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Abstract

We construct the non-equilibrium Glauber dynamics as a Markov
process in configuration space for an infinite particle system in contin-
uum with a general class of initial distributions. This class we define
in terms of correlation functions bounds and it is preserved during the
Markov evolution we constructed.
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1 Introduction

The theory of stochastic lattice gases on the cubic lattice Zd, d ∈ N is one
of the most important and well developed areas in the theory of interacting
particle systems. In the lattice gas model with spin space S = {0, 1}, the
configuration space is defined as X = {0, 1}Zd

. For a given σ = {σ(x) |x ∈
Zd} ∈ X we say that a lattice side y ∈ Zd is free or occupied by a particle
depending on σ(y) = 0 or σ(y) = 1 respectively.

In the Glauber type stochastic dynamics of the lattice gas particles ran-
domly disappear from occupied sites or appear of free places of the lattice.
Obviously, this dynamics may be interpreted as a birth-and-death process
on Zd. The generator of this dynamics is given by

(Lf)(σ) =
∑

x∈Zd

a(x, σ)(∇xf)(σ),

where
(∇xf)(σ) = f(σx)− f(σ),

σx denoting the configuration σ in which the particle at site x has changed
its spin value. The rate function a(x, σ) is taken in such a way that an a
priori given measure on X (say, a Gibbs measure for the Ising model) be a
symmetrizing measure for the Glauber generator L, see, e.g., [17].

Let us consider a continuous particle system, i.e., a system of particles
which can take any position in the Euclidean space Rd. The configuration
space Γ for such system is the set of all locally finite subsets γ ⊂ Rd. An
analog of the discussed lattice stochastic dynamics should be a process in
which particles randomly appear and disappear in the space, i.e., a spatial
birth-and-death process. The generator of such a process is informally given
by the formula

(LF )(γ) =
∑
x∈γ

d(x, γ)(D−
x F )(γ) +

∫

Rd

b(x, γ)(D+
x F )(γ) dx,

where

(D−
x F )(γ) = F (γ \ x)− F (γ), (D+

x F )(γ) = F (γ ∪ x)− F (γ).

Here and below, for simplicity of notations, we just write x instead of {x}.
The coefficient d(x, γ) describes the rate at which the particle x of the con-
figuration γ dies, while b(x, γ) describes the rate at which, given the config-
uration γ, a new particle is born at x.

Spatial birth-and-death processes were first discussed by Preston in [19].
Under some conditions on the birth and death rates, Preston proved the
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existence of such processes in a bounded domain in Rd. Though the number
of particles can be arbitrarily large in this case, the total number of par-
ticles remains finite at any moment of time. The study of the problem of
construction of a spatial birth-and-death process in the infinite volume was
initiated by Holley and Stroock in [5]. In fact, in that paper, birth-and-
death processes in bounded domains were analyzed in detail. Only in a very
special case of nearest neighbor birth-and-death processes on the real line,
the existence of a corresponding process on the whole space was proved and
its properties were studied.

Glötzl [4] derived conditions on the coefficients d(x, γ), b(x, γ), under
which the birth-and-death generators are symmetric in the space L2(µ),
where µ is a given Gibbs measure. Such generators is natural to call the
Glauber dynamics generators (corresponding to the equilibrium state µ).
However, the problem of existence of such dynamics was left open. In the
paper [2], Bertini, Cancrini, and Cesi studied the problem of existence of a
spectral gap for the Glauber dynamics in a bounded domain in Rd. Bertini
et al. considered the Glauber dynamics with death coefficient d(x, γ) = 1.

By using the theory of Dirichlet forms, an analog of the Glauber dynamics
from [2], but on the whole space (thus, involving infinite configurations) and
for quite general pair potentials, has been constructed in [11]. A general class
of Glauber dynamics in continuum which admits much more wide family of
birth and death rates (again in the framework of the Dirichlet forms theory)
was considered in [12].

All mentioned papers are dealing with so-called equilibrium stochastic
dynamics that gives an existence result for a.a. starting configurations w.r.t.
the a priori given stationary measure. The latter means that we can start
our Markov process with any initial measure which is absolutely continuous
w.r.t. the symmetrizing one. In applications, however, we need to analyze
the time development for different classes of initial states of the system.
These states can be very far from the equilibrium ones and the equilibrium
stochastic dynamics (coming from the Dirichlet forms method) is not enough
for the construction of their evolution.

In the present paper we propose a construction of the non-equilibrium
Glauber dynamics in continuum. Namely, we describe a set of initial distri-
butions on Γ s.t. for any initial measure µ0 from this class there exists a
Markov process with considered Glauber generator Xµ0

t ∈ Γ starting with
µ0. Moreover, the distribution µt of this process at the time t > 0 is again
in the same class of measures on Γ. Our construction is based on a general
approach to the study of infinite particle dynamics using techniques of the
harmonic analysis on configuration spaces developed in [8]. More precisely,
we start with the Kolmogorov equation corresponding to our Glauber dy-
namics. That is an evolutional equation on functions defined on the configu-
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ration space Γ which are called observables in the terminology of mathemat-
ical physics. An application of the combinatorial Fourier transform from [8]
gives instead of this infinite dimensional evolution equation an infinite family
of finite dimensional equations for so-called quasi-observables. This infinite
system of equations admits a natural description in terms of a Fock-type
structure. This structure is nothing but a L1-Fock space with a fixed family
of weight functions. Taking properly these weights we are able to apply a
perturbation techniques to the considered evolution equation in the L1-Fock
space and to construct a related semigroup. The dual semigroup gives then
the time evolution of the correlation functions of the initial measure and
due to a reconstruction theorem from [8] we can obtain an evolution of the
initial measure. The latter solve the dual Kolmogorov equation and it is the
main step in the construction of the non-equilibrium Glauber dynamics we
are considering.

Note that the evolution of the correlation functions in the Glauber dy-
namics is describing by a system of equations which give a dynamical version
of the celebrated Kirkwood-Salsburg system of equations for an equilibrium
state of the model. Solving this system we need to check a property of a
positive definiteness for the solution in sense of [1], [8]. This moment is
usually outside of the attention in theoretical physics considerations of time
evolutions for correlation functions. But this positive definiteness is a nec-
essary (and together with a growth condition also sufficient) condition on
correlation functions which relates them to a measure on Γ. Actually, the
verification of this condition is one of the main difficulties in the approach
described above.

Acknowledgements. We are grateful to Prof.Dr. M.Röckner for fruit-
ful and stimulating discussions concerning the subject of this paper. The
financial support of the DFG through the SFB 701 (Bielefeld University),
German-Russian Project 436 RUS 113/779 and German-Ukrainian Project
436 UKR 113/70 is gratefully acknowledged. E.Zh. gratefully acknowledges
the financial support of the ZIF (Bielefeld University) in the framework of
the Research Semester ”Modeling in the Sciences” and RFBR 05-01-00449.

2 General facts and notations

Let Rd be the d-dimensional Euclidean space. By O(Rd), B(Rd) we denote
the family of all open and Borel sets, respectively. Ob(Rd), Bb(Rd) denote
the system of all sets in O(Rd), B(Rd), respectively, which are bounded. The
space of n-point configuration is

Γ(n)
0 = Γ(n)

0,Rd :=
{

η ⊂ Rd
∣∣∣ |η| = n

}
, n ∈ N0 := N ∪ {0},
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where |A| denotes the cardinality of the set A. Analogously the space Γ(n)
0,Λ

is defined for Λ ∈ Bb(Rd), which we denote for short by Γ(n)
Λ .

For every Λ ∈ Bb(Rd) one can define a mapping NΛ : Γ(n)
0 → N0;

NΛ(η) := |η∩Λ|. For short we write ηΛ := η∩Λ. As a set, Γ(n)
0 is equivalent

to the symmetrization of

(̃Rd)n =
{

(x1, . . . , xn) ∈ (Rd)n
∣∣∣ xk 6= xl if k 6= l

}
,

i.e. (̃Rd)n/Sn, where Sn is the permutation group over {1, . . . , n}. Hence
Γ(n)

0 inherits the structure of an n · d-dimensional manifold. Applying this
we can introduce a topology O(Γ(n)

0 ) on Γ(n)
0 . The corresponding Borel σ-

algebra B(Γ(n)
0 ) coincides with σ

(
NΛ

∣∣Λ ∈ Bb(Rd)
)
.

The space of finite configurations

Γ0 :=
⊔

n∈N0

Γ(n)
0

is equipped with the topology of disjoint union O(Γ0). A set B ∈ B(Γ0) (the
corresponding Borel σ-algebra) is called bounded if there exists a Λ ∈ Bb(Rd)
and an N ∈ N such that B ⊂ ⊔N

n=0 Γ(n)
Λ .

The configuration space

Γ :=
{

γ ⊂ Rd
∣∣∣ |γ ∩ Λ| < ∞, for all Λ ∈ Bb(Rd)

}

is equipped with the vague topology. The Borel σ-algebra B(Γ) is equal to the
smallest σ-algebra for which all the mappings NΛ : Γ → N0, NΛ(γ) := |γ∩Λ|
are measurable, i.e.,

B(Γ) = σ
(
NΛ

∣∣∣Λ ∈ Bb(Rd)
)

and filtration on Γ given by

BΛ(Γ) := σ
(
NΛ′

∣∣∣Λ′ ∈ Bb(Rd), Λ′ ⊂ Λ
)

.

For every Λ ∈ Bb(Rd) one can define a projection pΛ : Γ → ΓΛ,

pΛ(γ) := γΛ

and w.r.t. this projections Γ is the projective limit of the spaces {ΓΛ}Λ∈Bb(Rd).
In the sequel we will use the following classes of function: L0(Γ0) is the

set of all measurable functions on Γ0 and L0
ls(Γ0) is the set of measurable
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functions which have additionally a local support, i.e. G ∈ L0
ls(Γ0) if there

exists Λ ∈ Bb(Rd) such that G ¹Γ0\ΓΛ
= 0. L0

bs(Γ0) denotes the class of
measurable functions with bounded support, B(Γ0) the set of bounded mea-
surable functions and Bbs(Γ0) the set of bounded functions with bounded
support. For any Λ ∈ Bb(Rd), the class of functions G ∈ Bbs(Γ0), whose
support is a subset of Λ we will denote by BΛ

bs(Γ0). The class of continuous
functions from BΛ

bs(Γ0) we will denote by CBΛ
bs(Γ0).

On Γ we consider the set of a cylinder functions FL0(Γ), i.e. the set
of all measurable function G ∈ L0(Γ) which are measurable w.r.t. BΛ(Γ)
for some Λ ∈ Bb(Rd). These functions are characterized by the following
relation: F (γ) = F ¹ΓΛ

(γΛ).
Next we would like to describe some facts from Harmonic analysis on

configuration space based on [8, 9].
The following mapping between functions on Γ0, e.g. L0

ls(Γ0), and func-
tions on Γ, e.g. FL0(Γ), plays a key role in our further considerations:

KG(γ) :=
∑

ξbγ

G(ξ), γ ∈ Γ,

where G ∈ L0
ls(Γ0), see e.g. [15, 16]. The summation in the latter expression

is extend over all finite subconfigurations of γ, in symbols ξ b γ.
K is linear, positivity preserving, and invertible, with

K−1F (η) :=
∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (1)

It is easy to see that for all Λ ∈ Bb(Rd), F ∈ FL0(Γ, BΛ(Γ))

K−1F (η) = 11ΓΛ
(η)K−1F (η), ∀η ∈ Γ0. (2)

One can introduce a convolution

? : L0(Γ0)× L0(Γ0) → L0(Γ0) (3)
(G1, G2) 7→ (G1 ? G2) (η)

:=
∑

(ξ1,ξ2,ξ3)∈P3
∅ (η)

G1(ξ1 ∪ ξ2) G2(ξ2 ∪ ξ3),

where P3
∅ (η) denotes the set of all partitions (ξ1, ξ2, ξ3) of η in 3 parts, i.e., all

triples (ξ1, ξ2, ξ3) with ξi ⊂ η, ξi ∩ ξj = ∅ if i 6= j, and ξ1 ∪ ξ2 ∪ ξ3 = η. It has
the property that for G1, G2 ∈ L0

ls(Γ0) we have K (G1 ? G2) = KG1 ·KG2.
Due to this convolution we can interpret K transform as Fourier transform
in configuration space analysis, see also [1].

Let M1
fm(Γ) be the set of all probability measures µ which have finite

local moments of all orders, i.e.
∫
Γ |γΛ|nµ(dγ) < +∞ for all Λ ∈ Bb(Rd)
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and n ∈ N0. A measure ρ on Γ0 is called locally finite iff ρ(A) < ∞ for all
bounded sets A from B(Γ0), the set of such measures is denoted by Mlf(Γ0).
One can define a transform K∗ : M1

fm(Γ) → Mlf(Γ0), which is dual to the
K-transform, i.e., for every µ ∈M1

fm(Γ), G ∈ Bbs(Γ0) we have
∫

Γ
KG(γ)µ(dγ) =

∫

Γ0

G(η) (K∗µ)(dη).

ρµ := K∗µ we call the correlation measure corresponding to µ.
As shown in [8] for µ ∈M1

fm(Γ) and any G ∈ L1(Γ0, ρµ) the series

KG(γ) :=
∑
ηbγ

G(η), (4)

is µ-a.s. absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and
∫

Γ0

G(η) ρµ(dη) =
∫

Γ
(KG)(γ) µ(dγ). (5)

Fix a non-atomic and locally finite measure σ on (Rd,B(Rd)). For any
n ∈ N the product measure σ⊗n can be considered by restriction as a measure
on (̃Rd)n and hence on Γ(n)

0 . The measure on Γ(n)
0 we denote by σ(n).

The Lebesgue-Poisson measure λzσ on Γ0 is defined as

λzσ :=
∞∑

n=0

zn

n!
σ(n).

Here z > 0 is the so called activity parameter. The restriction of λzσ to ΓΛ

will be also denoted by λzσ.
The Poisson measure πzσ on (Γ,B(Γ)) is given as the projective limit

of the family of measures {πΛ
zσ}Λ∈Bb(Rd), where πΛ

zσ is the measure on ΓΛ

defined by πΛ
zσ := e−zσ(Λ)λzσ.

A measure µ ∈M1
fm(Γ) is called locally absolutely continuous w.r.t. πzσ

iff µΛ := µ ◦ p−1
Λ is absolutely continuous with respect to πΛ

zσ = πzσ ◦ p−1
Λ for

all Λ ∈ BΛ(Rd). In this case ρµ := K∗µ is absolutely continuous w.r.t λzσ.
We denote by kµ(η) := dρµ

dλσ
(η), η ∈ Γ0.

The functions
k(n)

µ : (Rd)n −→ R+ (6)

k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈ (̃Rd)n

0, otherwise

are well known correlation functions of statistical physics, see e.g [22], [21].
Let us now recall the so-called Minlos lemma which plays very important

role in our calculations (cf., [13]).
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Lemma 2.1 Let n ∈ N, n ≥ 2, and z > 0 be given. Then
∫

Γ0

. . .

∫

Γ0

G(η1 ∪ . . . ∪ ηn)H(η1, . . . , ηn)dλz(η1) . . . dλz(ηn) =

=
∫

Γ0

G(η)
∑

(η1,...,ηn)∈Pn(η)

H(η1, . . . , ηn)dλz(η)

for all measurable functions G : Γ0 7→ R and H : Γ0 × . . . × Γ0 7→ R with
respect to which both sides of the equality make sense. Here Pn(η) denotes
the set of all partitions of η in n parts, which may be empty.

3 Potential and Gibbs measures on configuration

spaces

A pair potential is a Borel, even function φ : Rd 7→ R ∪ {+∞}. We assume
that φ satisfies the following conditions.

(I) (Integrability) For any β > 0,

C(β) :=
∫

Rd

|1− exp [−βφ(x)]|dx < ∞.

(P) (Positivity) φ(x) > 0 for all x ∈ Rd.

For γ ∈ Γ and x ∈ Rd \ γ, we define a relative energy of interaction as
follows:

E(x, γ) :=

{ ∑
y∈γ φ(x− y), if

∑
y∈γ |φ(x− y)| < ∞,

+∞, otherwise.

The energy of configuration η ∈ Γ0 or Hamiltonian Eφ : Γ0 → R∪{+∞}
which corresponds to potential φ is defined by

Eφ(η) =
∑

{x,y}⊂η

φ(x− y), η ∈ Γ0, |η| ≥ 2.

The Hamiltonian Eφ
Λ : ΓΛ → R for Λ ∈ Bb(Rd) which corresponds to

potential φ is defined by

Eφ
Λ(η) =

∑

{x,y}⊂η

φ(x− y), η ∈ ΓΛ, |η| ≥ 2.

For fixed φ we will write for short E = Eφ and EΛ = Eφ
Λ.
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For given γ̄ ∈ Γ define the interaction energy between η ∈ ΓΛ and γ̄Λc =
γ̄ ∩ Λc, Λc = Rd\Λ as

WΛ(η|γ̄) =
∑

x∈η, y∈γ̄Λc

φ(x− y).

The interaction energy is said to be well-defined if for any Λ ∈ Bb(Rd),
η ∈ ΓΛ and γ̄ ∈ Γ it is finite or +∞.

For β > 0 we define

EΛ(η|γ̄) = EΛ(η) + WΛ(η|γ̄)

and
ZΛ(γ̄) :=

∫

ΓΛ

exp {−βEΛ(η| γ̄)}λz(dη)

the so-called partition function.
Let Λ ∈ Bb(Rd), β > 0 be arbitrary, and let γ̄ ∈ Γ. The finite volume

Gibbs measure on the space ΓΛ with boundary configuration γ̄ is defined by

PΛ, γ̄(dη) =
exp {−βEΛ(η| γ̄)}

ZΛ(γ̄)
λz(dη).

When γ̄ = ∅, let PΛ, ∅(dη) =: PΛ(dη).
Let {πΛ} denote the specification associated with z and the Hamiltonian

E (see [18]) which is defined by

πΛ, γ̄(A) =
∫

A′
PΛ, γ̄(dη)

where A′ = {η ∈ ΓΛ : η ∪ (γ̄Λc) ∈ A}, A ∈ B(Γ) and γ̄ ∈ Γ.
A probability measure µ on Γ is called a Gibbs measure for E and z if

µ(πΛ, γ̄(A)) = µ(A)

for every A ∈ B(Γ) and every Λ ∈ Bb(Rd).
This relation is the well-known (DLR)-equation (Dobrushin-Lanford-

Ruelle equation), see [3] for more details.
The set of all Gibbs measures which corresponds to the potential φ,

activity parameter z > 0, and inverse temperature β > 0 will be denoted by
G(φ, z, β). For fixed potential φ we will write G(z, β) instead of G(φ, z, β).

Remark 3.1 The set G(φ, z, β) is non-empty for all z > 0, β > 0 and any
potential φ satisfying (P) and (I), see [14].
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4 Generators. The symbol of the Glauber gener-

ator on the space of finite configurations

We consider a Markov pre-generator on the configuration space Γ, the action
of which is given by

(LF )(γ) := (Lb,d)F (γ) =

=
∑
x∈γ

d(x, γ \ x)D−
x F (γ) +

∫

Rd

b(x, γ)D+
x F (γ)dx,

where D−
x F (γ) = F (γ \ x)− F (γ) and D+

x F (γ) = F (γ ∪ x)− F (γ).
It is known that the Gibbs measure µ ∈ G(z, β) is reversible with respect

to the Markov process associated with the generator L (i.e. the operator L
is symmetrical in L2(Γ, µ)) iff the following condition on coefficients b and
d (birth and death rates) holds:

b(x, γ) = ze−βE(x, γ)d(x, γ). (7)

In the sequel we will be interesting only in particular cases of birth and
death rates, which play an essential role in the study of some problems of
mathematical physics:

b(x, γ) = ze−βE(x, γ), d(x, γ) = 1.

Such model was investigated by many authors, see e.g. [13], [11]. The
corresponding Markov generator we denote by the same symbol L.

For the technical reasons we will be also interesting in the birth and
death rates localized in some volume Λ ∈ B(Rd). Namely

bΛ(x, γ) = z11Λ(x)e−βE(x, γΛ), dΛ(x, γ) = 11Λ(x).

Corresponding Markov generator we denote by LΛ.
In the recent paper [13], the authors have shown that in the case of

equilibrium Glauber dynamics with invariant measure µ ∈ G(z, β), corre-
sponding to the pair potential, the image of L under the K-transform (or
symbol of the operator L) has the following form:

(L̂G)(η) := (K−1LKG)(η) = L0G(η) + L1G(η), G ∈ Bbs(Γ0)

where
L0G(η) := −|η|G(η)

and

L1G(η) := z
∑

ξ⊆η

∫

Rd

G(ξ ∪ x)
∏

y∈η\ξ
(e−βφ(x−y) − 1)

∏

y′∈ξ

e−βφ(x−y′)dx.
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Analogously, one can show that the symbol of LΛ has form:

(L̂ΛG)(η) := (K−1LΛKG)(η) = −|ηΛ|G(η)+

+z
∑

ξ⊆η

∫

Λ
G(ξ∪x)

∏

y∈η\ξ
(e−βφ(x−y)11Λ(y)−1)

∏

y′∈ξΛ

e−βφ(x−y′)dx, G ∈ Bbs(Γ0).

5 Construction of a semigroup of the symbol.

Let λ be the Lebesgue-Poisson measure on Γ0 with activity parameter equal
to 1. In the whole section we suppose that potential φ satisfies condition
(P) and (I).

For arbitrary and fixed C > 0 and β > 0, we consider operator L̂ as
a pre-generator of some non-equilibrium Markov process in the functional
space

LC, β := L1(Γ0, C
|η|e−βE(η)λ(dη)). (8)

In this section, symbol || · || stands for the norm of the space (8) and symbol
s→ denote strong convergence in LC,β.

For any Λ ∈ Bb(Rd) we set

LΛ
C, β :=

{
G ∈ LC, β | G ¹Γ0\ΓΛ

= 0
}

. (9)

It is not difficult to show that LΛ
C, β is a closed linear subset in (LC, β , || · ||).

Therefore, (LΛ
C, β , || · ||) is a subspace of (LC, β , || · ||).

For any ω > 0 we introduce a set H(ω, 0) of all densely defined closed
operators T on LC, β, the resolvent set ρ(T ) of which contains sector

Sect
(π

2
+ ω

)
:=

{
ζ ∈ C | |arg ζ| < π

2
+ ω

}
, ω > 0

and for any ε > 0

||(T − ζ11)−1|| ≤ Mε

|ζ| , |arg ζ| ≤ π

2
+ ω − ε,

where Mε does not depend on ζ.
Let H(ω, θ), θ ∈ R denote the set of all operators of the form T = T0 + θ

with T0 ∈ H(ω, 0).

Remark 5.1 It is well-known (see e.g., [7]), that any T ∈ H(ω, θ) is a
generator of a semigroup U(t) which is holomorphic in the sector |arg t| <
ω. The function U(t) is not necessary uniformly bounded, but it is quasi-
bounded, i.e.

||U(t)|| ≤ const |eθt|
in any sector of the form |arg t| ≤ ω − ε.
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Proposition 5.1 For any C > 0 and β > 0, the operator

(L0G)(η) = −|η|G(η), D(L0) = {G ∈ LC, β | |η|G(η) ∈ LC, β}

is a generator of contraction semigroup on LC, β. Moreover, L0 ∈ H(ω, 0),
for all ω ∈ (0, π

2 ).

Proof. It is not difficult to show that L0 is a densely defined and closed
operator in LC, β.

Let 0 < ω < π
2 be arbitrary and fixed. Clear, that for all ζ ∈ Sect

(
π
2 + ω

)

||η|+ ζ| > 0, η ∈ Γ0.

Therefore, for any ζ ∈ Sect
(

π
2 + ω

)
the inverse operator (L0 − ζ11)−1, the

action of which is given by

[(L0 − ζ11)−1G](η) = − 1
|η|+ ζ

G(η), (10)

is well defined on the whole space LC, β . Moreover, it is bounded operator in
this space and

||(L0 − ζ11)−1|| ≤





1
|ζ| , if Re ζ ≥ 0,

M
|ζ| , if Re ζ < 0,

(11)

where constant M does not depend on ζ.
The case Re ζ ≥ 0 is a direct consequence of (10) and inequality

|η|+ Re ζ ≥ Re ζ ≥ 0.

We prove now bound (11) in the case Re ζ < 0. Using (10), we have

||(L0 − ζ11)−1G|| =
∣∣∣∣
∣∣∣∣

1
|| · |+ ζ| G(·)

∣∣∣∣
∣∣∣∣ =

1
|ζ|

∣∣∣∣
∣∣∣∣

|ζ|
|| · |+ ζ|G(·)

∣∣∣∣
∣∣∣∣ .

Since ζ ∈ Sect
(

π
2 + ω

)
,

|Im ζ| ≥ |ζ|
∣∣∣sin

(π

2
+ ω

)∣∣∣ = |ζ| cosω.

Hence,
|ζ|

||η|+ ζ| ≤
|ζ|

|Im ζ| ≤
1

cosω
=: M

and (11) is fulfilled.
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The rest statement of the lemma follows now directly from the theorem
of Hille-Iosida (see e.g., [7]). ¥

Let κ > 0 be the parameter of the considering model.
We now consider operator

(L1G)(η) = (L1, β, κG)(η) =

= κ
∑

ξ⊆η

∫

Rd

G(ξ ∪ x)
∏

y∈η\ξ
(e−βφ(x−y) − 1) e−βE(x, ξ)dx, G ∈ D(L1)

with domain D(L1) := D(L0). The well-definiteness of this operator will be
clear from the lemma below.

For the symbol of the operator L we will write sometimes L̂β, κ instead
of L̂ to stress the dependence of this operator on κ > 0 and β > 0.

Lemma 5.1 For any δ > 0 there exists κ0 := κ0(δ) > 0 such that for all
κ < κ0 the following estimate holds

||L1, β, κG|| ≤ a||L0G||+ b||G||, G ∈ D(L0) = D(L1), (12)

with a = a(κ) < δ and b = b(κ) < δ.

Proof. As 1 belong to the resolvent set of L0 we have

||L1(L0 − 11)−1G|| = κ

∫

Γ0

∣∣L1(L0 − 11)−1G(η)
∣∣C |η|e−βE(η)λ(dη). (13)

Define
K(x, η) :=

∏

y∈η\x
|e−βφ(x−y) − 1|, x ∈ Rd, η ∈ Γ0,

then by modulus property (13) can be estimated by

κ

∫

Γ0

∑

ξ⊆η

∫

Rd

1
|ξ ∪ x|+ 1

|G(ξ ∪ x)|K(x, η \ ξ) e−βE(x, ξ)dxC |η|e−βE(η)λ(dη).

(14)
By Minlos lemma, (14) is equal to

κ

∫

Γ0

∫

Γ0

∫

Rd

1
|ξ ∪ x|+ 1

|G(ξ ∪ x)|K(x, η)e−βE(x, ξ)dx C |η∪ξ|e−βE(η∪ξ)λ(dξ)λ(dη).

Using again Minlos lemma we bound the latter expression by

κ

∫

Γ0

∫

Γ0

1
|ξ|+ 1

|G(ξ)|
∑

x∈ξ

K(x, η)e−βE(x, ξ\x)C |η∪(ξ\x)|e−βE(η∪(ξ\x))λ(dξ)λ(dη).

12



Since
E(x, ξ \ x) = E(ξ)− E(ξ \ x)

and since positivity of φ implies

E(η ∪ (ξ \ x))−E(ξ \ x) ≥ 0

we have
||L1(L0 − 11)−1G|| ≤

≤ κ

∫

Γ0

1
|ξ|+ 1

|G(ξ)|C |ξ|e−βE(ξ)
∑

x∈ξ

∫

Γ0

K(x, η)C |η∪(ξ\x)|−|ξ|λ(dη)λ(dξ) ≤

≤ κ

∫

Γ0

1
|ξ|+ 1

|G(ξ)|C |ξ|e−βE(ξ)
∑

x∈ξ

∫

Γ0

K(x, η)C |η|−1λ(dη)λ(dξ).

Finally,
||L1(L0 − 1)−1G|| ≤ κC−1eC(β)C ||G||.

Therefore,

||L1G|| ≤ κC−1eC(β)C ||(L0 − 1)G|| ≤ a||L0G||+ b||G||,

where
a = b := κC−1eC(β)C .

Clear, that taking
κ0 = δCe−C(β)C

we obtain that a, b < δ. ¥

Theorem 5.1 For any C > 0, and for all κ, β > 0 which satisfy

2κ exp (C(β)C) < C, (15)

the operator L̂β, κ is a generator of a holomorphic semigroup in LC, β.

Proof. The statement of theorem follows directly from the theorem about
perturbation of holomorphic semigroup (see, e.g. [7]). For the reader’s
convenience, below we give its formulation:

for any T ∈ H(ω, θ) and for any ε > 0 there exists positive constants ε,
δ such that if operator A satisfies

||Au|| ≤ a||Tu||+ b||u||, u ∈ D(T ) ⊂ D(A),

with a < δ, b < δ, then T + A ∈ H(ω − ε, ε).
In particular, if θ = 0 and b = 0, then T + A ∈ H(ω − ε, 0). ¥

13



Remark 5.2 Applying the proof of the theorem about perturbation of the
generator of a holomorphic semigroup (see, e.g. [7]) to our case and taking
into account the fact that L0 ∈ H(ω, 0), for any ω ∈ (0, π

2 ), one can
conclude that δ in this theorem can be chosen to be 1

2 .

For our further purposes we have to show that holomorphic semigroup
constructed in Theorem 5.1 can be approximated by the semigroups localized
in bounded volumes.

Let Λ ∈ Bb(Rd) be arbitrary and fixed. Then all results proved in this
section hold true for the operator L̂Λ acting in the functional space LΛ

C, β
with domain

D(L̂Λ) := {G ∈ LC, β | | ·Λ |G(·) ∈ LΛ
C, β}.

Namely, the main result can be formulated as follows

Theorem 5.2 For any Λ ∈ Bb(Rd), and any triple of constants C, κ > 0,
and β > 0 which satisfy

2κ exp (C(β)C) < C,

the operator L̂Λ is a generator of a holomorphic semigroup in LΛ
C, β.

Remark 5.3 The arguments, analogous to those which were proposed in the
proof of Lemma 5.1, imply the fulfilment of (12) for the operators

L̂0, ΛG(η) := |ηΛ|G(η)

and

L̂1, ΛG(η) := κ
∑

ξ⊆η

∫

Λ
G(ξ ∪ x)

∏

y∈η\ξ
(e−βφ(x−y)11Λ(y) − 1)

∏

y′∈ξΛ

e−βφ(x−y′)dx

with
D(L̂0, Λ) = D(L̂1, Λ) := {G ∈ LC, β | | ·Λ |G(·) ∈ LΛ

C, β}.
Moreover, bound (12) in this case will be uniform with respect to the

Λ ∈ Bb(Rd), i.e. coefficients a > 0 and b > 0 in (12) can be chosen Λ
independent.

Fix any triple of positive constants C, κ and β which satisfies (15) and
any Λ ∈ Bb(Rd).

14



Remark 5.4 Let ÛΛ
t (C, β, κ) be holomorphic semigroup generated by oper-

ator
(
L̂Λ, D(L̂Λ)

)
on LΛ

C, β. Then ÛΛ
t (C, β, κ) ◦ PΛ, t≥0 , where

PΛG(η) := 11ΓΛ
(η)G(η), G ∈ LC, β

is a semigroup on LC, β generated by the operator L̂Λ ◦ PΛ with domain

D(L̂Λ ◦ PΛ) := {G ∈ LC, β | | ·Λ |11ΓΛ
(·)G(·) ∈ LC, β} .

Remark 5.5 The theorem about perturbation of the generator of a holomor-
phic semigroup, mentioned before in this section (see also [7]), implies that
for any Λ ∈ Bb(Rd) and ε > 0 there exists ε > 0 and constant M > 0 which
is not depend on Λ such that for any ζ > ε the following bound holds

||(L̂Λ ◦ PΛ − ζ)−1|| ≤ Mε

|ζ − ε| , |arg (ζ − ε)| ≤ π

2
+ ω − ε.

Let {Λn}n≥1 be a sequence of Borel sets such that Λn ⊂ Λn+1, for all n ∈
N, and

⋃
n≥1 Λn = Rd. Now, we formulate the following approximation

theorem.

Theorem 5.3 Let Ût(C, β, κ) and
{

ÛΛn
t (C, β, κ), n ≥ 1

}
be holomorphic

semigroups generated by L̂β, κ and
{

L̂Λn, β, κ, n ≥ 1
}

in the spaces LC, β and

LΛ
C, β, respectively. Then,

ÛΛn
t (C, β, κ) ◦ PΛn

s→ Ût(C, β, κ), n →∞

uniformly on any finite interval of t ≥ 0.

Proof. Using approximation theorem for quasi-bounded semigroups (see e.g.
[7]), it is enough to show that

(L̂Λn, β, κ ◦ PΛn − ζ)−1 s→ (L̂β, κ − ζ)−1

for some ζ ∈ C such that Re ζ > θ.
Let ζ ∈ C, Re ζ > θ be arbitrary and fixed. For any G ∈ LC, β it holds

||(L̂Λn, β, κ ◦ PΛn − ζ)−1G− (L̂β, κ − ζ)−1G|| =

= ||(L̂Λn, β, κ ◦ PΛn − ζ)−1
[
L̂β, κ − L̂Λn, β, κ ◦ PΛn

]
(L̂β, κ − ζ)−1G||. (16)
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For any G ∈ D(L̂β, κ) = D(L0)
[
L̂β, κ − L̂Λn, β, κ ◦ PΛn

]
G(η) = −|η| [1− 11ΓΛn

(η)
]
G(η)+

+κ
∑

ξ⊆η

∫

Λc
n

G(ξ ∪ x)
∏

y∈η\ξ

[
e−βφ(x−y) − 1

] ∏

y′∈ξ

e−βφ(x−y′)dx+

+κ
∑

ξ⊆η

∫

Λn

G(ξ ∪ x)
∏

y∈η\ξ

[
e−βφ(x−y) − 1

]
e−βE(x, ξ)×

×
[
1− 11ΓΛn

(ξ ∪ x)11ΓΛn
(η \ ξ) eβE(x, ξΛc

n
)
]
dx,

where Λc
n = Rd \ Λn.

Using fact, that for any ξ ∈ Γ0 and x ∈ Rd

11ΓΛn
(ξ ∪ x) eβE(x, ξΛc

n
) = 11ΓΛn

(ξ ∪ x),

simple inequality

|1− 11ΓΛn
(ξ)11ΓΛn

(η)| ≤ |1− 11ΓΛn
(ξ)|+ |1− 11ΓΛn

(η)|, ξ, η ∈ Γ0,

and estimates analogous to those which were proposed in Lemma 5.1 we
obtain ∣∣∣

∣∣∣
[
L̂β, κ − L̂Λn, β, κ ◦ PΛn

]
G(η)

∣∣∣
∣∣∣ ≤

≤
(
1 + κmax{1, C−1}eC(β)C

) ∣∣∣∣ [
1− 11ΓΛn

(·)] | · |G(·)∣∣∣∣+

+κmax{1, C−1}eC(β)C
∣∣∣∣ | ·Λc

n
|G(·)∣∣∣∣+

+max{1, C−1} || | ·Λn |G(·)||
∫

ΓΛn

|1− 11ΓΛn
(η)|K(0, η)C |η|λ(dη).

All of the summands in the right-hand side of the last inequality definitely
tends to zero, when n →∞.

Using Remark 5.5 and equality (16) we easily conclude that difference in
(16) also tends to zero when n →∞. ¥

6 Construction of a non-equilibrium Markov pro-

cess

Fix any triple of positive constants C, κ and β which satisfies (15). Let
Ût(C, β, κ) be holomorphic semigroup generated by L̂β, κ and let

KC, β :=
{

k : Γ0 → R+ | k(·) C−|·|eβE(·) ∈ L∞(Γ0, λ)
}

(17)
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be the set of ”so-called correlation functions”. Note that KC, β is a Banach
space.

We introduce the following duality between quasi-observables G ∈ LC, β

and functions k ∈ KC, β

〈〈G, k〉〉 := 〈G, k〉L2(Γ0, λ) . (18)

Let us mention that G ∈ LC, β means that G(·)C |·|e−βE(·) ∈ L1(Γ0, λ).
Therefore, the duality

〈G, k〉L2(Γ0, λ) =
∫

Γ0

G(η)C |η|e−βE(η)k(η)C−|η|eβE(η))dλ(η) < ∞

is well-defined.
Note, also that k(·) C−|·|eβE(·) ∈ L∞(Γ0, λ) means that function k satis-

fies the following bound

k(η) ≤ const C |η|e−βE(η), (19)

which is known as generalized Ruelle bound, see e.g. [10].
Using duality (18) one can easily show that semigroup Ût(C, β, κ) deter-

mines corresponding semigroup Û?
t (C, β, κ) on KC, β.

Next, we solve the following problem: suppose that k0 ∈ KC, β is a
correlation function which means, that there exists a probability measure
µ0 ∈ M1

fm(Γ), locally absolutely continuous with respect to Poisson mea-
sure, whose correlation function is exactly k0. Does evolution of k0 with
respect to the semigroup Û?

t (C, β, κ) preserve the property described above?
Namely, will Û?

t (C, β, κ)k0, for any moment of time t > 0, be a correlation
function or not?

In order to answer this problem, one can apply, for example, the theo-
rem about characterization of correlation functions, proposed in [8]. In the
model under consideration, the conditions of this theorem, which must to be
checked are the following:

for any t ≥ 0 :
〈〈

G ? G, Û?
t (C, β, κ)k0

〉〉
≥ 0, ∀G ∈ Bbs(Γ0).

Further explanations will be devoted to the verifying of the latter condi-
tion.

Let µ ∈ G(β, z) and {πΛ, ∅}Λ∈Bb(Rd) denote the specification with empty
boundary conditions corresponding to the Gibbs measure µ. We define

E(F, G) :=
∫

Γ

∑
x∈γ

D−
x F (γ)D−

x G(γ)πΛ(dγ, ∅), F, G ∈ K CBΛ
bs(Γ0).

Now we would like to list some facts the proofs of which are completely
analogous to the proposed in [11].
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Lemma 6.1 The set K CBΛ
bs(Γ0) is dense in L2(Γ, πΛ, ∅) for any Λ ∈ Bb(Rd).

Lemma 6.2 Let Λ ∈ Bb(Rd) be arbitrary and fixed. Then (E , K CBΛ
bs(Γ0))

is a well-defined bilinear form on L2(Γ, πΛ, ∅).

Lemma 6.3 Let Λ ∈ Bb(Rd) be arbitrary and fixed. Suppose that conditions
(I) and (P) are satisfied. Then (LΛ,K CBΛ

bs(Γ0)) is an operator associated
with bilinear form (E , K CBΛ

bs(Γ0)) in L2(Γ, πΛ,∅), i.e.

E(F, G) =
∫

Γ
LΛF (γ)G(γ)πΛ,∅(dγ), F, G ∈ K CBΛ

bs(Γ0).

Lemma 6.4 Let Λ ∈ Bb(Rd) be arbitrary and fixed. Suppose that conditions
(I) and (P) are satisfied and µ ∈ G(z, β). Then there exists a self-adjoint
positive Friedrichs’ extension (L̃Λ, D(L̃Λ)) of the operator (LΛ, K CBΛ

bs(Γ0))
in L2(Γ, πΛ, ∅). Moreover, (L̃Λ, D(L̃Λ)) is a generator of a contraction semi-
group which preserves 1 in L2(Γ, πΛ, ∅), associated with some Markov pro-
cess.

Remark 6.1 It is well known (see e.g. [20]) that under condition of Lemma
6.4 the semigroup generated by (L̃Λ, D(L̃Λ)) can be extended to the L1(Γ, πΛ, ∅).
For any Λ ∈ Bb(Rd), the extension of this semigroup in L1(Γ, πΛ, ∅) we will

denote by (ŨΛ
t )t≥0. For the generator of this semigroup we will use notation

(L̃Λ, D1(L̃Λ)), where D1(L̃Λ) ⊃ D(L̃Λ) is a domain of L̃Λ in L1(Γ, πΛ, ∅).

Now, we introduce one of the crucial lemma about the evolution of the
”so-called correlation functions”.

Lemma 6.5 Let positive constants C, κ and β which satisfy (15) be ar-
bitrary and fixed. The semigroup Û?

t (C, β, κ) on KC, β preserves positive
semi-definiteness, i.e. for any t ≥ 0

〈〈
G ? G, Û?

t (C, β, κ)k
〉〉

≥ 0, ∀G ∈ Bbs(Γ0)

iff
〈〈G ? G, k〉〉 ≥ 0, (20)

for any G ∈ Bbs(Γ0).

Remark 6.2 Let MC, β stands for the set of all probability measures on Γ,
locally absolutely continuous with respect to Poisson measure, with locally
finite moments, whose correlation functions satisfies bound (19). As it was
pointed out at the beginning of this section, the condition (20) on function
k ∈ KC, β, insures an existence of a unique measure µk ∈ MC, β whose
correlation function is k, see [8].
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Proof of Lemma 6.5. Under assumptions of the lemma we have to show that
for any t ≥ 0

〈〈
Ût(C, β, κ)(G ? G), k

〉〉
≥ 0, ∀G ∈ Bbs(Γ0). (21)

But G ? G ∈ Bbs(Γ0) for any G ∈ Bbs(Γ0). Therefore, due to Theorem 5.3
it is enough to show that for any t ≥ 0 and any G ∈ Bbs(Γ0) there exists
Λ′ ∈ Bb(Rd) such that for all Λ ∈ Bb(Rd), Λ ⊃ Λ′

〈〈
ÛΛ

t (C, β, κ) ◦ PΛ(G ? G), k
〉〉

≥ 0. (22)

Let Λ ∈ Bb(Rd) be arbitrary and fixed. We set

UΛ
t := KÛΛ

t (C, β, κ)K−1, t ≥ 0.

(UΛ
t )t≥0 is a semigroup on

(LΛ
1 := KLΛ

C, β, || · ||1 := ||K−1 · ||LC, β
)

which is the Banach space. Moreover, it is not difficult to show that a
generator of this semigroup coincide with (LΛ, K D(L̂Λ)).

Proposition 6.1 For any F ∈ LΛ
1 ⊂ L1(Γ, πΛ, ∅),

UΛ
t F = ŨΛ

t F, t ≥ 0 in L1(Γ, πΛ, ∅).

Proof. The fact that (LΛ, K D(L̂Λ)) is a generator of (UΛ
t )t≥0 in (LΛ

1 , || · ||1)
means the following (see e.g. [6])

∣∣∣∣∣

∣∣∣∣∣U
Λ
t F −

(
t

n
LΛ − 11

)−n

F

∣∣∣∣∣

∣∣∣∣∣
1

→ 0, n →∞, for all F ∈ LΛ
1 .

Because || · ||1 ≥ || · ||, the latter fact implies
∣∣∣∣∣

∣∣∣∣∣U
Λ
t F −

(
t

n
LΛ − 11

)−n

F

∣∣∣∣∣

∣∣∣∣∣ → 0, n →∞, for all F ∈ LΛ
1 . (23)

Analogously, the fact that (L̃Λ, D1(L̃Λ)) is a generator of (ŨΛ
t )t≥0 gives us

∣∣∣∣∣

∣∣∣∣∣Ũ
Λ
t F −

(
t

n
L̃Λ − 11

)−n

F

∣∣∣∣∣

∣∣∣∣∣ → 0, n →∞, for all F ∈ LΛ
1 . (24)
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As was shown before, there exists ε > 0 such that for any real ζ > ε and any
F ∈ LΛ

1

(
L̃Λ − ζ11

)−1
F−(LΛ − ζ11)−1 F =

(
L̃Λ − ζ11

)−1 [
LΛ − L̃Λ

]
(LΛ − ζ11)−1 F.

The function Fζ := (LΛ − ζ11)−1 F ∈ K D(L̂Λ). Hence,
[
LΛ − L̃Λ

]
Fζ = 0.

The latter fact means that
∣∣∣∣∣

∣∣∣∣∣Ũ
Λ
t F −

(
t

n
L̃Λ − 11

)−n

F

∣∣∣∣∣

∣∣∣∣∣ =

=

∣∣∣∣∣

∣∣∣∣∣Ũ
Λ
t F −

(
t

n
LΛ − 11

)−n

F

∣∣∣∣∣

∣∣∣∣∣ → 0, n →∞, for all F ∈ LΛ
1 . (25)

The convergence (23) and (24) imply the assertion of the proposition. ¥

Corollary 6.1 Lemma 6.4 implies that for any moment of time t ≥ 0

UΛ
t F ≥ 0, for all F ≥ 0 in L1(Γ, πΛ, ∅). (26)

Let t ≥ 0 and G ∈ Bbs(Γ0) be arbitrary and fixed. Suppose that N ′ ∈ N
and Λ′ ∈ Bb(Rd) are such that

G ? G ¹
Γ0\tN′

n=0Γ
(n)

Λ′
= 0.

Then, K(G ? G) = |KG|2 ∈ LΛ
1 for all Λ ∈ Bb(Rd), Λ ⊃ Λ′. Moreover,

PΛ|KG|2 = |KG|2.
Hence, the left-hand side of (22) for any Λ ∈ Bb(Rd), Λ ⊃ Λ′ is equal to

the following expression
〈〈

ÛΛ
t (C, β, κ) ◦ PΛ(G ? G), k

〉〉
=

∫

Γ
KÛΛ

t (G ? G)(γ)µk(dγ) =

=
∫

Γ
UΛ

t K(G ? G)(γ)µk(dγ) =
∫

ΓΛ

UΛ
t |KG|2(γ)µk

Λ(dγ),

where µk
Λ is a projection of µk on ΓΛ. Let us mention that measure µk is

locally absolutely continuous with respect to Poisson measure π. Therefore,

〈〈
ÛΛ

t (C, β, κ) ◦ PΛ(G ? G), k
〉〉

=
∫

ΓΛ

UΛ
t |KG|2(γ)

dµk
Λ

dπΛ
(γ)πΛ(dη).

Corollary 6.1 implies that there exist set S ⊂ Γ, πΛ,∅(S) = 0 such that for
all γ ∈ Γ \ S:

UΛ
t |KG|2(γ) ≥ 0.
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But πΛ, ∅ is absolutely continuous with respect to πΛ. Furthermore, the cor-
responding Radon-Nikodim derivative is positive almost surely with respect
to πΛ. Hence, πΛ(SΛ) = 0, where SΛ is a projection of the set S to ΓΛ, and

〈〈
ÛΛ

t (C, β, κ) ◦ PΛ(G ? G), k
〉〉

=
∫

ΓΛ\SΛ

UΛ
t |KG|2(γ)

dµk
Λ

dπΛ
(γ)πΛ(dη) ≥ 0.

The latter proof the assertion of Lemma 6.5. ¥
The result obtained in Lemma 6.5 and fact about characterization of

correlation functions from [8] imply the following corollary.

Corollary 6.2 Let positive constants C, κ and β which satisfy (15) be ar-
bitrary and fixed. Let k ∈ KC, β be such that 〈〈G ? G, k〉〉 ≥ 0, for any
G ∈ Bbs(Γ0). Then for any t ≥ 0 there exists unique measure µt ∈ MC, β

whose correlation function is Û?
t (C, β, κ)k.

Let us denote in Corollary 6.2 the evolution of the measure µ in time by
U?

t (C, β, κ)µ := µt. One can easily show that (U?
t (C, β, κ))t≥0 is a semigroup

on MC, β. This leads us directly to the construction of the non-equilibrium
Markov process (or rather Markov function) on Γ.

Theorem 6.1 Suppose that conditions (I) and (P) are satisfied. For any
triple of positive constants C, κ and β which satisfy (15) and any µ ∈MC, β

there exists Markov process Xµ
t ∈ Γ with initial distribution µ associated

with generator Lβ, κ.

Proof. Let n ∈ N, functions 0 ≤ F0, F1, . . . , Fn ∈ L∞(Γ) and moments
of time 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn be any and fixed. Then there exists a
process, defined on some probability space (Ω, F , P ), the finite-dimensional
distribution of which is given by the following formula:

∫

Ω
F0(X

µ
t0

) . . . Fn(Xµ
tn)dP :=

∫

Γ
dFn . . . U?

t1−t0(C, κ, η)(F0µ)

Eventually, we have constructed the non-equilibrium Markov process. ¥
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Glauber and Kawasaki dynamics of continuous particle systems.
Preprint, arXiv math.PR/0503042

[13] Yu. G. Kondratiev, R. Minlos, and E. Zhizhina, One-particle
subspaces of the generator of Glauber dynamics of continuous
particle systems. Rev. Math. Phys., 16, No.9, (2004) 1-42.

[14] T. Kuna, Studies in Configuration Space Analysis and Applica-
tions Ph. D. thesis, Bonn University, 1999.

22



[15] A. Lenard, States of classical statistical mechanical systems of
infinitely many particles. I, Arch. Rational Mech. Anal. 59 (1975)
219-239.

[16] A. Lenard, States of classical statistical mechanical systems of in-
finitely many particles. II, Arch. Rational Mech. Anal. 59 (1975)
241-256.

[17] T. M. Liggett, Interacting Particle Systems, Springer-Verlag,
1985.

[18] C. Preston, Random Fields, Lecture notes in Mathematics,
Vol.534, (Berlin Heidelberg, New York: Springer, 1976).

[19] C. Preston, Spatial birth-and-death processes, in Proceedings of
the 40th Session of the International Statistical Institute (War-
saw, 1975) 2, Bull. Inst. Internat. Statist. 46 (1975) 371–391.

[20] M. Reed, B. Simon, Methods of modern mathematical
physics, 2. Fourier Analysis, Self-Adjointness, (New York,
London: Academic Press, 1972).

[21] D. Ruelle, Statistical Mechanics (New York, Benjamin, 1969).

[22] D. Ruelle, Superstable interactions in classical statistical me-
chanics, Commun. Math. Phys. 18 (1970) 127-159.

23


