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Abstract

We construct a system of nonequilibrium entropy limiters for the lattice Boltzmann methods (LBM). These limiters erase

spurious oscillations without blurring of shocks, and do not affect smooth solutions. In general, they do the same work for

LBM as flux limiters do for finite differences, finite volumes and finite elements methods, but for LBM the main idea behind the

construction of nonequilibrium entropy limiter schemes is to transform a field of a scalar quantity — nonequilibrium entropy. There

are two families of limiters: (i) based on restriction of nonequilibrium entropy (entropy “trimming”) and (ii) based on filtering of

nonequilibrium entropy (entropy filtering). The physical properties of LBM provide some additional benefits: the control of entropy

production and accurate estimation of introduced artificial dissipation are possible. The constructed limiters are tested on classical

numerical examples: 1D athermal shock tubes with an initial density ratio 1:2 and the 2D lid-driven cavity for Reynolds numbers Re

between 2000 and 7500 on a coarse 100 × 100 grid. All limiter constructions are applicable both for entropic and for non-entropic

equilibria.

c© 2007 Elsevier B.V. All rights reserved.

PACS: 47.11.Qr; 47.20.-k; 47.11.-j; 51.10.+y

Keywords: Lattice Boltzmann method; Numerical regularisation; Entropy

1. Introduction

In 1959, Godunov [16] demonstrated that a (linear) scheme for a PDE could not, at the same time, be monotone and

second-order accurate. Hence, we should choose between spurious oscillation in high order non-monotone schemes

and additional dissipation in first-order schemes. Flux limiter schemes are invented to combine high resolution

schemes in areas with smooth fields and first-order schemes in areas with sharp gradients.

The idea of flux limiters can be illustrated by computation of the flux F0,1 of the conserved quantity u between a

cell marked by 0 and one of two its neighbour cells marked by ±1:

F0,1 = (1 − φ(r)) f low
0,1 + φ(r) f

high
0,1 ,
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where f low
0, 1 , f

high
0, 1 are low and high resolution scheme fluxes, respectively, r = (u0 − u−1)/(u1 − u0), and φ(r) ≥ 0

is a flux limiter function. For r close to 1, the flux limiter function φ(r) should be also close to 1.

Many flux limiter schemes have been invented during the last two decades [39]. No particular limiter works well

for all problems, and a choice is usually made on a trial and error basis.

Below are several examples of flux limiter functions:

φmm(r) = max [0, min (r, 1)] (minmod [32]);
φos(r) = max [0, min (r, β)] , (1 ≤ β ≤ 2) (Osher [11]);
φmc(r) = max [0, min (2r, 0.5(1 + r), 2)] (monotonised central [38]);
φsb(r) = max [0, min (2r, 1) , min (r, 2)] (superbee [32]);
φsw(r) = max [0, min (βr, 1) , (r, β)] , (1 ≤ β ≤ 2) (Sweby [35]).

The lattice Boltzmann method has been proposed as a discretization of Boltzmann’s kinetic equation and is now in

wide use in fluid dynamics and beyond (for an introduction and review see Ref. [33]). Instead of fields of moments M ,

the lattice Boltzmann method operates with fields of discrete distributions f . This allows us to construct very simple

limiters that do not depend on slopes or gradients.

All the limiters we construct are based on the representation of distributions f in the form

f = f ∗ + ‖ f − f ∗‖
f − f ∗

‖ f − f ∗‖
,

where f ∗ is the correspondent quasiequilibrium (conditional equilibrium) for given moments M , f − f ∗ is the

nonequilibrium “part” of the distribution, which is represented in the form “norm × direction”, and ‖ f − f ∗‖ is

the norm of that nonequilibrium component (usually this is the entropic norm). Limiters change the norm of the

nonequilibrium component f − f ∗, but do not touch its direction or the quasiequilibrium. In particular, limiters

do not change the macroscopic variables, because moments for f and f ∗ coincide. All limiters that we use are

transformations of the form

f 7→ f ∗ + φ × ( f − f ∗) (1)

with φ > 0. If f − f ∗ is too big, then the limiter should decrease its norm.

The outline of the paper is as follows. In Section 2 we introduce the notions and notation from lattice Boltzmann

theory that we need, in Section 3 we elaborate the idea of entropic limiters in more detail and construct several

nonequilibrium entropy limiters for LBM, in Section 4 some numerical experiments are described:

(1) 1D athermal shock tube examples;

(2) steady state vortex centre locations and observation of first Hopf bifurcation in 2D lid-driven cavity flow.

In Section 5 we discuss some practical consequences of our tests and estimate additional entropy production and

additional viscosity for several cases. Concluding remarks are given in Section 6.

2. Background

The essence of lattice Boltzmann methods was formulated by S. Succi in the following maxim: “Nonlinearity is

local, non-locality is linear”.1 We should even strengthen this statement. Non-locality (a) is linear; (b) is exactly and

explicitly solvable for all time steps; (c) space discretization is an exact operation.

The lattice Boltzmann method is a discrete velocity method. The finite set of velocity vectors {vi } (i = 1, . . . , m)

is selected, and a fluid is described by associating, with each velocity vi , a single-particle distribution function

fi = fi (x, t) which is evolved by advection and interaction (collision) on a fixed computational lattice. The values fi

are named populations. If we look at all lattice Boltzmann models, one finds that there are two steps: free flight for

time δt and a local collision operation.

1 S. Succi, “Lattice Boltzmann at all-scales: from turbulence to DNA translocation”, Mathematical Modelling Centre Distinguished Lecture,
University of Leicester, Leicester UK, 15th November 2006.



R.A. Brownlee et al. / Physica A 387 (2008) 385–406 387

The free flight transformation for continuous space is

fi (x, t + δt) = fi (x − viδt, t).

After the free flight step the collision step follows:

fi (x) 7→ Fi ({ f j (x)}), (2)

or in the vector form

f (x) 7→ F( f (x)).

Here, the collision operator F is the set of functions Fi ({ f j }) (i = 1, . . . , m). Each function Fi depends on all f j

( j = 1, . . . , m): new values of the populations fi at a point x are known functions of all previous population values at

the same point.

The lattice Boltzmann chain “free flight → collision → free flight → collision . . . b” can be exactly restricted

onto any space lattice which is invariant with respect to space shifts of the vectors viδt (i = 1, . . . , c, m). Indeed,

free flight transforms the population values at sites of the lattice into the population values at sites of the same lattice.

The collision operator (2) acts pointwise at each lattice site separately. Much effort has been applied to answering

the questions: “How does the lattice Boltzmann chain approximate the transport equation for the moments M?”, and

“How does one construct the lattice Boltzmann model for a given macroscopic transport phenomenon?” (a review is

presented in book [33]).

In our paper we propose a universal construction of limiters for all possible collision operators, and the detailed

construction of Fi ({ f j }) is not important for this purpose. The only part of this construction that we use is the local

equilibria (sometimes these states are named conditional equilibria, quasiequilibria, or even simpler, equilibria).

The lattice Boltzmann models should describe the macroscopic dynamic, i.e., the dynamic of macroscopic

variables. The macroscopic variables Mℓ(x) are some linear functions of the population values at the same point:

Mℓ(x) =
∑

i mℓi fi (x), or in the vector form, M(x) = m( f (x)). The macroscopic variables are invariants of collisions:

∑

i

mℓi fi =
∑

i

mℓi Fi ({ f j }) (or m( f ) = m(F( f ))).

The standard example of the macroscopic variables are hydrodynamic fields (density–velocity–energy density):

{n, nu, E}(x) :=
∑

i {1, vi , v
2
i /2} fi (x). But this is not an obligatory choice. On the other hand, the athermal lattice

Boltzmann models with a shortened list of macroscopic variables {n, nu} are very popular.

The quasiequilibrium is the positive fixed point of the collision operator for the given macroscopic variables M .

We assume that this point exists, is unique and depends smoothly on M . For the quasiequilibrium population vector

for given M we use the notation f ∗
M , or simply f ∗, if the correspondent value of M is obvious. We use Π

∗ to denote

the equilibration projection operation of a distribution f into the corresponding quasiequilibrium state:

Π
∗( f ) = f ∗

m( f ).

For some of the collision models an entropic description of quasiequilibrium is possible: an entropy density function

S( f ) is defined and the quasiequilibrium point f ∗
M is the entropy maximiser for given M [22,34].

Let the entropy S( f ) be defined for each positive population vector f = ( fi ) (below we use the same letter S for

the entropy local in space and hope that the context will always make this notation clear). We assume that the global

entropy on a grid is a sum of local entropies for all sites.

The notion of quasiequilibrium is most general and describes conditional equilibria for any choice of macroscopic

variables. If the macroscopic variables are the usual hydrodynamic fields, then for continuous velocity space the

quasiequilibria are local Maxwellian, i.e., local equilibria. The same term, local equilibria, is suitable for lattice

Boltzmann models too.

As a basic example we consider the lattice Bhatnagar–Gross–Krook (LBGK) model with overrelaxation (see, e.g.,

Refs. [4,12,20,24,33]). The LBGK collision operator is

F( f ) := Π
∗( f ) + (2β − 1)(Π ∗( f ) − f ), (3)
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where β ∈ [0, 1]. For β = 0, LBGK collisions do not change f , for β = 1/2 these collisions act as equilibration

(this corresponds to the Ehrenfests’ coarse graining [14] further developed in Refs. [13,18,19]), and for β = 1, LBGK

collisions act as a point reflection with the centre at the equilibrium Π
∗( f ).

It is shown [8] that under some stability conditions and after an initial period of relaxation, the simplest LBGK

collision with overrelaxation [20,33] provides second-order accurate approximation for the macroscopic transport

equation with viscosity proportional to δt (1 − β)/β.

Entropic LBGK (ELBM) methods [5,19,22,34] differ in the definition of (3):

• the quasiequilibrium should be the point of conditional entropy maximum: S( f ) → max under the condition

m( f ) = M ;

• for β = 1 the collision operator should conserve the entropy, and in general has the following form:

F( f ) := (1 − β) f + β f̃ , (4)

where f̃ = (1 − α) f + αΠ
∗( f ). The number α = α( f ) at each space point is chosen so that the local constant

entropy condition is satisfied: S( f ) = S( f̃ ). For LBGK (3), α = 2.

In the low viscosity regime, LBGK suffers from numerical instabilities which readily manifest themselves as local

blow-ups and spurious oscillations.

The LBM experiences the same spurious oscillation problems near sharp gradients as high order schemes do. The

physical properties of the LBM schemes allow one to construct new types of limiters: the nonequilibrium entropy

limiters. In general, they do the same work for LBM as flux limiters do for finite difference, finite volume and finite

element methods, but for LBM the main idea behind the construction of nonequilibrium entropy limiter schemes is

to limit a scalar quantity — nonequilibrium entropy (and not the vectors or tensors of spatial derivatives, as it is for

flux limiters). These limiters introduce some additional dissipation, but all this dissipation could easily be evaluated

through analysis of nonequilibrium entropy production.

Two examples of such limiters have been recently proposed: the positivity rule [6,27,37] and the Ehrenfests’

regularisation [7]. The positivity rule just provides positivity of distributions: if a collision step produces negative

populations, then the positivity rule returns them to the boundary of positivity. In the Ehrenfests’ regularisation, one

selects the k sites with highest nonequilibrium entropy (the difference between the entropy of the state f and the

entropy of the corresponding quasiequilibrium state f ∗ at a given space point) that exceed a given threshold and

equilibrates the state at these sites.

The positivity rule and the Ehrenfests’ regularisation provide rare, intense and localised corrections. It is easy and

also computationally cheap to organise more gentle transformation with smooth shift of highly nonequilibrium states

to equilibrium. The following regularisation transformation distributes its action smoothly: we can just choose in (1)

φ = φ(1S( f )) with sufficiently smooth function φ(1S( f )). Here f is the state at some site, f ∗ is the corresponding

quasiequilibrium state, S is entropy, and 1S( f ) := S( f ∗) − S( f ).

The next step in the development of the nonequilibrium entropy limiters is in the usage of local entropy filters.

The filter of choice here is the median filter: it does not erase sharp fronts, and is much more robust than convolution

filters.

Not all lattice Boltzmann models are entropic, and an important question arises: “How do we create nonequilibrium

entropy limiters for LBM with non-entropic (quasi)equilibria?” We propose a solution of this problem based on the

discrete Kullback entropy [25]:

SK ( f ) = −
∑

i

fi ln

(

fi

f ∗
i

)

. (5)

For entropic quasiequilibria with perfect entropy the discrete Kullback entropy gives the same 1S: −SK ( f ) =
1S( f ). Let the discrete entropy have the standard form for an ideal (perfect) mixture [23]:

S( f ) = −
∑

i

fi ln

(

fi

Wi

)

.
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Fig. 1. The positivity rule in action. The motion stops at the positivity boundary.

In quadratic approximation,

−SK ( f ) =
∑

i

fi ln

(

fi

f ∗
i

)

≈
∑

i

( fi − f ∗
i )2

f ∗
i

. (6)

If we define f ∗ as the conditional entropy maximum for given M j =
∑

k m jk fk , then

ln f ∗
k =

∑

j

µ j m jk,

where µ j (M) are the Lagrange multipliers (or “potentials”). For this entropy and conditional equilibrium we find

1S = S( f ∗) − S( f ) =
∑

i

fi ln

(

fi

f ∗
i

)

= −SK ( f ), (7)

if f and f ∗ have the same moments, m( f ) = m( f ∗).
In what follows, 1S is the Kullback distance −SK ( f ) (7) for general (positive) quasiequilibria f ∗, or simply

S( f ∗) − S( f ) for entropic quasiequilibria (or second approximations for these quantities (6)).

In thermodynamics, the Kullback entropy belongs to the family of Massieu–Planck–Kramers functions (canonical

or grand canonical potentials). There is another sense of this quantity: SK is the relative entropy of f with respect to

f ∗ [17,31]. We should stress that even in cases when the quasiequilibrium employed is a close approximation of the

entropic quasiequilibrium but does not realise the conditional entropy maximum exactly, we have to use the Kullback

entropic distance (7) instead of S( f ∗) − S( f ). The change of definition of 1S is necessary to provide positivity of

1S: f ∗ always realises the maximum of the Kullback entropy (5) for the given macroscopic variables M = m( f ).

3. Nonequilibrium entropy limiters for LBM

3.1. Positivity rule

There is a simple recipe for positivity preservation [6,27,37]: to substitute nonpositive F( f )(x) (3) by the closest

nonnegative state that belongs to the straight line

{

λ f (x) + (1 − λ)Π ∗( f (x)) | λ ∈ R
}

(8)

defined by the two points, f (x) and the corresponding quasiequilibrium. This operation is to be applied pointwise,

at points of the lattice where positivity is violated. The coefficient λ depends on x too. Let us call this recipe the

positivity rule (Fig. 1). This recipe preserves positivity of populations and probabilities, but can affect accuracy of

approximation. The same rule is necessary for ELBM (4) when the positive “mirror state” f̃ with the same entropy as

f does not exist on the straight line (8).

3.2. The Ehrenfests’ regularisation

For discussing methods with additional dissipation, the entropic approach is very convenient. The local

nonequilibrium entropy for each site is

1S( f ) := S( f ∗) − S( f ), (9)

where f ∗ is the corresponding quasiequilibrium at the same point.
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The Ehrenfests’ regularisation [6,7] provides “entropy trimming”: we monitor local deviation of f from the

corresponding quasiequilibrium, and when 1S( f )(x) exceeds a pre-specified threshold value δ, perform local

Ehrenfests’ steps to the corresponding equilibrium: f 7→ f ∗ at those points.

So that the Ehrenfests’ steps are not allowed to degrade the accuracy of LBGK it is pertinent to select the k sites

with highest 1S > δ. The a posteriori estimations of added dissipation could easily be performed by analysis of

entropy production in the Ehrenfests’ steps. Numerical experiments show (see, e.g., Refs. [6,7]) that even a small

number of such steps drastically improve stability.

To avoid the change of accuracy order “on average”, the number of sites with this step should be ≤ O(Nh/L)

where N is the total number of sites, h is the step of the space discretization and L is the macroscopic characteristic

length. But this rough estimate of accuracy on average might be destroyed by concentration of the Ehrenfests’ steps

in the most nonequilibrium areas, for example, in boundary layers. In that case, instead of the total number of sites

N in O(Nh/L) we should take the number of sites in a specific region. The effects of concentration could be easily

analysed a posteriori.

3.3. Smooth limiters of nonequilibrium entropy

The positivity rule and the Ehrenfests’ regularisation provide rare, intense and localised corrections. Of course,

it is easy and also computationally cheap to organise more gentle transformations with a smooth shift of highly

nonequilibrium states to quasiequilibrium. The following regularisation transformation distributes its action smoothly:

f 7→ f ∗ + φ(1S( f ))( f − f ∗). (10)

The choice of function φ is highly ambiguous; for example, φ = 1/(1 + α1Sk) for some α > 0 and k > 0. There

are two significantly different choices: (i) ensemble-independent φ (i.e., the value of φ depends on local value of 1S

only) and (ii) ensemble-dependent φ, for example

φ(1S) =
1 + (1S/(αE(1S)))k−1/2

1 + (1S/(αE(1S)))k
, (11)

where E(1S) is the average value of 1S in the computational area, k ≥ 1, and α & 1. For small 1S, φ(1S) ≈ 1

and for 1S ≫ αE(1S) it tends to
√

αE(1S)/1S. It is easy to select an ensemble-dependent φ with control of total

additional dissipation.

3.4. Monitoring of total dissipation

For given β, the entropy production in one LBGK step in quadratic approximation for 1S is

δLBGKS ≈ [1 − (2β − 1)2]
∑

x

1S(x),

where x is the grid point, 1S(x) is nonequilibrium entropy (9) at point x, δLBGKS is the total entropy production in

a single LBGK step. It would be desirable if the total entropy production for the limiter δlimS was small relative to

δLBGKS:

δlimS < δ0δLBGKS. (12)

A simple ensemble-dependent limiter (perhaps, the simplest one) for a given δ0 operates as follows. Let us collect

the histogram of the 1S(x) distribution, and estimate the distribution density, p(1S). We have to estimate a value

1S0 that satisfies the following equation:

∫ ∞

1S0

p(1S)(1S − 1S0) d1S = δ0[1 − (2β − 1)2]
∫ ∞

0

p(1S)1S d1S. (13)

In order not to affect distributions with small expectation of 1S, we choose a threshold 1St = max{1S0, δ}, where δ is

some predefined value (as in the Ehrenfests’ regularisation). For states at sites with 1S ≥ 1St we provide homothety
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with equilibrium centre f ∗ and coefficient
√

1St/1S (in quadratic approximation for nonequilibrium entropy):

f (x) 7→ f ∗(x) +
√

1St

1S
( f (x) − f ∗(x)). (14)

3.5. Median entropy filter

The limiters described above provide pointwise correction of nonequilibrium entropy at the “most nonequilibrium”

points. Due to the pointwise nature, the technique does not introduce any nonisotropic effects, and provides some

other benefits. But if we involve the local structure, we can correct local non-monotone irregularities without touching

regular fragments. For example, we can discuss monotone increase or decrease of nonequilibrium entropy as regular

fragments and concentrate our efforts on reduction of “speckle noise” or “salt and pepper noise”. This approach

allows us to use the accessible resource of entropy change (12) more thriftily. Salt and pepper noise is a form of noise

typically observed in images. It represents itself as randomly occurring white (maximal brightness) and black pixels.

For this kind of noise, conventional low pass filtering, e.g., mean filtering or Gaussian smoothing, is unsuccessful

because the perturbed pixel value can vary significantly from both the original and the mean value. For this type of

noise, median filtering is a common and effective noise reduction method. Median filtering is a common step in image

processing [30] for the smoothing of signals and the suppression of impulse noise with preservation of edges.

The median is a more robust average than the mean (or the weighted mean) and so a single very unrepresentative

value in a neighbourhood will not affect the median value significantly. Hence, we suppose that the median entropy

filter will work better than entropy convolution filters.

For the nonequilibrium entropy field, the median filter considers each site in turn and looks at its nearby neighbours.

It replaces the nonequilibrium entropy value 1S at the point with the median of those values 1Smed, then updates f by

the transformation (14) with the homothety coefficient
√

1Smed/1S. The median, 1Smed, is calculated by first sorting

all the values from the surrounding neighbourhood into numerical order and then replacing that being considered with

the middle value. For example, if a point has 3 nearest neighbours including itself, then after sorting we have 3 values

1S: 1S1 ≤ 1S2 ≤ 1S3. The median value is 1Smed = 1S2. For 9 nearest neighbours (including itself) we have

after sorting 1Smed = 1S5. For 27 nearest neighbours 1Smed = 1S14.

We accept only dissipative corrections (those resulting in a decrease of 1S, 1Smed < 1S) because of the second

law of thermodynamics. The analogue of (13) is also useful for acceptance of the most significant corrections. In “salt

and pepper” terms, we correct the salt (where 1S exceeds the median value) and do not touch the pepper.

3.6. Monotonic and double-monotonic limiters

Two monotonicity properties are important in the theory of nonequilibrium entropy limiters:

(1) a limiter should move the distribution to equilibrium: in all cases of (1) 0 ≤ φ ≤ 1; this is the dissipativity

condition which means that limiters never produce negative entropy;
(2) a limiter should not change the order of states on the line: if for two distributions with the same moments,

f and f ′, f ′ − f ∗ = x( f − f ∗) and 1S( f ) > 1S( f ′) before the limiter transformation, then the same

inequality should hold after the limiter transformation too; for example, for the limiter (10) it means that

1S( f ∗ + xφ(1S( f ∗ + x( f − f ∗)))( f − f ∗)) is a monotonically increasing function of x > 0.

In quadratic approximation,

1S( f ∗ + x( f − f ∗)) = x21S( f ),

1S( f ∗ + xφ(1S( f ∗ + x( f − f ∗)))( f − f ∗)) = x2φ2(x21S( f )),

and the second monotonicity condition transforms into the following requirement: yφ(y2s) is a monotonically

increasing (not decreasing) function of y > 0 for any s > 0.

If a limiter satisfies both monotonicity conditions, we call it “double monotonic”. For example, the Ehrenfests’

regularisation satisfies the first monotonicity condition, but violates the second one. The limiter (11) violates the first

condition for small 1S, but is dissipative and satisfies the second one in quadratic approximation for large 1S. The

limiter with φ = 1/(1 + α1Sk) always satisfies the first monotonicity condition, violates the second if k > 1/2, and



392 R.A. Brownlee et al. / Physica A 387 (2008) 385–406

is double monotonic (in quadratic approximation for the second condition) if 0 < k ≤ 1/2. The threshold limiter (14)

is also double monotonic.

For smooth functions, the condition of double monotonicity (in quadratic approximation) is equivalent to the system

of differential inequalities

φ(x) + 2xφ′(x) ≥ 0;
φ′(x) ≤ 0.

The initial condition φ(0) = 1 means that in the limit 1S → 0 limiters do not affect the flow. Following these

inequalities we can write: 2xφ′(x) = −η(x)φ(x), where 0 ≤ η(x) ≤ 1. The solution of these inequalities with the

initial condition is

φ(x) = exp

(

−
1

2

∫ x

0

η(χ)

χ
dχ

)

, (15)

if the integral on the right-hand side exists. This is a general solution for double-monotonic limiters (in the second

approximation for entropy). If η(x) is the Heaviside step function, η(x) = H(x −1St) with threshold value 1St, then

the general solution (15) gives us the threshold limiter. If, for example, η(x) = xk/(1Sk
t + xk), then

φ(x) =
(

1 +
xk

1Sk
t

)− 1
2k

. (16)

This special form of limiter function is attractive because for small x it gives

φ(x) = 1 −
1

2k

xk

1Sk
t

+ o(xk).

Thus, the limiter does not affect the motion up to the (k + 1)st order, and the macroscopic equations coincide

with the macroscopic equations for LBM without limiters up to the (k + 1)st order in powers of deviation from

quasiequilibrium. Furthermore, for large x we get the kth-order approximation to the threshold limiter (14):

φ(x) =
√

1St

x
+ o(x−k).

Of course, it is not forbidden to use any type of limiter under the local and global control of dissipation, but

double-monotonic limiters provide some natural properties automatically, without additional care.

4. Numerical experiments

To conclude this paper we report some numerical experiments conducted to demonstrate the performance of some

of the proposed nonequilibrium entropy limiters for LBM from Section 3.

4.1. Velocities and equilibria

We will perform simulations using both entropic and non-entropic local equilibria, but we always work with an

athermal LBM model. Whenever we use non-entropic equilibria we employ Kullback entropy (7).

In 1D, we use a lattice with spacing and time step δt = 1 and a discrete velocity set {v1, v2, v3} := {0, −1, 1} so

that the model consists of static, left-moving and right-moving populations only. The subscript i denotes population

(not lattice site number) and f1, f2 and f3 denote the static, left-moving and right-moving populations, respectively.

The entropy is S = −H , with

H = f1 log( f1/4) + f2 log( f2) + f3 log( f3) (17)
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(see, e.g., Ref. [23]) and, for this entropy, the local entropic equilibrium state f ∗ is available explicitly:

f ∗
1 =

2ρ

3

(

2 −
√

1 + 3u2
)

,

f ∗
2 =

ρ

6

(

(3u − 1) + 2
√

1 + 3u2
)

,

f ∗
3 = −

ρ

6

(

(3u + 1) − 2
√

1 + 3u2
)

,

(18)

where

ρ :=
∑

i

fi , u :=
1

ρ

∑

i

vi fi . (19)

The standard non-entropic polynomial equilibria [33] are

f ∗
1 =

2ρ

3

(

1 −
3u2

2

)

,

f ∗
2 =

ρ

6
(1 − 3u + 3u2),

f ∗
3 =

ρ

6
(1 + 3u + 3u2).

(20)

In 2D, we employ a uniform nine-speed square lattice with discrete velocities {vi | i = 0, 1, . . . , 8}: v0 = 0,

vi = (cos((i − 1)π/2), sin((i − 1)π/2)) for i = 1, 2, 3, 4, vi =
√

2(cos((i − 5)π
2 + π

4 ), sin((i − 5)π
2 + π

4 )) for

i = 5, 6, 7, 8. The numbering f0, f1, . . . , c, f8 are for the static, east, north, west, south, northeast, northwest,

southwest and southeast-moving populations, respectively. As usual, the entropic equilibrium state, f ∗, can be

uniquely determined by maximising an entropy functional

S( f ) = −
∑

i

fi log

(

fi

Wi

)

,

subject to the constraints of conservation of mass and momentum [2]:

f ∗
i = ρWi

2
∏

j=1

(

2 −
√

1 + 3u2
j

)





2u j +
√

1 + 3u2
j

1 − u j





vi, j

. (21)

Here, the lattice weights, Wi , are given lattice-specific constants: W0 = 4/9, W1,2,3,4 = 1/9 and W5,6,7,8 = 1/36.

Analogously to (19), the macroscopic variables ρ and u = (u1, u2) are the zeroth and first moments of the distribution

f , respectively. The standard non-entropic polynomial equilibria [33] are

f ∗
i = ρWi

(

1 + 3vi u +
9(vi u)2

2
−

3u
2

2

)

. (22)

4.2. LBGK and ELBM

The governing equations for LBGK are

fi (x + vi , t + 1) = f ∗
i (x, t) + (2β − 1)( f ∗

i (x, t) − fi (x, t)), (23)

where β = 1/(2ν + 1).

For ELBM (4) the governing equations are

fi (x + vi , t + 1) = (1 − β) f ∗
i (x, t) + β f̃i (x, t), (24)
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Fig. 2. Density profile of the 1:2 isothermal shock tube simulation after 400 time steps using (a) LBGK (23) with polynomial quasiequilibria (20)

[ν = 3.3333×10−2]; (b) LBGK (23) with entropic quasiequilibria (18) [ν = 3.3333×10−2]; (c) ELBM (24) [ν = 3.3333×10−2]; (d) LBGK (23)

with polynomial quasiequilibria (20) [ν = 10−9]; (e) LBGK (23) with entropic quasiequilibria (18) [ν = 10−9]; (f) ELBM (24) [ν = 10−9].

with β as above and f̃ = (1 − α) f + α f ∗. The parameter, α, is chosen to satisfy a constant entropy condition. This

involves finding the nontrivial root of the equation

S((1 − α) f + α f ∗) = S( f ). (25)

To solve (25) numerically we employ a robust routine based on bisection. The root is solved to an accuracy of 10−15

and we always ensure that the returned value of α does not lead to a numerical entropy decrease. We stipulate that if,

at some site, no nontrivial root of (25) exists, we will employ the positivity rule instead (Fig. 1).

4.3. Shock tube

The 1D shock tube for a compressible athermal fluid is a standard benchmark test for hydrodynamic codes. Our

computational domain will be the interval [0, 1] and we discretize this interval with 801 uniformly spaced lattice sites.

We choose the initial density ratio as 1:2 so that for x ≤ 400 we set ρ = 1.0; otherwise we set ρ = 0.5.

In the first test we present three possible combinations of two choices of equilibria, polynomial (20) or entropic

(18), and two choices of stepping, LBGK (23) or ELBM (24). We solve (25) to an accuracy of 10−15. The results,

which are self-explanatory, are presented in Fig. 2 for the kinematic viscosity ν = 3.3333 × 10−2 and ν = 10−9 in

dimensionless units.

For shock tube experiments, the introduction of local dissipation in thin zones near shocks has a similar effect to

the introduction of global dissipation in the whole domain. Even the introduction of local dissipation at one point

suppresses spurious oscillations [6,7]. In the absence of any dissipation mechanism, dispersive oscillations on the

mesh scale have to appear in shock regions [26].

It is necessary to mention that for the difference schemes without artificial numerical dissipation studied in

Ref. [36], spurious oscillations in the immediate neighbourhoods of shocks could be suppressed by sufficiently

high viscosity or heat conduction only (and the roles of viscosity and heat conduction in forming sharp monotone

profiles are different). No limiters were added in Ref. [36], but instead, the viscous and heat conduction terms in the

Navier–Stokes equations are found to serve as accurate edge detectors.

Following the idea of comparison of the action of limiters with physical dissipation, we present LBGK

computations of shocks without any limiter as a reference point for testing limiters (Fig. 3).

For all further shock tube experiments with limiters we will fix the kinematic viscosity of the fluid at ν = 10−9 (the

“bulk viscosity”) in dimensionless units. Of course, by using limiters an additional viscosity is produced in thin zones

with high gradients, and this ν = 10−9 characterises the LBM gas before the introduction of limiters. Additional

dissipation is discussed in Section 3.4 and below in Section 5.
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Fig. 3. Density profile of the 1:2 athermal shock tube simulation with (a) ν = 0.066, (b) ν = 0.0066 and (c) ν = 0.00066 after 400 time steps using

LBGK (23) without any limiter. Total entropy and nonequilibrium entropy time histories are displayed in the adjacent panels. Entropic equilibria

(18) with perfect entropy (17) are used.

Now, we would like to demonstrate just a representative sample of the many possibilities of limiters suggested in

Section 3. In each case the limiter is implemented by a post-processing routine immediately following the collision

step (either LBGK (23) or ELBM (24)). Here, we will only consider LBGK collisions.

The post-processing step adjusts f using the update formula

f 7→ f ∗ + φ(1S)( f − f ∗),

where 1S is defined by (9) and φ is a limiter function.

For the Ehrenfests’ regularisation one would choose

φ(1S)(x) =
{

1, 1S(x) ≤ δ,

0, otherwise,

where δ is a pre-specified threshold value. Furthermore, it is pertinent to select just k sites with highest 1S > δ. This

limiter has been previously applied to the shock tube problem in Refs. [6–8] and we will not reproduce those results

here.

Instead, our first example will be the following smooth limiter:

φ(1S) =
1

1 + α1Sk
. (26)

This limiter (26) always satisfies the condition φ(0) = 1, and φ′(0) = 0 for k > 1. For this limiter, we will fix k = 1/2

(so that the limiter is double monotonic in quadratic approximation to entropy) and compare the density profiles for

α = δ/(E(1S)k), δ = 0.1, 0.01, 0.001 (Fig. 4). We have also ensured an ensemble-dependent limiter because of the
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Fig. 4. Density profile of the 1:2 athermal shock tube simulation with ν = 10−9 after 400 time steps using LBGK (23) and the smooth limiter (26)

with k = 1/2, α = δ/(E(1S)k ) and (a) δ = 0.1; (b) δ = 0.01 and (c) δ = 0.001. Total entropy and nonequilibrium entropy time histories for each

parameter set {k, α(δ)} are displayed in the adjacent panels. The last case (c) is close to LBGK simulation without limiters.

dependence of α on the average E(1S). We accompany each panel with the total entropy and nonequilibrium entropy

histories. Note the different scales for nonequilibrium entropy. Note also that entropy (necessarily) now grows due to

the additional dissipation.

The second example is the smooth limiter (26) with k = 1 (Fig. 5). It is worthwhile to mention that for the same

parameter δ this limiter suppresses spurious oscillations more effectively. For example, for δ = 0.001, for k = 1/2

we see almost the same post-shock oscillations as for the system without limiter, whereas the same picture for k = 1

already differs. For points with 1S < E(1S) the limiter with k = 1 and the same δ affects the flow less than the

limiter with k = 1/2, whereas for 1S > E(1S) it works more intensively. We can guess that for effective suppression

of post-shock oscillations it is important how the limiter behaves for 1S ≫ E(1S). More detailed discussion is

presented in Section 5. We should mention that this limiter is not double monotonic, but this caused no problems in

this specific experiment.

Our next example (Fig. 6) considers the threshold filter (13). In this example we choose the estimates 1S0 =
5E(1S), 10E(1S), 20E(1S) and fix the tolerance δ = 0 so that the influence of the threshold alone can be studied.

Only entropic adjustments are accepted in the limiter: 1St ≤ 1S. As the threshold increases, nonequilibrium entropy

grows faster and spurious oscillations begin to appear.

Finally, we test the median filter (Fig. 7). We choose a minimal filter so that only the nearest neighbours are

considered. As with the threshold filter, we introduce a tolerance δ and we try the values δ = 10−3, 10−4, 10−5. Only

entropic adjustments are accepted in the limiter: 1Smed ≤ 1S.

We have seen that each of the examples we have considered (Figs. 4–7) is capable of subduing spurious post-shock

oscillations compared with LBGK. Of course, on limiting nonequilibrium entropy the result is necessarily an increase

in entropy.



R.A. Brownlee et al. / Physica A 387 (2008) 385–406 397

Fig. 5. Density profile of the 1:2 athermal shock tube simulation with ν = 10−9 after 400 time steps using LBGK (23) and the smooth limiter (26)

with k = 1, α = δ/(E(1S)k ) and (a) δ = 0.1; (b) δ = 0.01 and (c) δ = 0.001. Total entropy and nonequilibrium entropy time histories for each

parameter set {k, α(δ)} are displayed in the adjacent panels.

From our experiences our recommendation is that the median filter is the superior choice amongst all the limiters

suggested in Section 3. The action of the median filter is found to be both extremely gentle and, at the same time, very

effective.

4.4. Lid-driven cavity

Our second numerical example is the classical 2D lid-driven cavity flow. A square cavity of side length L is filled

with fluid with kinematic viscosity ν (initially at rest) and driven by the cavity lid moving at a constant velocity (u0, 0)

(from left to right in our geometry).

We will simulate the flow on a 100 × 100 grid using LBGK regularised with the median filter limiter. Unless

otherwise stated, we use entropic equilibria (21). The implementation of the filter is as follows: the filter is not applied

to boundary nodes; for nodes which immediately neighbour the boundary the stencil consists of the three nearest

neighbours (including itself) closest to the boundary; for all other nodes the minimal stencil of nine nearest neighbours

is used.

We have purposefully selected such a coarse grid simulation because it is readily found that, on this problem,

unregularised LGBK fails (blows up) for all but the most modest Reynolds numbers Re := Lu0/ν.

4.4.1. Steady state vortex centres

For modest Reynolds number the system settles to a steady state in which the dominant features are a primary

central rotating vortex, with several counter-rotating secondary vortices located in the bottom left, bottom right (and

possibly top left) corners.
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Fig. 6. Density profile of the 1:2 athermal shock tube simulation with ν = 10−9 after 400 time steps using LBGK (23) and the threshold limiter (13)

with (a) 1St = 5E(1S); (b) 1St = 10E(1S) and (c) 1St = 20E(1S). Total entropy and nonequilibrium entropy time histories for each threshold

1St are displayed in the adjacent panels.

The steady state has been extensively investigated in the literature. The study of Hou et al. [21] simulates the flow

over a range of Reynolds numbers using unregularised LBGK on a 256 × 256 grid. Primary and secondary vortex

centre data are provided. We compare this same statistic for the present median filtered coarse grid simulation. We will

employ the same convergence criteria as are used in Ref. [21]. Namely, we deem that steady state has been reached

by ensuring that the difference between the maximum value of the stream function for 10,000 successive time steps

is less than 10−5. The stream function, which is not a primary variable in the LBM simulation, is obtained from the

velocity data by integration using Simpson’s rule. Vortex centres are characterised as local extrema of the stream

function.

We compare our results with the LBGK simulations in Refs. [21] and [37]. To align ourselves with these studies we

specify the following boundary condition: lid profile is constant; remaining cavity walls are subject to the “bounce-

back” condition [33]. In our simulations, the initial uniform fluid density profile is ρ = 2.7 and the velocity of the lid

is u0 = 1/10 (in lattice units).

Collected in Table 1, for Re = 2000, 5000 and 7500, are the coordinates of the primary and secondary vortex

centres using (a) unregularised LBGK; (b) LBGK with median filter limiter (δ = 10−3); (c) LBGK with median filter

limiter (δ = 10−4), all with non-entropic polynomial equilibria (22). Lines (d), (e) and (f) are the same but with

entropic equilibria (21). The remaining lines of Table 1 are as follows: (g) literature data [21] (unregularised LBGK

on a 256 × 256 grid); (h) literature data [37] (positivity rule); (i) literature data [37] (ELBM). With the exception of

(g), all simulations are conducted on a 100 × 100 grid. The top left vortex does not appear at Re = 2000 and no data

were provided for it in [37] at Re = 5000. The unregularised LBGK Re = 7500 simulation blows up in finite time

and the simulation becomes meaningless. The y-coordinates of the two lower vortices at Re = 5000 in (i) appear

anomalously small and were not reproduced by our experiments with the positivity rule (not shown).
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Fig. 7. Density profile of the 1:2 athermal shock tube simulation with ν = 10−9 after 400 time steps using LBGK (23) and the minimal median

limiter with (a) δ = 10−5; (b) δ = 10−4 and (c) δ = 10−3. Total entropy and nonequilibrium entropy time histories for each tolerance δ are

displayed in the adjacent panels.

We have conducted two runs of the experiment with the median filter parameter δ = 10−3 and δ = 10−4.

Despite the increased number of realisations the vortex centre locations remain effectively unchanged and we

detect no significant variation between the two runs. This demonstrates the gentle nature of the median filter.

At Reynolds number Re = 2000 the median filter has no effect at all on the vortex centres compared with

LBGK.

We find no significant differences between the experiments with entropic and non-entropic polynomial equilibria

in this test.

The coordinates of the primary vortex centre for unregularised LBGK at Re = 5000 are already quite inaccurate

as LBGK begins to lose stability. Stability is lost entirely at some critical Reynolds number 5000 < Re ≤ 7500 and

the simulation blows up.

Furthermore, we have agreement (within grid resolution) with the data given in Ref. [21]. Also compiled in Table 1

are the data from the limiter experiments conducted in Ref. [37] (although not explicitly discussed in the language of

limiters by the authors of that work). In Ref. [37] the authors give vortex centre data for the positivity rule (Fig. 1) and

for ELBM. In Ref. [37] the positivity rule is called FIX-UP.

As Reynolds number increases the flow in the cavity becomes no longer steady and a more complicated flow pattern

emerges. On the way to a fully developed turbulent flow, the lid-driven cavity flow is known to undergo a series of

period-doubling Hopf bifurcations. On our coarse grid, we observe that the coordinate of the primary vortex centre

(maximum of the stream function) is a very robust feature of the flow, with little change between coordinates (no

change in y-coordinates) computed at Re = 5000 and Re = 7500 with the median filter. On one hand, because of

this observation it becomes inconclusive whether the median limiter is adding too much additional dissipation. On the

other hand, a more studious choice of control criteria may indicate that the first bifurcation has already occurred by

Re = 7500.
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Table 1

Primary and secondary vortex centre coordinates for the lid-driven cavity flow at Re = 2000, 5000, 7500

Re Primary Lower left Lower right Top left

x y x y x y x y

2000 (a) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not applicable

2000 (b) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not applicable

2000 (c) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not applicable

2000 (d) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not applicable

2000 (e) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not applicable

2000 (f) 0.5253 0.5455 0.0909 0.1010 0.8384 0.1010 Not applicable

2000 (g) 0.5255 0.5490 0.0902 0.1059 0.8471 0.0980 Not applicable

2000 (h) 0.5200 0.5450 0.0900 0.1000 0.8300 0.0950 Not applicable

2000 (i) 0.5200 0.5500 0.0890 0.1000 0.8300 0.1000 Not applicable

5000 (a) 0.5152 0.6061 0.0808 0.1313 0.7980 0.0707 0.0505 0.8990

5000 (b) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.8990

5000 (c) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.8889

5000 (d) 0.5152 0.5960 0.0808 0.1313 0.8081 0.0808 0.0505 0.8990

5000 (e) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0606 0.8990

5000 (f) 0.5152 0.5354 0.0808 0.1313 0.8081 0.0808 0.0707 0.8889

5000 (g) 0.5176 0.5373 0.0784 0.1373 0.8078 0.0745 0.0667 0.9059

5000 (h) 0.5150 0.5680 0.0950 0.0100 0.8450 0.0100 Not available

5000 (i) 0.5150 0.5400 0.0780 0.1350 0.8050 0.0750 Not available

7500 (a) – – – – – — – –

7500 (b) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.8990

7500 (c) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.8889

7500 (d) – – – – – – – –

7500 (e) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0606 0.8990

7500 (f) 0.5051 0.5354 0.0707 0.1515 0.7879 0.0707 0.0707 0.8889

7500 (g) 0.5176 0.5333 0.0706 0.1529 0.7922 0.0667 0.0706 0.9098

4.4.2. First Hopf bifurcation

A survey of available literature reveals that the precise value of Re at which the first Hopf bifurcation occurs

is somewhat contentious, with most current studies (all of which are for incompressible flow) ranging around

Re = 7400–8500 [9,28,29]. Here, we do not intend to give a precise value because it is a well observed grid effect that

the critical Reynolds number increases (shifts to the right) with refinement (see, e.g., Fig. 3 in Ref. [29]). Rather, we

will be content to localise the first bifurcation and, in doing so, demonstrate that limiters are capable of regularising

without affecting fundamental flow features.

To localise the first bifurcation we take the following algorithmic approach. Entropic equilibria are in use. The

initial uniform fluid density profile is ρ = 1.0 and the velocity of the lid is u0 = 1/10 (in lattice units). We record

the unsteady velocity data at a single control point with coordinates (L/16, 13L/16) and run the simulation for 5000

non-dimensionless time units (5000L/u0 time steps). Let us denote the final 1% of this signal by (usig, vsig). We then

compute the energy Eu (ℓ2-norm normalised by non-dimensional signal duration) of the deviation of usig from its

mean:

Eu :=
∥

∥

∥

∥

∥

√

L

u0|usig|
(usig − usig)

∥

∥

∥

∥

∥

ℓ2

, (27)

where |usig| and usig denote the length and mean of usig, respectively. We choose this robust statistic instead of

attempting to measure signal amplitude because of numerical noise in the LBM simulation. The source of noise in

LBM is attributed to the existence of an inherently unavoidable neutral stability direction in the numerical scheme

(see, e.g., Ref. [8]).

We opt not to employ the “bounce-back” boundary condition used in the previous steady state study. Instead we will

use the diffusive Maxwell boundary condition (see, e.g., Ref. [10]), which was first applied to LBM in Ref. [1]. The

essence of the condition is that populations reaching a boundary are reflected, proportional to equilibrium, such that
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Fig. 8. Plot of energy squared, E2
u (27), as a function of Reynolds number, Re, using LBGK regularised with the median filter limiter with δ = 10−3

on a 100 × 100 grid. Straight lines are lines of best fit. The intersection of the sloping line with the x-axis occurs close to Re = 7135.

mass balance (in the bulk) and detailed balance are achieved. The boundary condition coincides with “bounce-back”

in each corner of the cavity.

To illustrate, immediately following the advection of populations consider the situation of a wall, aligned with the

lattice, moving with velocity uwall and with outward pointing normal to the wall in the negative y-direction (this is the

situation on the lid of the cavity with uwall = u0). The implementation of the diffusive Maxwell boundary condition

at a boundary site (x, y) on this wall consists of the update

fi (x, y, t + 1) = γ f ∗
i (uwall), i = 4, 7, 8,

with

γ =
f2(x, y, t) + f5(x, y, t) + f6(x, y, t)

f ∗
4 (uwall) + f ∗

7 (uwall) + f ∗
8 (uwall)

.

Observe that, because density is a linear factor of the equilibria (21), the density of the wall is inconsequential in the

boundary condition and can therefore be taken as unity for convenience. As is usual, only those populations pointing

into the fluid at a boundary site are updated. Boundary sites do not undergo the collisional step that the bulk of the

sites are subjected to.

We prefer the diffusive boundary condition over the often preferred “bounce-back” boundary condition with

constant lid profile. This is because we have experienced difficulty in separating the aforementioned numerical noise

from the genuine signal at a single control point using “bounce-back”. We remark that the diffusive boundary condition

does not prevent unregularised LBGK from failing at some critical Reynolds number Re > 5000.

Now, we conduct an experiment and record (27) over a range of Reynolds numbers. In each case the median filter

limiter is employed with parameter δ = 10−3. Since the transition between steady and periodic flow in the lid-driven

cavity is known to belong to the class of standard Hopf bifurcations we are assured that E2
u ∝ Re [15]. Fitting a line

of best fit to the resulting data localises the first bifurcation in the lid-driven cavity flow to Re = 7135 (Fig. 8). This

value is within the tolerance of Re = 7402 ± 4% given in Ref. [29] for a 100 × 100 grid. We also provide a (time

averaged) phase space trajectory and Fourier spectrum for Re = 7375 at the monitoring point (Figs. 9 and 10) which

clearly indicate that the first bifurcation has been observed.

5. Test discussion and a priori estimations of additional dissipation

The diversity of possible nonequilibrium entropy limiters is huge. The examples provided by our tests present

only a tiny fraction of these possibilities. For better orientation in this world one needs some a priori estimates. Of

course, the first question should concern additional dissipation. It is easy to find all the dissipation a posteriori (we

presented all the necessary techniques in Section 3.4), but for a priori estimates we need some hypotheses about the

1S distribution.
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Fig. 9. A phase trajectory for velocity components for the signal (usig, vsig) at the monitoring point (L/16, 13L/16) using LBGK regularised with

the median filter limiter with δ = 10−3 on a 100 × 100 grid (Re = 7375). Dots represent simulation results at various time moments and the solid

line is a 100 step time average of the signal.

Fig. 10. Relative amplitude spectrum for the signal usig at the monitoring point (L/16, 13L/16) using LBGK regularised with the median filter

limiter with δ = 10−3 on a 100 × 100 grid (Re = 7375). We measure a dominant frequency of ω = 0.525.

Let us start from the most straightforward idea: estimation at the average. Let us take 1S = E(1S) and estimate

the additional dissipation. This corresponds to the hypothesis that 1S is distributed near its mean value with relatively

small deviation. Immediately, we find that under this assumption any local limiter of the form (10) is simply equivalent

to multiplying f − f ∗ by φ(E(1S)) and it leads to additional viscosity 1ν ∼ (1−φ(E(1S))) in dimensionless form.

However, as we can see from Figs. 4 and 5, for example, performance can be significantly different for limiters that

have the same φ(E(1S)). This implies that the hypothesis about a narrow distribution of 1S near its mean value does

not work, and performance of a limiter depends on the value of φ(1S) for larger 1S.

There is a practical consequence of this observation too. A limiter’s work is important for 1S > E(1S) (or even

1S ≫ E(1S)). Hence, all the influence of a limiter on the dynamics at 1S ∼ E(1S) is a parasitic effect, and this

should be excluded. Therefore, for smooth limiters, φ(1S), it is natural to assume that φ(0) = 1 and φ′(0) = 0. This

means that, for small 1S, collisions with a limiter coincide with LBM collisions in the first two orders.

The first attempt to improve the hypothesis about the distribution of 1S is an assumption that 1S has exponential

distribution with probability density

p(1S) =
1

E(1S)
exp(−1S/E(1S)).
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This distribution for entropy seems very familiar from equilibrium statistical physics, but the tests of the Ehrenfests’

limiters [6,7] and of threshold limiters (Fig. 6) show that even a limiter with a threshold ∼20E(1S) significantly

improves the picture. For the exponential distribution, P(E > 20E(1S)) = exp(−20): on our grid, the appearance of

such points is improbable.
A dynamical reason for fat tails can be a so-called superstatistics [3], where one has a superposition of local simple

distributions whose parameters fluctuate on a rather large spatio-temporal scale. The idea of superstatistics can help

us: the domain of flow can be split into several subdomains, in any of these subdomains there is an exponential

distribution of 1S and as a result there is a mixed “superdistribution” in the whole domain.
Already two exponential distributions give a much more realistic picture:

p(1S) =
1 − q

1S1

exp(−1S/1S1) +
q

1S2

exp(−1S/1S2) (28)

with q ≪ 1 and 1S1 ≪ 1S2. For this distribution, the threshold limiter (and other limiters that do not affect the

average points with 1S ∼ E(1S)) acts on the points that belong to the second distribution, far from the 1S mean

value. This point of view is supported by the following observation: the entropy productions for all successfully

working limiters in the shock tube test (Section 4.3) are almost the same, even if the control parameter δ changes

by several orders of magnitude. Of course, this observation also supports other hypotheses with a representation

of p(1S) as a mixture of two simple distributions with significantly different E(1S). For example, if p(1S) =
(1 − q)δ(1S − 1S1) + qδ(1S − 1S2) with q ≪ 1 and 1S1 ≪ 1S2, then the behaviour of the dissipation will also

be similar.
Again, we can extract a practical consequence. It is not necessary to apply limiters at all points. In addition to a

threshold in 1S we can also use a threshold number of points k and apply limiters at not more than k points with

maximal 1S. For example, if we apply the Ehrenfests’ or the threshold limiter only at one point of the shock profile,

then it changes the picture drastically: there remain some fluctuations, but their amplitude decreases by orders [6,7].
Let us estimate the additional dissipation produced by the threshold limiter for the nonequilibrium entropy

distribution (28). If the threshold value 1St ≫ 1S1 and the allowed number of points for the limiter action k < q N ,

where N is the total number of points, then only the second exponential distribution affects the limiter work. A simple

explicit estimation gives us the following:
If q N exp(−1St/1S2) > k then we expect the number of points with application of the limiter to be ∼ k and the

average dissipation per such point to be

Spp ≈
∫ ∞

1S2 ln(q N/k)

1S − 1St

1S2

exp

(

−1S

1S2

)

d1S = 1S2
k

q N

[

ln
q N

k
−

1St

1S2

+ 1

]

,

or kSpp totally.

If q N exp(−1St/1S2) < k then we expect the number of points with application of the limiter to be

∼q N exp(−1St/1S2) < k and the average dissipation per such point to be

Spp ≈
∫ ∞

1St

1S − 1St

1S2

exp

(

−1S

1S2

)

d1S = 1S2 exp

(

−1St

1S2

)

,

or q N1S2 exp(−21St/1S2) in total.
These estimates use some features of the 1S distribution. Any theoretical or computational study of this distribution

immediately gives us a clue for estimates of a limiter’s work.
In the last case, we can estimate additional viscosity in the highly nonequilibrium region that corresponds to the

second exponent in the distribution (28). Indeed, the number of points in this region is q N , the average 1S is 1S2,

additional dissipation per point in this region is 1S2 exp(−21St/1S2). This corresponds to additional contraction

to equilibrium with coefficient ∼1 − 1
2 exp(−21St/1S2) per collision step. Due to standard LBGK estimates, the

correspondent additional viscosity is 1ν ≈ 1
4 exp(−21St/1S2) < k2

4(q N )2 (in dimensionless units). For example, for

1ν ≤ 0.01 this gives 1St & 1.61S2, for 1ν ≤ 0.001 we have 1St & 2.81S2, and for 1ν ≤ 0.0001 we have

1St & 3.91S2.
Does the distribution of 1S have a long tail? To support this hypothesis we computed the histograms of 1S

(Fig. 11) for the experiment presented in Fig. 3. It is straightforward to estimate that such a long tail is practically
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Fig. 11. Histograms of nonequilibrium entropy 1S for the 1:2 athermal shock tube simulation with (a) ν = 0.066, (b) ν = 0.0066 and (c)

ν = 0.00066 after 400 time steps using LBGK (23) without any limiter. Entropic equilibria (18) with perfect entropy (17) are used. We use a

broken y-axis. These histograms correspond to computations represented on Fig. 3(a),(b),(c). The x-axis interval is from zero to (a) 450E(1S),

(b) 97E(1S) and (c) 32E(1S), respectively. It is divided into 20 bins.

impossible for an exponential distribution. For example, the probability of having by chance the maximal 1S so far

from E(1S) (for 801 points) is p < 801 exp(−1Smax/E(1S)). For the histograms presented in Fig. 11, we get: (a)

p < 10−170, (b) p < 10−21 and (c) p < 10−8, respectively. Of course, the probability of appearance of the whole

tails by chance in cases (b) and (c) is much smaller.

Direct estimation of additional dissipation for the median filter limiter is impossible without hypotheses about pair

correlations in the 1S field. Computational tests for shock tubes and for lid-driven cavity flow show that the median

filter limiter (applied to the “salt” noise only when 1S exceeds the median value, and, moreover when the value of the

difference between the current value and the median value is higher than a given threshold) works properly both for

shocks and for 2D flow with Re . 8000 on a 100×100 grid without any sign of parasitic viscosity. Additional entropy

production for the median filter limiters in shock tube tests is essentially the same as for other successful limiters (it

is 10%–20% less; see Fig. 7), but the value of nonequilibrium entropy 1S for the median limiter is much higher than

for local value limiters, and small (macroscopically unobservable) oscillations of 1S appear. The distribution of 1S

is much more sensitive to the choice of limiter than the additional dissipation. This is one more practical hint from the

tests performed. This indicator shows that the median filter disturbs the original LBGK kinetics less than other tested

limiters with the same or sometimes better stabilisation results.

All these observations and successful tests allow us to suggest the minimal median filter limiter as a “limiter of

choice”. There is one important addition that we did not test in this work, which improves performance of the median

limiter: one should not apply the limiter at all points where the threshold is exceeded, but at a fixed number of such

points (not more than a given k, exactly as we did for the Ehrenfests’ limiters [7]).

6. Conclusions

We have constructed a system of nonequilibrium entropy limiters for the LBM:

• the positivity rule that provides positivity of distribution;

• the pointwise entropy limiters based on selection and correction of most nonequilibrium values;

• filters of nonequilibrium entropy, and the median filter as a filter of choice.

All these limiters exploit physical properties of LBM and allow control of total additional entropy production. In

general, they do the same work for LBM as flux limiters do for finite differences, finite volumes and finite elements

methods, and come into operation when sharp gradients are present. For smoothly changing waves, the limiters

do not operate and the spatial derivatives can be represented by higher order approximations without introducing

non-physical oscillations. But there are some differences too: for LBM the main idea behind the construction of

nonequilibrium entropy limiter schemes is to limit a scalar quantity – the nonequilibrium entropy – or to delete the

“salt and pepper” noise from the field of this quantity. We do not touch the vectors or tensors of spatial derivatives, as

one does for flux limiters.

Standard test examples demonstrate that the limiters developed erase spurious oscillations without blurring of

shocks, and do not affect smooth solutions. The limiters that we have tested do not produce a noticeable additional

dissipation and allow us to reproduce the first Hopf bifurcation for a 2D lid-driven cavity on a coarse 100 × 100 grid.

At the same time the simplest median filter deletes the spurious post-shock oscillations for low viscosity.

Perhaps it is impossible to find one best nonequilibrium entropy limiter for all problems. It is a special task to

construct the optimal limiters for a specific class of problems.
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[23] I.V. Karlin, A. Ferrante, H.C. Öttinger, Perfect entropy functions of the lattice Boltzmann method, Europhys. Lett. 47 (1999) 182–188.

[24] I.V. Karlin, S. Ansumali, C.E. Frouzakis, S.S. Chikatamarla, Elements of the lattice Boltzmann method I: Linear advection equation, Commun.

Comput. Phys. 1 (2006) 616–655.

[25] S. Kullback, Information Theory and Statistics, Wiley, New York, 1959.

[26] C.D. Levermore, J.-G. Liu, Oscillations arising in numerical experiments, Physica D 99 (1996) 191–216.

[27] Y. Li, R. Shock, R. Zhang, H. Chen, Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method, J. Fluid

Mech. 519 (2004) 273–300.

[28] T.W. Pan, R. Glowinksi, A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled

by the Navier–Stokes equations, Comput. Fluid Dyn. J. 9 (2000) 28–42.

[29] Y.-F. Peng, Y.-H. Shiau, R.R. Hwang, Transition in a 2-D lid-driven cavity flow, Comput. Fluids 32 (2003) 337–352.

[30] W.K. Pratt, Digital Image Processing, Wiley, New York, 1978.

[31] H. Qian, Relative entropy: free energy associated with equilibrium fluctuations and nonequilibrium deviations, Phys. Rev. E. 63 (2001)

042103.

[32] P.L. Roe, Characteristic-based schemes for the Euler equations, Ann. Rev. Fluid Mech. 18 (1986) 337–365.

[33] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, New York, 2001.

[34] S. Succi, I.V. Karlin, H. Chen, Role of the H theorem in lattice Boltzmann hydrodynamic simulations, Rev. Mod. Phys. 74 (2002) 1203–1220.

[35] P.K. Sweby, High resolution schemes using flux-limiters for hyperbolic conservation laws, SIAM J. Num. Anal. 21 (1984) 995–1011.

[36] E. Tadmor, W. Zhong, Entropy stable approximations of Navier–Stokes equations with no artificial numerical viscosity, J. Hyperbolic Differ.

Equ. 3 (2006) 529–559.

http://arxiv.org//arxiv:cond-mat/0605359
http://arxiv.org//arxiv:cond-mat/0605359
http://arxiv.org//arxiv:cond-mat/0605359
http://arxiv.org//arxiv:cond-mat/0602024


406 R.A. Brownlee et al. / Physica A 387 (2008) 385–406

[37] F. Tosi, S. Ubertini, S. Succi, H. Chen, I.V. Karlin, Numerical stability of entropic versus positivity-enforcing lattice Boltzmann schemes,

Math. Comput. Simulation 72 (2006) 227–231.

[38] B. Van Leer, Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible

flow, J. Comput. Phys. 23 (1977) 263–275.

[39] P. Wesseling, Principles of Computational Fluid Dynamics, in: Springer Series in Computational Mathematics, vol. 29, Springer, Berlin, 2001.




