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Nonequilibrium Green’s Function Treatment of
Phonon Scattering in Carbon-Nanotube Transistors

Siyuranga O. Koswatta, Sayed Hasan, Mark S. Lundstrom, Fellow, IEEE,
M. P. Anantram, and Dmitri E. Nikonov, Senior Member, IEEE

Abstract—We present a detailed treatment of dissipative quan-
tum transport in carbon-nanotube field-effect transistors (CNT-
FETs) using the nonequilibrium Green’s function formalism. The
effect of phonon scattering on the device characteristics of CNT-
FETs is explored using extensive numerical simulation. Both intra-
and intervalley scattering mediated by acoustic (AP), optical (OP),
and radial-breathing-mode (RBM) phonons are treated. Realis-
tic phonon dispersion calculations are performed using force-
constant methods, and electron–phonon coupling is determined
through microscopic theory. Specific simulation results are pre-
sented for (16,0), (19,0), and (22,0) zigzag CNTFETs, which are
in the experimentally useful diameter range. We find that the
effect of phonon scattering on device performance has a distinct
bias dependence. Up to moderate gate biases, the influence of
high-energy OP scattering is suppressed, and the device current is
reduced due to elastic backscattering by AP and low-energy RBM
phonons. At large gate biases, the current degradation is mainly
due to high-energy OP scattering. The influence of both AP and
high-energy OP scattering is reduced for larger diameter tubes.
The effect of RBM mode, however, is nearly independent of the
diameter for the tubes studied here.

Index Terms—Carbon nanotube, dissipative transport, non-
equilibrium Green’s function (NEGF), phonon scattering, quan-
tum transport, transistor.

I. INTRODUCTION

S INCE THE first demonstration of carbon-nanotube (CNT)
field-effect transistors in 1998 [1], [2], there has been

tremendous progress in their performance and physical under-
standing [3]. Both electronic and optoelectronic devices based
on CNTs have been realized, and the fabrication processes
have been optimized. Ballistic transport in CNTs has been
experimentally demonstrated for low-bias conditions at low
temperatures [4], [5]. High-performance CNT transistors op-
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erating close to the ballistic limit have also been reported
[6]–[8]. The experimentally obtained carrier mobilities are on
the order of 104 cm2/V · s [9], [10], so exceptional device
characteristics can indeed be expected. Current transport in long
metallic CNTs, however, is found to saturate at ∼25 µA at high
biases, and the saturation mechanism is attributed to phonon
scattering [11]. On the other hand, for short length metallic
tubes, the current is found not to saturate but to increase
well beyond the above limit [12], [13]. Nevertheless, carrier
transport in these shorter tubes is still influenced by phonon
scattering and warrants a detailed physical understanding of
the scattering mechanisms due to its implications on device
characteristics for both metallic and semiconducting CNTs.

There have been many theoretical studies on the calcula-
tion of carrier scattering rates and mobilities in CNTs using
semiclassical transport simulation based on the Boltzmann
equation [14]–[20]. Similarly, phonon-mode calculations for
CNTs have also been performed with varying degrees of
complexity: continuum and force-constant models [21]–[23] to
first-principle-based methods [24]–[26]. The determination of
electron–phonon (e–ph) coupling strength is performed using
tight-binding calculations [27]–[29] as well as first-principle
techniques [30]. It has been shown, however, that the influence
of phonon scattering on device performance depends not only
on the phonon modes and e–ph coupling but also on the
device geometry [31], [32]. Therefore, in order to ascertain
the impact of phonon scattering on device performance, the
aforementioned calculations should be done in the context of
specific device geometry. To that end, the phonon scattering
in CNT transistors has been treated using the semiclassical
Boltzmann transport to determine its effects on device charac-
teristics [31], [33]. Semiclassical transport, however, can fail
to rigorously treat important quantum–mechanical effects, such
as band-to-band tunneling, that have been deemed important in
these devices [34]–[36]. Therefore, a device simulator based on
dissipative quantum transport that rigorously treats the effects
of phonon scattering will be essential in properly assessing
the CNT transistor characteristics and in gaining a deeper
understanding of carrier transport at the nanoscale.

The nonequilibrium Green’s function (NEGF) formalism
has been employed to describe the dissipative quantum trans-
port in nanoscale devices [37]–[39]. Diverse structures for
the conducting channel required nontrivial variations on the
NEGF approaches to the dissipative quantum transport. Phonon
scattering has been studied in resonant tunneling devices [40],
[41], in molecules [42], and in organic nanostructures [43]. The
effect of e–ph interaction in silicon nanowire transistors in the

0018-9383/$25.00 © 2007 IEEE
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effective mass approximation has been studied in [44] and [45].
The NEGF formalism has also been used in treating the ef-
fects of phonon scattering in CNT Schottky barrier transis-
tors [46], [47]. It has been successfully used in investigating
the impact of phonon scattering and in exploring interesting
transport mechanisms such as phonon-assisted inelastic tunnel-
ing in CNT metal–oxide–semiconductor field-effect transistors
(MOSFETs) with doped source and drain contacts (hereafter,
simply referred to as CNTFETs) [32], [34]–[36]. The NEGF
simulation of ballistic transport in CNTFETs is reported in [48].
Here, we extend the previous work [48] and present the detailed
simulation technique employed for the treatment of phonon
scattering in them.

The treatment of quantum transport in this paper is based
on the atomistic-scale tight-binding description [21]. Unlike
the effective mass approximation, the bandstructure in this
approach is not taken from empirical data, but it is obtained
from the structure’s Hamiltonian, including subbands of both
valence and conduction bands. In addition, the band-to-band
tunneling (which limits the OFF-current for CNTFETs) is nat-
urally obtained from this approach but would be absent in the
effective mass approach. The objective of this paper is to give a
comprehensive description of the method used in [32], [34]–
[36] and to discuss the results of the simulation in greater
detail. The rest of this paper is organized as follows. Section II
describes the tight-binding scheme, the self-consistent electro-
statics, and the treatment of e–ph coupling for NEGF modeling
of the CNTFETs. Section III summarizes the numerical pro-
cedures used for the simulation of phonon scattering in the
self-consistent Born approximation. Section IV, followed by
the conclusion in Section V, has detailed simulation results
and discusses the impact of phonon scattering on CNTFET
characteristics. It compares the diameter dependence of the
effect of phonon scattering in (16,0), (19,0), and (22,0) zigzag
CNTs [i.e., mod(n−m, 3) = 1 type], which are in the exper-
imentally useful diameter range (1.2–1.8 nm) below which the
contact properties degrade and above which the bandgap is too
small for useful operation [49].

II. METHOD

A. Treatment of Transport by NEGF

A detailed description of the NEGF modeling of ballistic
transport in CNTFETs is described in [48]. Here, we present
a brief overview of that device model for the sake of complete-
ness. The device Hamiltonian used in this paper is based on the
atomistic nearest neighbor pz-orbital tight-binding approxima-
tion [21]. The device geometry, which is shown in Fig. 1(a), is
a CNT MOSFET with doped source and drain regions (LSD)
and a cylindrical wrap-around metallic gate electrode over the
intrinsic channel region (Lch). The gate oxide with thickness
tOX covers the full length of the tube. We employ artificial
heavily doped extension regions Lext. They do not influence
the transport in the working part of the transistor but are useful
for better numerical convergence purposes when phonon scat-
tering is present (however, they are not necessary for ballistic
simulations). The cylindrical geometry of this device ensures
symmetry in the angular direction, thus drastically simplifying

Fig. 1. (a) Device structure with wrap-around gate. (b) NEGF model with
coupling to the phonon bath. (c) Mode-space Hamiltonian.

the mode-space treatment of electron transport [48], [50]. It also
permits the treatment of self-consistent electrostatics using a 2-
D finite difference method [48]. The source and drain electrodes
are treated as quasi-continuum reservoirs in thermal equilib-
rium and are modeled by the contact self-energy functions
as in [48].

Note that, in this paper, we use the notation convention for
the NEGF method which is more intuitive for device applica-
tions and is based on Datta’s book [37]. Another is traditional
in condensed matter physics and is exemplified by [38]. The
conversion between these equivalent notations is specified in
[57, Appendix A].

The NEGF model of the CNTFET used for transport simula-
tions is shown in Fig. 1(b). Here,Hpz is the device Hamiltonian,
and the self-energy functions ΣS/D represent the semiinfinite
ideal source/drain contacts. Σscat is the self-energy for the
e–ph interaction, and one sets Σscat = 0 for the ballistic ap-
proximation. A detailed specification of Σscat is presented later
in Section II-D. Finally, the retarded Green’s function for the
device in matrix form is given by [37]

G(E) =
[
(E + iη+)I −Hpz − Σ(E)

]−1
(1)

where η+ is an infinitesimal positive value, and I is the identity
matrix [37]. The self-energy contains contributions from all
mechanisms of relaxation, which are the source and drain
electrodes, and from scattering [37]

Σ(E) = ΣS(E) + ΣD(E) + Σscat(E). (2)

Note that, in (2), the self-energy functions are, in general,
energy dependent.

In the mode-space treatment of an (n, 0) zigzag CNT, the
dependence of the electronic state on the angle along the tube’s
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circumference ϕ is expanded in a set of circular harmonics
exp(imϕ) with the angular quantum number m. It spans the
integer values of 1 to 2n or, equivalently, −n+ 1 to n. The
integer values ofm outside this range would produce equivalent
harmonics at the crystal lattice sites. The total Hamiltonian
splits into independent matrices for subbands associated with
each value of m [48], giving rise to a 1-D Hamiltonian with
two-site unit cell, as schematically shown in Fig. 1(c), where
each site corresponds to one of the two nonequivalent real-
space carbon rings, A or B. The period of the zigzag tube
in the longitudinal direction contains four such rings, ABAB,
and has a length of 3acc [21], where acc = 0.142 nm is the
carbon–carbon bond length in graphene. Therefore, the average
distance between rings is

∆z =
3acc

4
. (3)

The diameter of the zigzag nanotube is [21]

dt =
n
√

3acc

π
. (4)

The mode-space transformation procedure of the real-space
atomistic tight-binding Hamiltonian is well described in [48],
and it is not repeated here. The two-site unit cell, as expected,
gives rise to the two subbands corresponding to the conduction
and valence bands. The Hamiltonian matrix for the subbands
with angular quantum number m in an (n, 0) zigzag CNT is
then given by [48]

Hpz =




U1 b2m

b2m U2 t 0
t U3 b2m

. . .
0 t UN−1 b2m

b2m UN




N×N

(5)

where b2m = 2t cos(πm/n), t ≈ 3 eV is the nearest neighbor
hopping parameter, and N is the total number of carbon rings
along the device. Here, the diagonal elements Uj correspond
to the on-site electrostatic potential along the tube surface. All
electronic subbands in a CNT are fourfold degenerate: due to
the two spin states and the twofold valley degeneracy [21]. The
valley degeneracy comes from the two subbands with the same
energy dispersion but with different m-values. Each subband
can be represented as a cut of the graphene 2-D Brillouin zone
by a line with a constant momentum ky . In this paper, we
equate momentum with wavevector, having the dimension of
inverse length. The cuts closest to the K-points of graphene
correspond to the lowest energy conduction subbands as well as
the highest energy valence subbands and correspond in zigzag
tubes to angular momenta mL1 = round(2n/3) and mL2 =
round(4n/3).

Level broadening can be defined as follows[37]:

Γ(E) ≡ i
[
Σ(E) − Σ†(E)

]
= Σin(E) + Σout(E) (6)

where Σ† represents the Hermitean conjugate of Σ matrix
defined by (2). Here, Σin/out are the in/out-scattering functions

[see (9) and (10)]. The same relations apply separately to each
mechanism of relaxation. For a layered structure like the CNT,
the source self-energy function ΣS has all its entries zero except
for the (1,1) element, i.e. [48],

ΣS(i 	= 1, j 	= 1) = 0 (7)

and

ΣS(1,1) =αsource −
√
α2

source − t2

αsource =
(E − U1)2 + t2 − b2

2m

2(E − U1)
. (8)

Similarly, ΣD has only its (N,N) element nonzero, and it is
given by equations similar to (7) and (8) with U1 replaced
by UN . As mentioned earlier, ΣS/D self-energies rigorously
capture the effect of semiinfinite contacts on the device. The
presence of e–ph scattering modifies the contact self-energies,
as described, e.g., in [51] and [52]. With this, we can define the
in/out-scattering functions for contact coupling

Σin
S/D(E) = ΓS/D(E)f

(
E − EF

S/D

)
(9)

Σout
S/D(E) = ΓS/D(E)

[
1 − f

(
E − EF

S/D

)]
(10)

where f(E) is the Fermi distribution, and EF
S/D denotes the

source and drain Fermi energies, respectively. The in/out-
scattering functions for e–ph interaction are discussed later in
Section II-D. The electron and hole correlation functions are
then given by

Gn(E) =GΣinG† (11)

Gp(E) =GΣoutG† (12)

where the energy dependence of the Green’s function and
the in/out-scattering functions is suppressed for clarity. The
spectral function is [37]

A(E) ≡ i
(
G(E) −G†(E)

)
= Gn(E) +Gp(E). (13)

Note that the electron and hole correlation functions
G

n/p
i,j (E,m) are the matrices defined in the basis set of ring

numbers i, j and subbands m (we will imply the last index in
the rest of this paper). Thus, the diagonal elements Gn/p

j,j (E,m)
correspond to the energy density of carrier occupation at those
basis sites (single carbon ring, A or B, in a specific subband)
with a given energyE. Therefore, the total electron/hole density
(per unit length) at a site zj is given by

n(zj) =
∑
m,s

1
∆z

+∞∫
−∞

Gn
j,j(E,m)

2π
dE (14)

p(zj) =
∑
m,s

1
∆z

+∞∫
−∞

Gp
j,j(E,m)

2π
dE (15)

where summation is performed over the spin and subband
variables, and it produces the degeneracy factor of 4 (for each
nonequivalent subband). In the view of (13), one recognizes
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that the spectral function is proportional to the density of
states which is traditionally defined [53] to include the spin
summation but is separately taken for each subband

g1D(E, zj) =
Aj,j(E,m)

π∆z
. (16)

Finally, the current flow from site zj to zj+1 in the near-
est neighbor tight-binding scheme can be determined from
[38] and [39]

Ij→j+1 =
∑
m,s

ie

�

+∞∫
−∞

dE

2π

[
Hj,j+1(m)Gn

j+1,j(E,m)

− Hj+1,j(m)Gn
j,j+1(E,m)

]
(17)

wherein the nondiagonal terms of the Hamiltonian (5) contain
only the contributions of hopping. The aforementioned equa-
tion is a general relationship, in that it is valid even under
dissipative transport. Under ballistic conditions, however, (17)
further simplifies (for each nonequivalent subband) to

I =
4e
�

+∞∫
−∞

dE

2π
T (E)

[
f
(
E − EF

S

)
− f

(
E − EF

D

)]
(18)

with the transmission coefficient T (E) given by

T (E) = Trace
[
ΓS(E)G(E)ΓD(E)G†(E)

]
. (19)

Equation (19) is the famous Landauer equation that is widely
used in mesoscopic transport [37].

One can better understand the bandstructure of CNTs by
solving for the eigenvalues of the Hamiltonian (5) for zero
external potential and, thereby, obtaining [48] the energy dis-
persion relations E(kz) versus the momentum along the length
of the tube for each subband. For the lowest conduction and the
highest valence subbands close to the K-points, the graphene
band edge is approximately conic, thus(

2E
Eg

)2

= 1 +
(
kz

∆k

)2

(20)

with the bandgap

Eg = 2νF �∆k (21)

and the distance to the K-point of

∆k =
2

3dt
. (22)

The velocity of carriers in the band is

ν =
dE

�dkz
. (23)

Far enough from the band edge, the velocity tends to the
constant value

νF =
3acct

2�
≈ 106 m/s. (24)

The 1-D density of states, including spin summation but only
one subband (valley), can thus be expressed as

g1D(E) =
2

π�ν(E)
(25)

or, in other terms

g1D(E) =
2

π�νF
· |E|√

E2 − (Eg/2)2
. (26)

B. Poisson’s Equation

This section summarizes the implementation of self-
consistent electrostatics in our simulation. The diagonal entries
of the Hamiltonian in (5) contain the electrostatic potential on
the tube surface, which thereby enters the NEGF calculation
of charge distribution in (14) and (15). On the other hand,
the electrostatic potential and the charge distribution are cou-
pled through the Poisson’s equation as well, leading to the
Poisson–NEGF self-consistency requirement. The 2-D Poisson
equation for the cylindrical transistor geometry in Fig. 1(a) is

∇2U(r, z) = −ρ(r, z)
ε

. (27)

Here, ρ(r, z) is the net charge density distribution which in-
cludes dopant density as well. At this point, it should be noted
that, even though (14) and (15) give the total carrier densities
distributed throughout the whole energy range, what we really
need in determining the self-consistent potential on the tube
surface Uj ≡ U(r = rCNT, zj) is the induced charge density
(rCNT = CNT radius). This can be determined by performing
the integrals in (14) and (15) in a limited energy range defined
with respect to the local charge neutrality energy EN [48],
[54]. In a semiconducting CNT, due to the symmetry of the
conduction and valence bands, EN is expected to be at the
midgap energy. Finally, the induced charge density at site zj

can be calculated from [48]

Qind(zj) =
4

∆z

×


(−e)

+∞∫
EN (j)

Gn
j,j(E)
2π

dE + (+e)

EN (j)∫
−∞

Gp
j,j(E)
2π

dE


 (28)

where the first and second terms correspond to the induced
electron and hole densities, respectively, with charge of the
electron e.

Knowing the induced chargeQind, the net charge distribution
ρ(r, z) is given by

ρ(r = rCNT, zj) =Qind(zj) +N+
D −N−

A (29)

ρ(r 	= rCNT, z) = 0 (30)

where N+
D and N−

A are the ionized donor and acceptor con-
centrations, respectively. Here, it is assumed that the induced
charge and the dopants are uniformly distributed over the CNT
surface. Finally, (27) is solved to determine the self-consistent
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electrostatic potential Uj along the tube surface. The finite
difference solution scheme for the 2-D Poisson equation is
described in [48]. The calculated potential Unew

j gives rise
to a modified Hamiltonian (5), eventually leading to the self-
consistent loop between the electrostatics and the quantum
transport.

Even though the self-consistent procedure that we have
just outlined appears conceptually straightforward, it has poor
convergence properties. Therefore, a nonlinear treatment of the
Poisson solution is used in practice, as explained in [38] and
[55], in order to expedite the electrostatic convergence. The
convergence criterion is used in this process to monitor the
maximum change in the potential profile between consecutive
iterations, i.e., max(|Uold

j − Unew
j |) ≤ U tol, where the toler-

ance value U tol is normally taken to be 1 meV.

C. Phonon Modes

The parameters of the phonons are obviously determined by
the structure of the nanotube lattice. The 1-D mass density of
an (n, 0) nanotube is

ρ1D =
mCn

∆z
(31)

wheremC is the mass of a carbon atom. The energy of a phonon
of momentum q (in the unconfined dimension) is �ωq. The
index of the phonon subband l is implicitly combined with the
momentum index here. The half amplitude of vibration for one
phonon in a tube of length L is [53]

aq =

√
�

2ρ1DLωq
. (32)

For the reservoir in a thermal equilibrium at temperature T , the
occupation of modes is given by the Bose–Einstein distribution

nq =
(

exp
(

�ωq

kBT

)
− 1

)−1

. (33)

As discussed earlier, the electron states in semiconducting
CNTs have a twofold valley degeneracy with the lowest energy
subbands having angular quantum numbers mL1 and mL2.
The e–ph scattering is governed by energy and momentum
conservation rules. Thus, as shown in Fig. 2(a), electrons can
be scattered within the same subband (intravalley), where they
do not change their angular momentum, and such scattering is
facilitated by zone-center phonons having zero angular momen-
tum (l = 0). As shown in Fig. 2(b), it is also possible to have
an intervalley scattering mediated by zone-boundary phonons
having angular quantum number l = |mL1 −mL2|. There can
also be scattering to higher energy subbands assisted by phonon
modes with l 	= 0 and l 	= |mL1 −mL2| [14], [18]; however,
we do not discuss results for such processes in this paper.

We have performed phonon dispersion calculations using the
force-constant methods described in [21] and [56]. As a result
of this analysis, the matrix element for the e–ph interaction is
expressed via the deformation potential J1 = 6 eV/Å and the

Fig. 2. Lowest energy degenerate subbands in a CNT corresponding to K
and K′ valleys of 2-D graphene Brillouin zone. (a) and (b) show intra- and
intervalley scattering processes, respectively.

Fig. 3. Energy dispersion for phonon modes in a (16,0) CNT. (a) Zone-
center phonons that allow intravalley scattering. (b) Zone-boundary phonons
that allow intervalley scattering. Modes that effectively couple to the electrons
are indicated by dashed circles. Zone-boundary phonons are composed of a
mixture of fundamental polarizations.

dimensionless matrix element |Mq| as follows: |Kq| = J1|Mq|.
Zone-center and zone-boundary phonon dispersions for a (16,0)
zigzag CNT are shown in Fig. 3(a) and (b), respectively. It is
shown that the representation of phonon modes according to
fundamental polarizations, such as longitudinal (L), transverse
(T ), and radial (R), can only be done for the zone-center
modes, as indicated in Fig. 3(a). On the other hand, the zone-
boundary modes tend to be comprised of a mixture of such
fundamental polarizations, as the ∼180-meV mode highlighted
in Fig. 3(b), which is mainly a combination of longitudinal
optical (LO) and transverse acoustic (TA) polarizations. It
should also be noted that the frequency of the radial breathing
mode (RBM) calculated here is in very good agreement with
the relationship derived from ab initio calculations

�ωRBM ≈ 28 meV/dt (34)

where dt is the CNT diameter in nanometers [24], [25], [30].
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The Hamiltonian of e–ph interaction in a general form is [53]

V =
∑

q

Kqaq

(
bqe

−iωqt+iqr + b†qe
iωqt−iqr

)
(35)

where b†q and bq are the creation and annihilation operators
for phonons in the mode q. The summation over momenta is
generally defined via an integral over the first Brillouin zone

∑
q

=
(
L

2π

)D ∫
dDq (36)

where D is the number of unconfined dimensions. For CNTs,
D = 1, and the limits of the integral are ±π/(3acc), as follows
from (3).

The e–ph coupling calculations have also been carried out,
as described in [27], in conjunction with the dispersion calcu-
lations in order to account for the mode polarization effect on
the e–ph coupling value [56]. We find that only a few phonon
modes effectively couple to the electrons. As highlighted in
Fig. 3(a), out of the zone-center modes, only the LO (190 meV),
LA, and RBM have sufficient coupling, whereas, from zone-
boundary modes, only the 180-meV LO/TA mode has signifi-
cant coupling. Even though we have shown phonon dispersions
for a large section of the 1-D Brillouin zone, only the ones close
to the zone center (i.e., q ≈ 0) are involved in electron transport
[16]. Within that region of the Brillouin zone, all the optical
modes are found to have constant energy dispersion, while the
acoustic mode has a linear dispersion. Thus, in this paper, all
the relevant optical modes for electron transport are considered
dispersionless with constant energy �ωOP, and the zone-center
LA mode is taken to be linear with ωAP = νaq relationship,
where νa is the sound velocity of that mode. The matrix element
of interaction for acoustic phonons (APs) is approximated by a
linear function |Kq| = K̃a(l)q. In this paper, we take the matrix
elements as inputs and describe the general method of treatment
of the e–ph interaction in nanotubes for both the optical (OP)
and AP modes.

D. Electron–Phonon Scattering

As derived in the Appendix, the in/out-scattering functions
for e–ph scattering in a ring j from subband m′ to sub-
band m are

Σin
scat(j, j,m,E) =D0(nω + 1)Gn(j, j,m′, E + �ω)

+D0nωG
n(j, j,m′, E − �ω) (37)

Σout
scat(j, j,m,E) =D0(nω + 1)Gp(j, j,m′, E − �ω)

+D0nωG
p(j, j,m′, E + �ω). (38)

The imaginary part of self-energy is

Σi
scat(E) = − i

2
Γscat(E) = − i

2

[
Σin

scat(E) + Σout
scat(E)

]
.

(39)

The real part of self-energy is manifested as a shift of energy
levels and is computed by using the Hilbert transform [37]

Σr
scat = P

∫
dE ′

2π
Γscat(E ′)
E − E ′ . (40)

In this paper, we neglect the real part of e–ph self-energy in
order to simplify the computations and because the estimates
suggest small influence of the real part. For elastic scattering,
i.e., in case it is possible to neglect the energy of a phonon, the
in/out-scattering functions are

Σin
scat(j, j,m,E) =DelG

n(j, j,m′, E) (41)

Σout
scat(j, j,m,E) =DelG

p(j, j,m′, E). (42)

In this case, there is no need to neglect the real part of self-
energy, and its complete expression is

Σscat(j, j,m,E) = DelG(j, j,m′, E). (43)

For the OP scattering, the coupling constant is (see the
Appendix)

D0 =
�|K0|2

2ρ1Dω0∆z
. (44)

For the AP scattering, the coupling constant is

Del =
K̃2

akBT

ρ1Dν2
a∆z

. (45)

In the Appendix, we provide the justification in using only the
diagonal terms of the self-energy and in/out-scattering func-
tions. We have also made the connection between the in/out-
scattering functions in the coordinate space and the traditionally
considered scattering rates in the momentum space (see [57,
Appendix C]).

III. NUMERICAL TREATMENT OF DISSIPATIVE TRANSPORT

Here, we summarize the overall simulation procedure used in
this paper. Throughout this paper, we encounter many energy
integrals such as (17) and (28). The use of a uniform energy
grid becomes prohibitive when sharp features such as quantized
energy states need to be accurately resolved. Therefore, an
adaptive technique for energy integrations is used based on
the quad.m subroutine of Matlab programming language (for
the algorithm, see [58]). The treatment of phonon scattering is
performed using the self-consistent Born approximation [38],
[39]. In that, we need to treat the interdependence of the device
Green’s function (1) and the scattering self-energy (2) self-
consistently. The treatment of the OP scattering is presented
first, followed by that for the AP scattering.

A. Treatment of OP Scattering

The determination of in/out-scattering functions (37) and
(38) for the OP scattering requires the knowledge of the
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TABLE I
PHONON ENERGY AND e–ph COUPLING PARAMETERS FOR THE CNTS USED IN THIS PAPER

electron and hole correlation functions, specifically, the energy-
resolved diagonal elements of these functions G

n/p
j,j (E). It

should be noted that only the diagonal elements are needed
since we take the scattering self-energy functions to be diagonal
in the local interaction approximation [38], [39]. With that, we
use the following procedure to determine G(E) and Σscat(E)
self-consistently.

1) Start with the known energy-resolved Gn/p
j,j distributions.

Ballistic distributions are used as the starting point.
2) Determine Σin

scat(E), Σout
scat(E), and Σscat(E) using

(37)–(39), respectively, at a given energy E.
3) Determine new G(E) using (1).
4) Now, determine new Gn(E) and Gp(E) from (11) and

(12), respectively.
5) Repeat steps 2) through 4) for all energies, and build new

G
n/p
j,j distributions.

6) Repeat steps 1) through 5) until the convergence criterion
is satisfied. We use the convergence of the induced carrier
density (28) as the criterion.

In the aforementioned calculations, there is a repetitive need
for the inversion of a large matrix (1), which can be a computa-
tionally expensive task. However, we only need a few diagonals
of the eventual solution, such as the main diagonal of Gn/p

for the calculation of scattering and carrier densities, and the
upper/lower diagonals of Gn for the calculation of current
in (17). The determination of these specific diagonals, in the
nearest neighbor tight-binding scheme, can be performed using
the efficient algorithms given in [59]. A Matlab implementation
of these algorithms can be found in [60]. Finally, it should
be noted that the overall accuracy of the Born convergence
procedure previously described is confirmed at the end by
observing the current continuity throughout the device (17).

B. Treatment of AP Scattering

Similar to the aforementioned method, the AP scattering is
treated using the following procedure.

1) Start with the known energy-resolved Gn/p
j,j distributions.

Ballistic distributions are used as the starting point.

2) Determine Σin
scat(E), Σout

scat(E), and Σscat(E) using
(41)–(43), respectively, at a given energy E.

3) Determine new G(E) using (1).
4) Now, determine newGn(E) andGp(E) at energyE from

(11) and (12), respectively.
5) Repeat steps 2) through 4) until the convergence criterion

is satisfied. Here, we use the convergence of Gn(E).
6) Repeat steps 2) through 5) for all energies, and build new

G
n/p
j,j distributions.

7) Repeat steps 1) through 6) until the convergence criterion
is satisfied. We use the convergence of the induced carrier
density (28) as the criterion.

For the case of AP scattering, we have introduced an ad-
ditional convergence loop (step 5) in the list) since, unlike in
inelastic scattering, here the self-consistent Born calculation at
a given energy is decoupled from that at all other energy values.
Similar to the OP scattering, we use the efficient algorithms of
[59] for numerical calculations and confirm the overall accuracy
of the convergence procedure by monitoring current continuity
throughout the device.

IV. RESULTS AND DISCUSSION

Dissipative transport simulations are carried out, as explained
in the previous sections, and the results are compared to that
with the ballistic transport. Here, we first study the effects
of phonon scattering on the CNTFET characteristics using a
(16,0) tube as a representative case. Then, we compare the
diameter dependence using (16,0), (19,0) and (22,0) tubes that
belong to the mod(n−m, 3) = 1 family. The device param-
eters [Fig. 1(a)] used for the simulation of OP scattering are
as follows: Lch = 20 nm, LSD = 30 nm, Lext = 0, tOX =
2 nm (HfO2 with κ = 16), and the source/drain doping NSD =
1.5/nm. This doping concentration should be compared with
the carbon atom density of (4n/3acc) in an (n, 0) zigzag CNT,
which is ∼150/nm in a (16,0) tube. For the simulation of AP
scattering, a heavy-doped extension region is used for better
convergence of the electrostatic solution. In this case, LSD =
20 nm, Lext = 15 nm, NSD = 1.5/nm, and the extension dop-
ing Next = 1.8/nm are used, and all the other parameters
are the same as for the previous case. Except for assisting
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Fig. 4. IDS–VDS for the (16,0) CNTFET under ballistic transport, OP
scattering (all modes together), and AP scattering. High-energy OP scattering
becomes important at sufficiently large gate biases. Until then, AP and RBM
scattering are dominant.

in the convergence procedure, the effect of the heavy-doped
extensions on the device characteristics is negligible. It should
be noted that, under the OP scattering, we consider the impact
of intra-LO, intra-RBM, and inter-LO/TA phonon modes all
together simultaneously (Table I). The intra-LA mode is treated
under the AP scattering separately.

Fig. 4 compares the IDS–VDS results for the (16,0) CNTFET
under ballistic transport and that with the OP and AP scat-
tering. It is shown that phonon scattering can indeed have an
appreciable effect on the device ON-current: At VGS = 0.6 V,
the ON-current is reduced by ∼9% and ∼7% due to the OP
and AP scattering, respectively. The relative importance of the
two scattering mechanisms also shows an interesting behavior.
Up to moderate gate biases, the effect of AP scattering is
stronger (VGS ≤ 0.5 V). At large gate biases, the OP scattering
becomes the more important process (VGS ≥ 0.6 V). This
relative behavior can be better observed in the IDS–VGS results
shown in Fig. 5. Here, it is shown that, up to moderate gate
biases, the AP scattering causes a larger reduction in the device
current compared to the OP scattering. Furthermore, the current
reduction shown in this case for the OP scattering is mainly
due to the low-energy RBM mode [32]. At large gate biases,
however, the effect of OP scattering becomes stronger, reducing
the current by ∼16% from the ballistic level at VGS = 0.7 V.
Previous studies have shown that the strong current degrada-
tion at larger gate biases is due to high-energy OP scattering
processes becoming effective (mainly, the inter-LO/TA and
intra-LO modes) [31], [32]. Nevertheless, the importance of
AP and low-energy RBM scattering should be appreciated since
these might be the relevant scattering mechanisms under typical
biasing conditions of a nanoscale transistor [61].

The relative behavior of OP and AP scattering can be un-
derstood by studying Fig. 6. It shows the energy-position-
resolved current spectrum, which is essentially the integrand of
(17), under ballistic transport and OP scattering. In Fig. 6(a),
it is shown that, under ballistic conditions, carriers injected
from the source reach the drain without losing energy inside
the device region. There exists a finite density of current
below the conduction band edge (EC) which is due to the

Fig. 5. IDS–VGS for the (16,0) CNTFET at VDS = 0.3 V under ballistic
transport, OP scattering (all modes together), and AP scattering. The inset
shows that APs are more detrimental up to moderate gate biases.

Fig. 6. Energy-position-resolved current spectrum for (16,0) CNTFET at
VGS = 0.5 V and VDS = 0.5 V (logarithmic scale). (a) Ballistic and
(b) dissipative transports (all OP modes together). Thermalization near the drain
end by emitting high-energy OPs leaves the electrons without enough energy to
overcome the channel barrier.

quantum–mechanical tunneling. In the presence of OP scatter-
ing, however, it is shown that the carriers near the drain end
relax to low energy states by emitting phonons [Fig. 6(b)]. Nev-
ertheless, up to moderate gate biases, high-energy OP scattering
does not affect the device current due to the following reason.
For such biasing conditions, the energy difference between
the source Fermi level and the top of the channel barrier ηFS

is smaller than the OP energy: ηFS � �ωOP. Therefore, a
majority of the positive going carriers (source → drain) in the
channel region does not experience high-energy OP scattering,
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Fig. 7. Energy-position-resolved electron density spectrum for (16,0)
CNTFET at VGS = 0.5 V and VDS = 0.5 V. (a) Ballistic and (b) dissipative
transports (all OP modes together). Quantized states in the valence band are
broadened and give rise to many phonon-induced sidebands. The interfer-
ence pattern for conduction band states is also broadened compared to the
ballistic case.

except for a minute portion in the high-energy tail of the source
Fermi distribution. On the other hand, when these carriers
reach the drain end, there are empty low-lying states that they
scatter to. After emitting a high-energy OP, however, these
carriers do not have enough energy to surmount the channel
barrier and reach the source region again. Thus, the effect of
high-energy OP scattering on the device current is suppressed
until backscattering becomes effective at larger gate biases for
ηFS ≥ �ωOP. On the other hand, the low-energy RBM phonons
and APs can effectively backscatter at all gate biases. They are
the dominant scattering mechanisms until the high-energy OP
becomes important at large biases [31], [32].

Fig. 7 shows the energy-position-resolved electron density
spectrum, which is essentially the integrand of (14). By ex-
amining Fig. 7(a), one can see that electrons are filled up to
the respective Fermi levels in the two contact regions. In these
regions, a characteristic interference pattern in the distribution
function is observed due to the quantum–mechanical inference
of positive and negative going states [48]. Quantized valence
band states in the channel region are due to the longitudinal
confinement in this effective potential well [48]. In the presence
of OP scattering, a few interesting features are observed in
Fig. 7(b). The interference pattern seen in the contact re-
gions is smeared due to the broadening of energy states by

Fig. 8. Ballisticity (Iscat/Iballist) versus ηFS for (16,0), (19,0) and (22,0)
CNTFETs. (a) With all OP modes together. (b) With AP scattering. ηFS is
defined as the energy difference between the source Fermi level and the channel
barrier [see Fig. 6(b)].

incoherent OP scattering. The electrons near the drain end
relax down to the low-lying empty states, even though they
are less discernible in the linear color scale employed here.
More interestingly, now, we observe a multitude of quantized
valence band states in the channel region. Such states with
energies below the conduction band edge of the drain region are
observed here due to their additional broadening by coupling
to the phonon bath. They were unobservable in the ballistic
case since they lied inside the bandgap regions of the contact
reservoirs that led to zero contact broadening ΓS/D ≈ 0. The
additional low-intensity states observed are the phonon-induced
sidebands of the main quantized levels originating from the
variety of OP modes considered here. Carrier transport through
these quantized states is indeed possible under appropriate
biasing conditions and lead to many interesting properties such
as less than 60-mV/decade subthreshold operation and phonon-
assisted inelastic tunneling (see [34] and [35]).

Fig. 8 explores the diameter dependence of the impact of
phonon scattering in CNTFETs. As mentioned earlier, we
consider the mod(n−m, 3) = 1 type of tubes. Similar trends
in the behavior can be expected for the mod(n−m, 3) = 2
family as well [28], [29]. Here, we compare the ballisticity of
tubes, defined as the ratio between the current under scattering
and the ballistic current (Iscat/Iballist) versus ηFS, defined in
Fig. 6(b). Positive ηFS corresponds to the ON-state of the device
at large positive gate biases, and negative ηFS is for the OFF-
state. The characteristic rolloff of ballisticity under the OP
scattering is shown in Fig. 8(a) [32]. In that, the rolloff is due
to the high-energy OP scattering which is becoming effective at
large gate biases. The ballisticity reduction at small gate biases
is due to the low-energy RBM scattering [32]. In Fig. 8(a),
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it is shown that the impact of high-energy OP scattering de-
creases for larger diameter tubes. This can be easily understood
by noting that the e–ph coupling parameter for these modes
(intra-LO and inter-LO/TA) monotonically decreases with an
increasing diameter (Table I). On the other hand, the impact of
the RBM mode at low gate biases seems to be nearly diameter
independent for the tubes considered here, even though there is
a similar decrease in the e–ph coupling for larger diameter tubes
(Table I). This behavior is due to the concomitant reduction of
energy of the RBM mode at larger diameters that leads to an
increased amount of scattering events, which ultimately cancels
out the overall impact on the device current.

Diameter dependence of AP scattering is shown in Fig. 8(b).
The ballisticity for larger tubes is higher due to the correspond-
ing reduction of the e–ph coupling parameter shown in Table I.
They all show a slight increase in the ballisticity at larger gate
biases due to the majority of the positive going carriers occu-
pying states well above the channel conduction band edge [32].
The backscattering rate is a maximum near the band edge due to
the increased 1-D density of states and decays at larger energies
[14], [16], [18]. It is shown in Fig. 8 that, for all the tubes,
the impact of AP scattering is stronger compared to the OP
scattering until the high-energy modes become effective. Under
typical biasing conditions for nanoscale transistor operation,
ηFS will be limited (ηFS ≤ 0.15 eV), and the transport will be
dominated by the AP and low-energy RBM scattering [61].

V. CONCLUSION

In conclusion, we present here the detailed self-contained
description of the NEGF method to simulate transport of car-
riers in the CNT transistors with the account of both quantum
effects and e–ph scattering. This capability is particularly nec-
essary, since it provides the rigorous treatment in the practically
important limit of intermediate length devices. We outline
our numerical procedure for solution of the NEGF equations
via convergence of several self-consistent loops. Finally, we
display a few of the simulation results obtained by this method,
such as the energy spectra of carrier density and current, and
the current–voltage characteristics. They enable a researcher to
uncover the workings of the quantum phenomena underlying
the operation of carbon-nanotube transistors and to predict their
performance.

APPENDIX

DERIVATION OF THE IN/OUT-SCATTERING

FUNCTIONS FOR THE e–ph INTERACTION

Although the self-energy for the e–ph scattering has been
discussed multiple times, e.g., [37], considerable confusion still
exists about its form and assumptions used in the derivation.
One reason may be the fact that, in device simulation, one
uses Green’s functions and self-energy functions of two coordi-
nate arguments, while the scattering processes are traditionally
formulated in the momentum-dependent and coordinate-
independent representation. The other reason is that the ex-
pression for self-energy looks slightly different for different
material systems. Here, we aim to derive the expression for the

self-energy in a simple but general form and, then, to specify it
for the particular case of 1-D transport in the CNTFETs. Similar
calculations have been presented for III–V devices [38] and Si-
nanowire transistors [44], [45].

The self-consistent Born approximation results in the fol-
lowing in/out-scattering functions for the e–ph interactions
[38], [62]

Σin,out(X1,X2) = Gn,p(X1,X2)Dn,p(X1,X2) (46)

where the argument X = {r,m, t} incorporates the spatial co-
ordinates in the unconfined dimensions, subband/valley index,
and time, respectively. The phonon propagator contains the
average over the random variables of the reservoir designated
by angle brackets

Dn(X1,X2) = 〈V (X1)V (X2)〉
Dp(X1,X2) = 〈V (X2)V (X1)〉 . (47)

The averages of the following operator products in a reser-
voir at thermal equilibrium depend on the phonon-occupation
numbers (33)〈

b†qbq′
〉

= δqq′nq,
〈
bq′b†q

〉
= δqq′(nq + 1) (48)

and all other averages of pair products are zero. On substitution
of the e–ph Hamiltonian (35), it results in

Dn(r1,m1, t1, r2,m2, t2)

=
∑

q

|Kq|2a2
q

[
(nq + 1) exp (iωq(t2 − t1) + iq(r1 − r2))

+ nq exp (iωq(t1 − t2) + iq(r2 − r1))
]
(49)

and a similar expression for Dp(r1, l1, t1, r2, l2, t2). The se-
lection rules for the electron subbands m, m′ and phonon
subbands l are similar as described in Section II-C. Then, we
limit the consideration to stationary situation, i.e., where the
functions depend only on the difference of times t = t2 − t1.
The Fourier transform relative to this time interval produces
energy-dependent in/out-scattering functions (given here for a
specific phonon subband)

Σin(r1, r2,m,E) =D(r1, r2, l, E)(nq + 1)

×Gn(r1, r2,m
′, E + �ωq)

+D∗(r1, r2, l, E)

× nqG
n(r1, r2,m

′, E − �ωq) (50)

Σout(r1, r2,m,E) =D∗(r1, r2, l, E)(nq + 1)

×Gp(r1, r2,m
′, E − �ωq)

+D(r1, r2, l, E)

× nqG
p(r1, r2,m

′, E + �ωq) (51)

where the first term in the expressions corresponds to the
emission of a phonon, and the second one corresponds to the
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absorption of a phonon. The e–ph coupling operator contains
the sum over the phonon momentum that operates on the factors
to the right of it

D(r1, r2, l) =
∑

q

|Kq|2a2
q exp(−iqr). (52)

It depends on the difference of the spatial coordinates r =
r2 − r1. The expressions for the in/out-scattering functions
drastically simplify in the following two cases.

First, for isotropic scattering with phonons of constant energy
(|Kq| ≈ |K0| and ωq ≈ ω0, and they are independent of q). This
is approximately fulfilled for the OPs. In this case, the e–ph
scattering operator reduces to the calculation of a sum

D(r1, r2, l) =
�|K0|2
2ρ1Dω0

π/(3acc)∫
−π/(3acc)

dq

2π
exp(−iqr). (53)

For the distance of integer multiple of the nanotube period r =
j3acc, the integral above

π/(3acc)∫
−π/(3acc)

dq

2π
exp(−iqr) =

{
1/(3acc), j = 0
0, j 	= 0

. (54)

One needs to insert the factor of 4, for the number of rings
in the period, to obtain that the e–ph coupling is a constant
factor (44)

D0 =
�|K0|2

2ρ1Dω0∆z
(55)

and the expression for the in/out-scattering functions (37) and
(38). In addition, a very important conclusion is that the self-
energy and the in/out-scattering functions can be treated as
diagonal in this case. This significantly simplifies the problem
and permits the use of various algorithms of solution of the
matrix equations that are only applicable to three-diagonal
matrices, such as the recursive inversion method [38].

Second case, for elastic scattering, when one can neglect the
energy of a phonon compared to characteristic energy differ-
ences. This is approximately fulfilled for the APs. For this case,
the dependence on the momentum is typically ωq = νa(l)q and
|Kq| = K̃a(l)q, and only phonons with momentum close to
q = 0 have the appreciable occupations, such that

nq ≈ kBT

�ωq
� 1. (56)

Then again, as in (53), the matrix element and the number
of phonon factors prove to be independent of the phonon
momentum and can be taken out of the summation

Σin(r1, r2,m,E) = Gn(r1, r2,m
′, E)

×
π/(3acc)∫

−π/(3acc)

kBT

�ωq

�K̃2
aq

2

2ρ1Dωq

dq

2π
exp (−iqr) + c.c. (57)

to again yield a diagonal in/out-scattering functions (41)
and (42)

Σin(r1, r1,m,E) = 2
kBTK̃

2
a

2ρ1Dν2
a

Gn(r1, r1,m
′, E)

4
3acc

(58)

and the constant elastic e–ph coupling (45). Note an additional
factor of 2 in these expressions because the processes with
emission and absorption of a phonon are now lumped into
one term.

By going beyond the assumption of a constant product of the
coupling factor and the phonon occupation, we can determine
how good the approximation of a diagonal self-energy is. By
representing it as a Taylor series (and we know that it is an even
function)

|Kq|2a2
qnq = |K0|2a2

0n0

(
1 +

q2

q2
(2)

+ · · ·
)

(59)

and examining the second term, we obtain

π/(3acc)∫
−π/(3acc)

dq

2π
· q2

q2
(2)

exp(−iqr)

=



π2/

(
q2
(2)3

4a3
cc

)
, j = 0

2(−1)j/
(
jq2

(2)3
3a3

cc

)
, j 	= 0

. (60)

This can be restated as: The off-diagonal terms of the self-
energy and the in/out-scattering functions have the order of
magnitude of the variation of the product (59) over the first
Brillouin zone. By doing an inverse Fourier transform of (59),
we recognize the parameter q(2) as the inverse characteristic
radius of the e–ph interaction. Thus, the alternative formulation
of the aforementioned criterion is as follows: The self-energy
is diagonal if the corresponding interaction radius is much less
than the crystal lattice size.
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