screening model. A FD

distribution with time-dependent temperature T (t) and chemi-

cal potential μc(t) [μv(t)] in conduction (valence) band can

be fitted to the numerical results from the solution of the

isotropic SBE for t > 20 fs. T (t) remains well above room

T for t � 1 ps. In the absence of AR processes, a much

faster cooling of the initial HED occurs, at the price of

a larger chemical potential μc(t) in conduction band. The

energy stored in the electronic degrees of freedom is then

transferred to the phonon modes and dissipated into the

lattice by means of phonon-phonon interactions, responsible

for the phenomenological decay term proportional to γph in

Eq. (12). Eventually, equilibration with the lattice at room

T (t) is achieved (data not shown). Figures 5 and 6 indicate

that different screening models strongly affect the HED time

evolution. In Fig. 7 we illustrate the dependence of the electron
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FIG. 7. Electron density n(ε) per unit cell area and energy

obtained from the numerical solution of the isotropic SBE as a

function of energy ε (in units of eV). Black curves refer to t = 12.0 fs,

gray curves to t = 1.0 ps. Different line styles refer to the three

screening models: static (dashed lines), regularized (solid lines), and

dynamical (dotted lines). The initial state at t = 0 (dash-dotted line)

was divided by a factor 3 to fit into the frame of the figure.

density per unit cell area and energy,

n(ε) = A0ν(ε)fℓ(ε) ≃ ε fℓ(ε) × 0.09 eV−2, (36)

on the energy ε. Note that n(ε) has dimensions eV−1. In

Eq. (36)

ν(ε) =
NsNvε

2πh̄2v2
F

≃ ε × 1.77 nm−2 eV−2 (37)

is the 2d MDF density of states as a function of energy. The

quantity Nv = 2 represents the valley degeneracy. The energy

at which n(ε) peaks strongly depends on the screening model.

The optical properties of the MDF system are very sensitive

to the time evolution of n(ε) since light absorption is strongly

inhibited (Pauli blocking) when the corresponding electronic

transitions are towards states with a larger occupation. By

shining a probe laser pulse with frequency ωp through the

sample one can measure the time evolution of the electron

distribution, a procedure enabled by Pauli blocking. A viable

experimental route to directly measure the impact of screening

is thus available, provided that short enough probe pulses of

appropriate frequency are used.11

The propagation of the probe pulse through the sample

can be quantified by calculating the differential transmission35

(DT)

�T

T
(ωp,t) = πα[fℓ(h̄ωp/2) − F (h̄ωp/2; μ,T0)

− fℓ(−h̄ωp/2) + F (−h̄ωp/2; μ,T0)], (38)

where α = e2/(h̄c) ≃ 1/137 is the fine-structure constant and

μ and T0 are the chemical potential and temperature of the

electron system before the pump pulse is applied. The time

evolution of the normalized DT is shown in Fig. 8 for the

three screening models, at a fixed value of the probe energy

h̄ωp. The much slower dynamics in the absence of Auger

processes (dynamical screening, dotted line) is clearly seen.

The time tmax at which the DT peaks is a convenient measure

of the speed of the electron dynamics. Below we discuss

the dependence of tmax on various relevant parameters; see

Fig. 10. Although the focus of the present article is on the time
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FIG. 8. Time evolution of the differential transmission �T /T

as calculated from the numerical solution of the SBE. Different

line styles refer to the three screening models: static (dashed line),

regularized (solid line), and dynamical (dotted line). The data in this

figure refer to a probe energy h̄ωp = 0.8 eV. Each curve is normalized

to have maximum �T /T |max = 1.0. Note that dynamical screening

gives a much slower time evolution since it completely suppresses

Auger scattering.

evolution of the electron distribution function, for the sake of

completeness in Fig. 9 we illustrate the time evolution of the

distribution function of the transverse optical phonon mode

at K, i.e., the mode most strongly coupled to the electronic

subsystem.19,88,98 In a sub-100-fs time a large population

accumulates in the mode (with respect to the equilibrium

population) and remains steady up to the maximum time

t = 1.0 ps considered here. This hot-phonon distribution98

cools on a longer time scale as outlined in Sec. II D by

anharmonic phonon-phonon interactions, which dissipate the

thermal energy into the lattice.

Thus, electronic screening is responsible for qualitative

modifications of the dynamics in the sub-100-fs time scale,

which were not unveiled previously to the best of our

knowledge. This early stage of the dynamics is temporally

decoupled from other relaxation channels (phonon and ra-

diative emission); thus the effects of electronic screening do

not modify the hot-electron relaxation picture as outlined in

Sec. II D. At later times, our numerical results broadly agree

with previous theoretical works.43–51

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

k [nm−1]

0

200

400

600

800

1000

t
[f
s]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.0 2.0 4.0

0.0
0.1
0.2
0.3
0.4
0.5

n
(T

,K
)

k

FIG. 9. Color plot of the phonon distribution n
(ν)
k (t) as a function

of wave vector k (in nm−1) and time t (in units of fs), showing the

distribution function n
(ν)
k (t) for the transverse phonon mode at K

(ν = T,K). The inset shows the same quantity at t = 1.0 ps.
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FIG. 10. (Color online) tmax (in fs) as a function of electron

energy ε (in eV). Panel (a) considers an undoped sample, while panel

(b) an n-doped one with a chemical potential μ = 200 meV. Both

panels refer to a lattice temperature T0 = 300 K. Results for static

(dashed lines), regularized (solid lines), and dynamical (dotted lines)

screening are shown. The lower (upper) border of the gray-shaded

regions is evaluated by choosing 〈g2
K,2〉 = 0.0994 eV (0.2 eV). Note

that the dynamics resulting from the three different screening models

is substantially different in a wide range of EPCs. These results agree

with Fig. 5(c) in Ref. 11, where numerical and experimental results

for a p-doped system were presented. As explained in Sec. IV B, the

results obtained with regularized screening are intermediate between

static and dynamical, and depend on the magnitude of the cutoff �E,

as indicated by the arrows (red arrow: �E increases; blue arrow: �E

decreases). The regularized screening model cannot be quantitatively

compared with Fig. 5(c) in Ref. 11 because the �E values cannot be

simply mapped to those of � in Ref. 11, as explained at the beginning

of Sec. V.

D. Role of EPC, doping, e-e interaction strength, and exchange

We now show that the results presented in the previous

section are robust with respect to changes in parameter space.

We find that, to a large extent, the speed of the relaxation

dynamics in the sub-100-fs time range is controlled by the

particular screening model one chooses.

Figure 10(a) plots tmax as a function of ε = h̄ωp/2 for two

choices of the largest EPC, 〈g2
K,2〉, gray-shading the region

in between. The largest EPC (then used in all other figures)

yields the smallest tmax, i.e., a faster relaxation dynamics. This

is due to the fact that a larger coupling of the electrons to

the phonon bath allows a more efficient dissipation of the

excess energy. The DT peaks later for smaller energy, reflecting

the shifting of the peak of the electron density n(ε) towards

the Dirac point (see Fig. 7). The three screening models

give quantitatively different results, with static screening
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FIG. 11. Electron density per unit lattice cell and energy as

obtained from the numerical solution of the SBE with two screening

models: static, panel (a), and regularized dynamical, panel (b). Data

in this figure refer to t = 4.0 fs (black curves) and t = 18.0 fs

(gray curves). Different line styles refer to three values of the

graphene’s fine-structure constant: αee = 0.5 (dotted lines), αee = 0.9

(solid lines), and αee = 2.2 (dashed lines). The initial state at t = 0

(dash-dotted line) is divided by a factor 3 to fit into the frames of the

panels.

remaining in the sub-100-fs range, and dynamical screening

showing a much more pronounced dependence on electron

energy. Most importantly, there is very limited overlap between

gray-shaded regions, meaning that the three screening models

yield distinctly different relaxation speeds, even if the EPC is

increased by a factor 2. These results are robust with respect

to doping; Fig. 10(b), e.g., illustrates essentially unchanged

results for an n-doped sample, with a finite positive chemical

potential μ = 200 meV.

Figure 11 compares the time evolution of the electron

density n(ε) as calculated for αee = 0.9, with results obtained

for αee = 0.5118 (describing graphene on hexagonal boron

nitride119) and αee = 2.2, the maximum value corresponding

to a suspended graphene.6,10 As expected, the broadening of

the initial photoexcited electron distribution is faster for larger

αee (due to enhanced Coulomb repulsion) but, in general, n(ε)

at a given t depends weakly on the e-e interaction strength.

Using regularized dynamical screening instead of static further

reduces the effects of increasing αee. This behavior can be

understood by recalling that electron thermalization takes

place in a sub-20-fs time interval, as pointed out earlier.11,45,48

This means that the electron distribution rapidly reaches the

form of a quasiequilibrium FD distribution which nullifies the

intra- and interband contributions of the collisional integral

[Eq. (19)], as remarked in Sec. IV B as well. Variations in the
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FIG. 12. Electron density per unit lattice cell and energy as

obtained from the numerical solution of the SBE with αee = 0.9 and

static screening. Black (gray) lines refer to t = 4.0 fs (t = 18.0 fs).

Solid (dashed) lines refer to results without (with) the exchange

contribution to the scattering amplitude, second term in Eq. (7). The

initial state at t = 0 (dash-dotted line) is divided by a factor 3 to fit

into the frame of the figure.

e-e coupling constant, which multiplies the collisional integral,

contribute minor corrections to the dynamics in the collisional

regime.

Finally, Fig. 12 shows the role of the exchange term V
(μ)

1243

in Eq. (7), by treating screening statically to ensure a particle-

number-conserving collision integral. In this case ε(q,0) is

calculated at q = |k1 − k3| for the direct term and at q =
|k1 − k4| for the exchange term. As clearly seen in Fig. 12,

the exchange term is responsible for small corrections to the

electron density n(ε), although it is expected120 that larger

corrections may arise in a Fermi liquid when perturbations are

applied close to the Fermi surface.

VI. DISCUSSION

We studied the nonequilibrium dynamics of a high-density

photoexcited electron distribution in graphene. We used the

massless Dirac fermion model and a semiclassical Boltzmann

equation approach, which includes electron and optical-

phonon degrees of freedom. Our approach neglects light-

matter interactions in the very early stages of the dynamics

(before the electron distribution becomes isotropic), quantum

effects (coherences), and non-Markovian memory effects. A

quantitative analysis of these effects is beyond the scope of

this work.

Taking into consideration light-matter interactions al-

lowed us to describe the buildup of an anisotropic HED.

Reference 105 calculated that the electron distribution evolves

to an isotropic profile on a 10-fs time scale at low energies. We

therefore decided for computational convenience to consider

an isotropic distribution as initial condition for the semiclas-

sical Boltzmann equation, without loss of generality. We also

assumed the pump pulse, which creates the initial HED, to

be sufficiently short to neglect phonon-scattering-induced de-

phasing. Indeed, it was experimentally shown121 that the latter

effect should be considered when applying pump pulses with

duration comparable to the electron-phonon scattering time,

which exceeds the 100-fs time scale of our present work. The

effect of phonon-scattering-induced dephasing is to broaden

035430-14



NONEQUILIBRIUM DYNAMICS OF PHOTOEXCITED . . . PHYSICAL REVIEW B 88, 035430 (2013)

the initial HED. We checked that our results are very stable

with respect to changes of this type. The Coulomb-scattering-

induced broadening of the HED in the initial ∼20 fs is much

larger than the broadening due to phonons. We took into

account both electron-electron and electron-phonon scattering

during the whole time evolution, and showed that electron-

phonon scattering does indeed play a minor role also in the

initial, Coulomb-scattering-dominated stage of the dynamics.

Intra- and interband coherences were previously

considered43,45,46,48 in the framework of the density-matrix

formalism (“semiconductor Bloch equations”). In the range

of parameters we used here, the solution of the semiclas-

sical Boltzmann equation agrees with these results. Taking

coherences into consideration gives minor oscillations of the

electron density (analogous to the Rabi oscillations in a two-

level system122), which damp out quickly due to dephasing

induced by electron and phonon scattering.

Genuine quantum kinetic effects85 affect the dynamics

on time scales of a few fs. To the best of our knowledge,

quantum kinetic theory was never applied to ultrafast electron

dynamics in graphene. Although quantum kinetic effects are

fundamental to describe the coherent buildup of screening,85

here we targeted the role of screening in the time window

20 fs � t � 100 fs. The effects of screening on this time scale

are a dominant contribution to the dynamics, and it is unlikely

that a more precise description of the buildup of screening

can substantially alter this picture. Indeed, it is known85 that

quasiclassical theories can be used to fit Coulomb quantum

kinetics on a time scale longer than 20 fs. We also point out

that it is an extremely difficult task to estimate a priori the short

initial transient in which the coherent buildup of screening

takes place. In an equilibrium state, basic consideration of the

screening dynamics64 suggests that the buildup of screening,

on a given length scale, should take place on a time scale

comparable with the period of the plasma oscillations at

the corresponding wavelength. This implies that coherent

screening buildup is faster in systems with a large carrier

density (several hundred meV), which corresponds to the

parameters that we use in this work. However, the initial

state that we consider is strongly displaced from equilibrium

and the relation between coherent buildup of screening and

carrier density is less clear. It is arguable that electron-electron

scattering is much more effective in a nonequilibrium state

than in a thermal state; thus the electron-scattering-induced

dephasing further reduces the time span where coherent

buildup of screening plays a relevant role.

A second outcome of quantum kinetic theory is the ability

to describe memory (or non-Markovian) effects, which could

play in principle an important role on ultrafast time scales. As

discussed in Ref. 123, the general effect of using a quantum

kinetic equation is to introduce oscillations in the response

of the system on very short time scales, typically of the

order of fs in solid-state systems. We focused here on the

time window 20 fs � t � 100 fs, where memory effects which

survive for a few fs only are likely to be irrelevant. Moreover,

memory effects seem to be very important in systems with

long-range Coulomb interactions.124 In our system, instead,

electron-electron interactions are well screened since we are

studying the dynamics of a high-density droplet of excited

carriers. In the case of effectively short-range interactions,

memory effects are much less pronounced124 and seem to be

more important at low energies.124 In graphene the density of

states vanishes at low energies, therefore further suppressing

them. Thus, although our theory does not apply down to the

few-fs time scale, where the coherent buildup of screening

and memory effects take place, these effects do not change the

dynamics in the window of interest, 20 fs � t � 100 fs. In this

time window we demonstrated that it is of utmost importance

to have an accurate description of screening, which dominates

the relaxation dynamics.

An analytical treatment of the Coulomb collision integral

distinguishes our work from previous ones.45,48,52 In this

respect, our main result, Eq. (21), expresses the Coulomb

collision integral in terms of a compact and computationally

convenient 1d integral over the modulus Q of the total

momentum of a two-particle scattering process. This approach

allows us to carefully deal with all the singularities that

arise in the limit of collinear electron-electron scattering.

Different screening models have been analyzed, and their

impact on the collinear scattering singularities elucidated.

We also proposed a computationally efficient way to take

into account screening in Eqs. (30) and (34), which is fully

quantitative after thermalization occurs.

Solving numerically the semiclassical Boltzmann equation,

we concluded that the particular form of screening one uses

largely controls the speed of the relaxation dynamics in the sub-

100-fs time range. Different screening models yield markedly

different time evolutions in a large portion of parameter space.

Our semianalytical approach can be easily generalized to other

carbon-based materials, such as bilayer and trilayer graphene

and carbon nanotubes.
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APPENDIX: DETAILS OF NUMERICAL CALCULATIONS

The electron energy states are discretized on a uniform mesh

{εi}Li=−L, centered around the Dirac point. We take up to L =
100, with step εi+1 − εi = 25.0 meV. The wave vectors of

the phonon modes are discretized on a matching mesh {qi}Li=1

with qi = εi/(h̄vF). The phonon energies are approximated to

a multiple of the energy step. The total number of variables,

including spin and valley degeneracy for the electrons and

the four phononic modes, is then 4 × 2L + 4 × L. The SBE

are first-order differential equations which are solved using a

035430-15
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standard fourth-order Runge-Kutta algorithm,125 with a time

step δt as small as δt = 0.001 fs.

The kernels (16) of the e-ph interactions are computed at

the beginning of the time evolution. The largest computational

burden is the evaluation of the Coulomb kernel (20), which

scales cubically with the number of states L. The Coulomb

kernel is updated at a variable rate, depending on the stage

of the time evolution. For t < 20.0 fs, when the system has

not reached a thermal state yet, we update the kernel each

δtC = 2.0 fs. We use δtC = 5.0 fs in the early cooling stage

t < 100.0 fs and δtC = 50.0 fs afterwards. We checked that

the numerical results do not depend on the specific choice of

these parameters.

Before updating the Coulomb kernel at time t , we estimate

T and μs of the electron population in the two bands. To this

end, we define the two functionals �1[ϕ(ε)] ≡
∫ ∞

0
dεϕ(ε) and

�2[ϕ(ε)] ≡
∫ ∞

0
dεϕ(ε)2. The values of the two functionals

applied to the FD distribution can be computed exactly:

�1[F (ε; μ,T )] = −kBT ln F (μ; 0,T ),

�2[F (ε; μ,T )] = kBT [F (μ; 0,T ) − 1] + μ (A1)

− kBT ln F (−μ; 0,T ).

We tabulated these values on a mesh of μ and T . Then, during

the time evolution, we evaluate �1[fℓ(ε)] and �2[fℓ(ε)]. We

then find the values μ and T on the mesh which minimize
∑

i∈{1,2} |�i[fℓ(ε)] − �i[F (ε; μ,T )]|. This procedure yields

our estimate for T and μc = μ, μv = −μ, with the advantage

that can be applied automatically during the time evolution

and is more robust than a standard fitting procedure. The

consistency of the estimate for μs and T is checked at the end

of the time evolution using a more precise fitting procedure

for the electron distribution.

The values of μs and T are used to compute χ (0)(q,ω; T ),

according to Eq. (30). The polarization function is evaluated

on a 2d mesh for the modulus of the transferred wave

vector q [with step δq ≃ 10.0 meV and maximum value

qmax = 2.0 × εL/(h̄vF)] and frequency ω (symmetric about

ω = 0, with ωmax = 1.7 × vFqmax). The integration over ε′

in Eq. (30) is performed over a rather rough mesh with 20

points up to 10.0 eV using rectangles rule. This is sufficient

to capture the effects of T to good accuracy, as we tested

by reproducing with this method the Lindhard function

at equilibrium.126 The procedure of regularization of the

polarization function introduced in Sec. IV B is implemented

by replacing χ (0)(q,ω; T ) with χ (0)(q,vFq − �E/h̄; T ) when

h̄ω ∈ [h̄vFq − �E,h̄vFq] below the light cone (and similarly

above the light cone). Special care has to be taken when

h̄vFq < �E in the proximity of the origin. In this article we

used �E = 20.0 meV.

Finally, the Coulomb kernel is computed according to

Eqs. (21) and (24). For each choice of the energies of the

incoming and outgoing particles, and the modulus Q of

the total momentum (only one value is possible for Auger

processes), the closer values for the transferred wave vector

and frequency are matched on the mesh for the polarization

function. For intraband and interband terms, the integral

over the total momentum is performed using the standard

Simpson rule115 mesh with 21 points. Before performing the

integration, a change of variables is performed to an effective

angle variable φ given by Q = (Qmax + Qmin)/2 + [(Qmax −
Qmin)/2] cos φ, to improve the precision of the integral at the

extremes. To numerically avoid the collinear divergence we re-

strict the integration variable in the interval φ ∈ [δφ,π − δφ],

where we take δφ = 0.0001 (different choices over a few

orders of magnitude do not contribute substantial changes to

the results).

The speed in solving the SBE with this method can be

increased substantially by reducing L, and the final results

are qualitatively correct even with L = 50 and εi+1 − εi =
100.0 meV although, in this case, the different phonon energies

are not resolved.
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