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Coupled transport phenomena across a gas/liquid interface, relevant for distillation, were studied
by nonequilibrium molecular dynamics simulations. The simulations were set in the context of
bulk irreversible thermodynamics. It was then shown that mole fraction profiles in the liquid
phase and the gas phase of ideal isotope mixtures are linear. For nonideal mixtures, Fick’s law
cannot be applied in the interface region, because the activity coefficients change dramatically
across the interface. Fourier’s law has a constant heat conductivity for both types of liquid
mixtures but not for gas mixtures. The coupling between heat and mass transfer becomes
negligible for distillation in the special case of ideal mixtures with constant molal overflow. In
all other cases, the heat of transfer contributes significantly to the heat flux and causes deviations
from Fourier’s law in the gas phase. This all means that coupled flux equations are needed to
describe distillation and that the properties of the surface are important for a description of the
heat and mass fluxes involved. The value of the heat of transfer has a bearing on the calculation
of the number of theoretical stages in the column. When considered as a function of distance
from the surface, the local entropy production rate has a peak or a shoulder (depending on the
conditions) slightly into the vapor. The entropy production rate in the liquid cannot be neglected
compared to that of the gas. The second law efficiency of distillation was quantified from this
knowledge.

Introduction

The standard process simulation of distillation col-
umns uses the equilibrium stage model. This type of
simulation does not yield the accuracy required for
modern column design and operation when applied to
distillation of multicomponent mixtures and to mixtures
with a chemical reaction (Taylor and Lucia, 1995). A
separation process is by nature a nonequilibrium pro-
cess, so nonequilibrium models for heat and mass
transfer might well give a better description of the
separation. The purpose of this work is to contribute
to the development of nonequilibrium modeling of heat
and mass transfer in distillation.
We shall use the theory of nonequilibrium thermo-

dynamics, as given by de Groot and Mazur (1961) and
Førland et al. (1988), to formulate the necessary and
sufficient fluxes and forces for transport taking place
in the column. The advantage of this theory is that the
variables being used also define the entropy production
rate. The description is therefore suitable for optimiza-
tion procedures based on the second law of thermody-
namics. An optimization criterion, the principle of
equipartition of forces, was already developed on these
grounds (Sauar et al., 1996) and applied to distillation
(Kjelstrup Ratkje et al., 1995; Sauar et al., 1995).
Nonequilibrium thermodynamic theory contains the
main transport coefficients for heat and mass flux
(thermal conductivity and diffusion coefficients), plus
the so-called cross coefficients, relating the heat flux to
the concentration gradient and the mass flux to the
temperature gradient. Since the cross terms couple the
variables, some of which are experimentally very dif-
ficult to obtain, it is a central issue to know when they
can be neglected and when they become significant. In

other words, when can we safely use Fick’s and Fourier’s
laws, and when do they fail? This is one question of
practical importance which can be addressed in the
context of nonequilibrium thermodynamics.
In the modeling of heat and mass transfer in distil-

lation, the two phases have very different transport
properties, and the liquid/vapor interface adds to the
complexity of the system. It is necessary to relate
compositions and temperatures on each side of the
interface, and the role of the interface is crucial in this
respect. Can we, for instance, assume continuity in the
temperature across the interface? Theoretical results
by Bedeaux et al. (1990, 1992) show that this may not
be so on a macroscopic length scale. These authors
discussed how interfaces, which have very different
properties from those of the adjacent bulk phases, affect
the boundary conditions for the bulk phases. Knowl-
edge of this is therefore important for a dynamic
description.
The entropy production rate is defined as the product

sum of all fluxes and their conjugate forces in the
system. Each flux is a linear combination of all inde-
pendent forces. The entropy production rate for separa-
tion of two components across a liquid/vapor interface
can be written as (see, e.g., Kjelstrup Ratkje and
Hafskjold, 1996)

The measurable heat flux, Jq, is given in W m-2, and
the molar flux, Jh

r , is the flux (in mol m-2 s-1) of the
heavy component, h, relative to the light component, l:

where xk is the mole fraction of component k (k ) h, l).

* To whom correspondence should be addressed. Also, the
author changed her last name from Ratkje. Telephone: 47-
7359-4179.Telefax: 47-7359-1676.Email: ratkje@kjemi.unit.no.

θ ) -Jq
∇T
T2

- Jh
r∇Tµh
T

(1)

Jh
r ) Jh -

xh
xl
Jl (2)

4203Ind. Eng. Chem. Res. 1996, 35, 4203-4213

S0888-5885(96)00199-6 CCC: $12.00 © 1996 American Chemical Society



This flux is defined to give Stefan diffusion (Taylor and
Krishna, 1993). For a direct physical interpretation of
the relative molar flux, also see eq 6. Here Jh and Jl
are given with the surface as the frame of reference.
The relative flux, Jh

r , gives a more convenient chemical
force as used before (Kjelstrup Ratkje et al., 1995).
There is a certain degree of freedom in the choice of
fluxes and forces. The entropy production rate is, of
course, invariant to the choice. With the fluxes given
above, the thermal force is ∇(1/T), where T is the
temperature, and the chemical force is -∇T µh/T, where
µh is the chemical potential of h. Subscript T means
that the temperature derivative of the chemical poten-
tial gradient is not taken. It follows from eq 1 that the
number of independent thermodynamic forces is two.
Although the fluxes and forces are vectors, we consider
here only the contributions normal to the interface. We
choose this normal to be the x direction, which gives ∇
) ∂/∂x.
The fluxes of heat and mass in the column are linearly

related to these forces by

The phenomenological coefficients (the l coefficients) are
properties of the system; i.e., their values depend on the
system’s local intensive thermodynamic variables. On-
sager’s reciprocity relation (lhq ) lqh) was confirmed for
a supercritical state by nonequilibrium molecular dy-
namics simulations by Hafskjold and Kjelstrup Ratkje
(1995) for much larger gradients than found in a
distillation column, and we shall assume validity also
in the present case. When the coupling coefficients lhq
and lqh can be neglected, or one of the fluxes is zero, eq
3 and 4 can be recast into the form of Fourier’s and
Fick’s laws (see below).
Standard engineering texts uses the assumption of

constant molal overflow to find the number of theoretical
stages in a McCabe-Thiele diagram (see any textbook
in chemical engineering, e.g., Lydersen, 1983). This
assumption, which means that the number of moles of
liquid entering one stage equals the number of moles
of liquid leaving the same stage, implies operating lines
with constant slopes. In eq 2, constant molal overflow
means Jh ) -Jl (equimolar counterdiffusion). The
enthalpies of vaporization of the components are taken
to be almost the same under constant molal overflow
(Lydersen, 1983). In the general situation, the enthal-
pies are different, and the operating line is bending.
Nonequilibrium thermodynamics does not use the as-
sumption of constant molal overflow a priori, and the
possible bending of the operating line is a consequence
of a significant coupling term in eqs 3 and 4. Nonequi-
librium thermodynamics therefore gives a more general
description of distillation.
The minimum energy needed to separate an isother-

mal mixture is the Gibbs energy of separation, ∆G,
representing a reversible process. The energy needed
in excess of the Gibbs energy is the local entropy
production rate per unit volume, θ, times the absolute
temperature, T, integrated over the column volume, V,
and time, t (Kjelstrup Ratkje et al., 1995). The total
work needed for the separation is then

For reversible conditions, θ is zero. This corresponds
to the condition of zero thermodynamic loss (Dhole and
Linnhoff, 1993). This is a situation of no practical
interest, because such processes are infinitely slow. It
has long been known that close to global equilibrium,
minimum entropy production occurs at steady states
(Prigogine, 1947). In order to obtain a more useful
result, Tondeur and Kvaalen (1987) proposed that the
distribution of the entropy production rate over the
process equipment should be uniform. We have shown
that the entropy production rate will be minimum, for
a given demand on the output, when the forces of eqs 3
and 4 are equipartitioned over the process equipment
(Kjelstrup Ratkje et al., 1995; Sauar et al., 1996). While
special knowledge of the phenomenological coefficients
is not necessary for the direct application of the principle
of equipartition of forces, such knowledge is useful in
finding potential regions of reduction of the entropy
production. In their attempt to numerically estimate
the entropy production of a distillation column, Kjel-
strup Ratkje et al. (1995) used the assumption of
negligible entropy production in the liquid phase as well
as on the surface. Other assumptions, which are not
good for actual columns, were constant phenomenologi-
cal coefficients and area for transfer on each stage. In
the present work, we do not need such assumptions, as
we calculate the entropy production rate directly from
molecular properties. The results obtained can there-
fore be used to discuss the previously used assumptions.
Information about fluxes and forces in eqs 3 and 4

helps us to quantify the energy efficiency of the column
through eq 5. Through the variables and coefficients
of eqs 3 and 4, we know which processes are rate
limiting, and from eq 5, we then know where the energy
is required for separation. In this way, eqs 3-5 are
important for column design and operation: They give
the second law efficiency of the column (through eq 5)
and enable the application of the principle of equipar-
tition of forces.
It is very laborious to measure the transport coef-

ficients for a gas/liquid interface, the forces, the fluxes,
and thus the entropy production rate. This makes
nonequilibriummolecular dynamics simulations (NEMD)
an attractive tool for the study of such systems. In a
recent review (Kjelstrup Ratkje and Hafskjold, 1996),
we analyzed some natural and technical processes that
are characterized by transport of heat and mass, in
terms of NEMD; the basic finding was that the mol-
ecules of the systems distribute in a stationary-state
temperature gradient so as to conduct heat (or mass)
in the most effective way. The systems reported in-
cluded transports of heat and mass both in a binary,
homogeneous mixture and in a one-component system
undergoing a liquid-vapor phase transition (Ikeshoji
and Hafskjold, 1994; Hafskjold and Ikeshoji, 1996).
In this article, we continue the work on nonequilib-

rium thermodynamics and NEMD which are relevant
for distillation. We want to study heat and mass
transfer across the liquid/vapor interface and, in par-
ticular, spatial variations in entropy production rate,
fluxes, and forces. The following questions are of
interest: What are typical variations in temperature
and composition across an interface, given a tempera-
ture gradient across the system? In Fick’s law of
diffusion, the concentration gradient is the driving force
of transport. Is this applicable to the system? What

Jq ) -lqq
∇T
T2

- lqh
∇Tµh
T

(3)

Jh
r ) -lhq

∇T
T2

- lhh
∇Tµh
T

(4)

W ) ∆G + ∫t∫V Tθ dV dt (5)
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are the conditions for application of Fourier’s law? The
coupling coefficients are relatively small in bulk materi-
als (Kincaid et al., 1992; Kincaid and Hafskjold, 1994).
We shall see that the term containing the coupling
coefficient (i.e., the heat of transfer) cannot be neglected
in the expression for heat fluxes in distillation-like
phenomena. How do the entropy production rate and
the conjugate fluxes and forces vary across the interface
in this situation? What are the major contributions to
the entropy production? Can the results support the
assumptions in the numerical analysis of distillation
columns of Sauar and co-workers (1995, 1996)? Which
practical consequences can be seen from the results? Is
the steady-state situation compatible with uniform
distribution of the entropy production (Tondeur and
Kvaalen, 1987)?
This paper starts with a summary of some concepts

from nonequilibrium thermodynamics. We continue
with a short description of the NEMD method before
we give the results of the simulations. Variations of
intensive variables across the interface, fluxes, and
forces for separation of isotope (ideal) mixtures and
nonideal mixtures are reported. NEMD simulation data
of these systems also offer the possibility of extracting
phenomenological coefficients for the bulk and for the
surface as such, and we shall to some extent discuss
the diffusion coefficient and the thermal conductivity.
The molecular interpretation of their values, however,
is outside the topic of the present paper and will be
given later. Finally, we discuss the local entropy
production and the application of the results to analyses
of distillation.

Heat and Mass Transports in a Distillation
Column

In a distillation column, gas is in close contact with
liquid, and the main question we address here is how
the interface influences the transport processes. We
consider a planar interface with infinitely large reser-
voirs of matter and heat both in the gas and liquid
phases. The transport path is chosen from a point in
the bulk gas to a point in the bulk liquid, and we
describe the exchange of components h (heavy) and l
(light) and of heat, between the gas and liquid. The
driving forces are a temperature gradient and a chemi-
cal potential gradient, as in eqs 3 and 4. Component l,
the component with the lowest boiling point, is enriched
at the top of the distillation column.
The relative molar flux of component h is also related

to its velocity by

where vk is the velocity of component k (k ) h, l) relative
to the interface (dimension m s-1) and ch is the molar
concentration of component h (mol m-3). There is no
separation when Jh

r ) 0, which makes this flux a
measure of practical interest.
The heat of transfer, q*, is defined by the coefficient

ratio lqh/lhq and by

The heat of transfer refers to the relative flux, Jh
r ,

according to this equation. The thermal conductivity
is from eqs 3, 4, and 7:

Fourier’s law for the nonuniform mixture is obtained
when the mass flux is zero:

We shall say here that Fourier’s law applies when the
thermal conductivity of eq 9 is constant. Fick’s law
defines the isothermal diffusion coefficient, D:

where c is the total molar concentration of the mixture.
We shall also say that Fick’s law applies when the ratio
Dc/xl is constant. The D as defined here is exactly the
same as the D in the molar reference velocity (de Groot
and Mazur, 1969). For isothermal systems, we have
from eq 4

The isothermal diffusion coefficient, D, is related to the
phenomenological coefficient, lhh, by

where fh is the activity coefficient of the heavy compo-
nent, with activities on a mole fraction basis. We note
at this point that all the factors except the thermody-
namic factor, i.e., the parentheses at the right-hand side
of eq 12, are positive. The thermodynamic factor is also
normally positive (Taylor and Krishna, 1993), but in
extreme cases (like for phase splitting), ∂ ln fh/∂ ln xh
may be smaller than -1, with a negative “diffusion
coefficient” as the result. We shall see that local
conditions near the vapor/liquid interface for a nonideal
mixture is one such case.
In the presence of a temperature gradient, the mass

transport is described by a combination of eqs 4 and 10:

where Rhl is the thermal diffusion factor defined by

We shall use constant mass fluxes, Jh and Jl, in this
work. The separation flux, Jh

r , is not constant, how-
ever. The total heat flux referring to the wall or the
interface, which here is the enthalpy flux, JH, is related
to the measurable heat flux by

where Hk is the partial molar enthalpy of component k.
Conservation of energy means in the stationary state
that the enthalpy flux is constant throughout the
system.
When we eliminate the chemical force ∇Tµh/T from

eq 3 by application of (4), the entropy production rate

Jh
r ) ch(vh - vl) (6)

Jq ) -λ∇T + q*Jh
r (7)

λ ) 1
T2(lqq -

lhqlqh
lhh ) (8)

(Jq)Jhr)0 ) -λ∇T (9)

(Jh
r )∇T)0 ) -Dc

xl
∇xh (10)

(Jh
r )∇T)0 ) -lhh

∇Tµh
T

(11)

D ) lhhR
xl
cxh(1 +

∂ ln fh
∂ ln xh) (12)

Jh
r ) -Dc

xl(xhxlRhl
∇T
T

+ ∇xh) (13)

Rhl ) - T
xhxl

(∇xh∇T)
Jh)Jl)0

(14)

JH ) Jq + HhJh + HlJl (15)
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can be written as

Two of the terms in eq 16 cancel because lhq ) lqh. The
total entropy production rate in the vapor, liquid, and
interface per unit interfacial area is therefore

where the local entropy production is integrated from
across the system, from the bulk gas (g) to the bulk
liquid (l). The entropy production is positive, in agree-
ment with the second law of thermodynamics. Equation
17 expresses that the energy needed in excess of ∆G
(cf. eq 5) increases with increasing superheating of the
vapor (∇T) and with increasing separation flux, Jh

r . It
is reduced by a high mass-transfer coefficient lhh, and
also by a high coupling coefficient, lhq, or heat of
transfer, q*, since in eq 8 the term lhqlqh/lhh reduces the
heat conductivity and thereby the entropy production
rate.
Equation 17 will be used for a discussion of relative

contributions to the entropy production rate. It differs
from eq 1 in the way that it gives a clear separation
between the dissipation by pure heat conduction and
by pure mass transfer. In eq 1, the heat flux in the first
term also contains an effect from the mass flux and vice
versa for the mass flux in the second term.
It is a problem that the transport coefficients for heat

and mass transfer generally are not known. Introduc-
tion of average transport coefficients can simplify the
situation. When we consider serial transports, it is
appropriate to consider the average resistance to the
flux. Since Jh

r is constant across the system, the
average transport coefficient enters as the coefficient
of the second term of eq 17.

where L is the length of the path. The application of
eq 18 facilitates numerical analyses of eq 17. We shall
discuss briefly the possibility of finding such average
coefficients.

Molecular Dynamics Simulations of the
Coupled Transport of Heat and Mass

The basis for our NEMD simulations is described
elsewhere (Ikeshoji and Hafskjold, 1994; Hafskjold et
al., 1993; Hafskjold and Kjelstrup Ratkje, 1995), and
we shall only briefly describe the method here. The
main purpose of the simulations is to study how the
different variables and derived properties vary across
the interface between liquid and vapor. In order to
obtain a sufficient statistical accuracy of computed
results, in particular for the vapor phase, we will have
to use temperature and concentration gradients in the
simulations which exceed the real gradients in a column
by several orders of magnitude. Still we shall see that
useful conclusions can be obtained. The size of the
simulation box is some 35 molecular diameters. This
is a range which barely extends the interface. It can
be regarded to cover the laminar dissipative films in the
bulk vapor and liquid phases, which are described by

eqs 2 and 3. Our results must be understood within
these contexts.
Simulation Method. The MD cell contained 2048

particles, 1024 of each type. The cell was noncubic with
aspect ratios Lx/Ly ) Lx/Lz ) 8 (Lq is the length of the
cell in the q direction), and it had normal periodic
boundary conditions.
The coupled heat and mass transport was generated

as follows: The cell was divided into 64 layers of equal
thickness perpendicular to the x axis. To generate a
heat flux, layers 1 and 64 (counting from one end of the
box) were thermostated to a high temperature TH, and
layers 32 and 33 (in the center of the box) were
thermostated to a low temperature TL. In this way,
there is a heat source at each end of the box and a heat
sink in the center. The high-temperature and low-
temperature regions will be referred to as regions H and
L, respectively. This gave a symmetry plane in the
center of the cell, consistent with periodic boundary
conditions. Periodic boundary conditions are used in
these simulations in order to obtain sufficient accuracy
in the simulation of one liquid/vapor interface. In
addition to giving a heat flux from the warm ends to
the cold center of the cell, the temperature profile also
generated a liquid region in the center with one vapor
region at each side. A snapshot of the configuration is
shown in Figure 1, where components h and l are
represented by black and white circles, respectively. The
liquid phase in the center of the cell with vapor at each
side is clearly seen.
Mass diffusion was generated by particle swapping

from type l to type h in region H and simultaneously
from type h to type l in region L. This gave a surplus
of type h particles in region H and of type l in region L,
with a consequent diffusive mass flux in between.
Finally, a mass flux simulating a net transport from

the vapor to the liquid was generated by moving a
randomly chosen particle of type h from region L to
region H, such that the particle maintained its y and z
coordinates, but the x coordinate was shifted by a value
Lx/2. The particle insertion into layer H was made with
a certain probability given by the Boltzmann factor in
order to avoid large perturbations to the energy of the
system.
Simulation Conditions. The system was a binary

mixture of Lennard-Jones/spline particles (Holian and
Evans, 1983). Twelve cases were studied as specified
in Table 1. In all cases, the Lennard-Jones potential
parameters were equal (σhh ) σhl ) σlh), while the mass
ratios ml/mh were 0.1 and 1 and the parameter ratio
εll/εhh was 1.0 or 0.8 (see Table 1). These sets of
parameters mean that we are dealing with an ideal
isotope mixture in runs 2-7 with ml/mh ) 0.1 and εll/
εhh ) 1.0. This mixture has zero enthalpy of mixing.
Nonideality is introduced in runs 8-12 by using ml/mh
) 1 and εll/εhh ) 0.8. The nonideal mixture has a non-
zero enthalpy of mixing and, therefore, an activity
coefficient different from unity.
We used T*H ) 1.0, T*L ) 0.7, and the overall number

density n* ) Nσhh3/V ) 0.4 in all cases. The reduced
temperature is defined as T* ) kBT/εhh where kB is
Boltzmann’s constant. The phase diagram of this
system is to some extent known (Halseid, 1993), and
we chose the overall temperature and density in such a
way that we got about equal volumes of vapor and liquid
in the cell.
Calculation conditions and some results from the

NEMD simulations are reported in Table 1. All quanti-

θ ) λ(∇TT )2 -
lhq
lhh
Jh
r∇T
T2

+
lqh
lhh
Jh
r∇T
T2

+
(Jh

r )2

lhh
(16)

Θ ) ∫gl[λ(∇TT )2 +
(Jh

r )2

lhh ] dx (17)

1
lij

) 1
L∫gl dxlij(x)

(18)
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ties are given in reduced Lennard-Jones units, i.e.,
reduced enthalpy flux, J*H ) JH(σhh3/εhh)(mh/εhh)1/2, and
reduced molar flux, J*i ) Ji(σhh3Mh/mh)(mh/εhh)1/2, where
Mh is the molar mass of h. The details of the calculation
of the temperature (from the equipartition principle),
the fluxes, and the forces were given before (Hafskjold
et al., 1993). The entropy production rate was calcu-
lated from eq 1.
Case 1 of the NEMD simulations is a case of pure heat

conduction for the single component h. The heat flux,
Jq, is constant across the interface. Cases 2-7 repre-
sent ideal mixtures, while cases 8-12 are for nonideal
mixtures; see Table 1.
In cases 2, 4, 5, 9, and 10, we used Jl ) -Jh to study

the assumption of constant molal overflow. These cases
have contributions to Jq from both heat and mass
transfer. For the ideal mixture, the heat of vaporization
of component l exactly cancels the heat of condensation
of component h.
Cases 3 and 8 represent pure heat conduction in ideal

(case 3) or nonideal (case 8) mixtures. Cases 6, 7, 11,
and 12 represent combinations of intermolecular diffu-
sion, condensation, and evaporation. These are the
cases that model distillation in general, as component
h condensates and l evaporates.

Results and Discussion

The results for the density, composition, and temper-
ature as a function of distance x are given in Figures 2,
3, and 4. Figure 3 gives the separation of mass for the
temperature gradients of Figure 4. The heat flux and
the relative mass flux are given in Figures 5 and 6,
while the entropy production rate is shown in Figures
7 and 8 for cases 1-8 and for a homogeneous binary
mixture, respectively. All results are given in dimen-
sionless variables is these figures.
Numerical Results for an Ar-like Isotope Mix-

ture. The results reported in this work can be used
with any mixture for which the molecular diameter, σ,
the mass of the heavy component,mh, and the Lennard-

Jones potential energy depth, ε/kB, are known. For the
sake of getting some numerical insight, we shall use an
ideal mixture with mass ratioml/mh ) 0.1. For Ar-like
particles, we then have the diameter 3.405 Å, the mass
6.64 × 10-26 kg, and ε/kB ) 120 K. (The resulting
separation has no practical interest.) The average
temperature gradients over the system are then enor-
mous, -4 × 109 K m-1 in the vapor and -108 K m-1 in
the liquid. These gradients are very large compared to
gradients one can achieve in the laboratory. We have
studied earlier such gradients and established by NEMD
(Hafskjold and Kjelstrup Ratkje, 1995) that the basic
assumption of nonequilibrium thermodynamics, that of
local equilibrium, is still valid.
We get an order-of-magnitude estimate for the dis-

sipated energy by separating an equimolar mixture of
h and l in ∆t ) 1 s, for A ) 1 m2 transfer area by
integrating the equation, using estimates of the average
values for T and θ:

Here ∆x is the distance needed to achieve pure compo-
nents in the actual composition gradient. We choose
the reduced variables m* ) 1, T* ) 1, n* ) 0.4, J*h )
10-3, J*H ) 10-3, and θ* ) 10-4, which correspond
roughly to case 5. Using Ar as an example, we then
get T ) 120 K, n ) 16 800 mol m-3, Jh ) 6650 mol m-2

s-1, JH ) 6.7 × 106 J m-2 s-1, and θ ) 1.6 × 1013 J K-1

m-3 s-1. The mole fraction gradient read from Figure
3 for case 5 converted to Ar units gives that ∆x ) 1.8 ×
10-8 m is needed for full separation. This gives the total
dissipated energy equal to 35 × 106 J (for 6650 mol).
For comparison, the Gibbs energy of demixing the
equimolar mixture into pure components under the
same conditions is 9 × 106 J. The total work needed to
perform the separation is the sum of the two, 44 × 106
J, leading to a second law efficiency for the separation
of 20% (eq 5). This efficiency is not realistic for several
reasons. Firstly, it assumes that separation takes place
in one step. Secondly, it assumes that products are

Figure 1. Snapshot of the isotope mixture used in the molecular dynamics simulation. The heavy component is represented by black
circles, the light component by white circles. In Ar units, the system has a temperature gradient of approximately -4 × 109 K m-1 in the
gas and approximately -108 K m-1 in the liquid. The mole fraction gradient is approximately 107 m-1 (case 4, Table 1).

Table 1. Simulation Conditions and Results for Enthalpy and Mass Fluxesa

comment case ml/mh εll/εhh zh 103J*H 103J*h ( 10 103J*l ( 10

pure heat conduction 1 N/A N/A 1.0 1.64 ( 0.06 N/A N/A
equimolar overflow distillation 2 1.0 1.0 0.5 1.25 ( 0.05 0.31 -0.31
thermal diffusion 3 0.1 1.0 0.5 2.3 ( 0.2 0 0
equimolar overflow distillation 4 0.1 1.0 0.5 2.2 ( 0.2 0.34 -0.34
equimolar overflow distillation 5 0.1 1.0 0.5 1.8 ( 0.2 1.54 -1.54
distillation 6 0.1 1.0 0.5 2.4 ( 0.2 0.95 -0.59
distillation 7 0.1 1.0 0.5 6.1 ( 0.2 4.06 -1.45
thermal diffusion 8 1.0 0.8 0.8 3.31 ( 0.05 0 0
equimolar overflow distillation 9 1.0 0.8 0.8 2.60 ( 0.06 0.41 -0.41
equimolar overflow distillation 10 1.0 0.8 0.8 2.52 ( 0.08 0.87 -0.87
distillation 11 1.0 0.8 0.8 3.34 ( 0.06 0.66 -0.41
distillation 12 1.0 0.8 0.8 7.16 ( 0.07 3.12 -0.73
a Component mass ratio is ml/mh, Lennard-Jones/spline potential parameters that vary are εll/εhh ()εlh/εhh), zh is the average mole

fraction of h in the mixture, J*H is the reduced enthalpy flux, and J*h and J*l are reduced component fluxes. N/A means not applicable.

Θ ≈ TθA∆x∆t (19)
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completely pure. The fluxes used in this example are
much larger than the experimentally realistic ones. Still,
the calculation serves the purpose of showing how the
entropy production rate and efficiencies can be obtained,
and it shows that the presented numbers relate to each
other in a reasonable way. According to this, the results
of Figures 2-8 can be used to discuss relative variations
representative of real distillation problems. Smaller
gradients lead to smaller fluxes, but relative variations
will remain the same when transport coefficients are
constant.
Density, Composition, and Temperature Varia-

tions across the Interface. Consider first the number
density profiles and the corresponding mole fraction
profiles for the heavy component in Figures 2 and 3,
respectively.
Figure 2 shows an interface region of thickness 5-8

molecular diameters. This distance covers the range
where the number density varies between bulk gas and
bulk liquid values. We see that the position of the
interface, as measured by the inflection point of the
density profile, does not vary significantly. On the scale
used in the plot, the gas density of the isotope mixture
is small and independent of the mole fraction, xh, in the
gas. The gas density of the nonideal mixture is larger,
because component l is now more volatile (εll < εhh) and
it varies with xh. The vapor volume of the nonideal

mixture is slightly smaller than that of the ideal mixture
for a given average molar fraction of l, because of this.
Volume changes in the liquid and vapor streams have
an impact on the operating line.
While the ideal mixtures in all cases have a monoto-

nous variation of xh across the interface (see, e.g., cases
4-7, Figure 3), the nonideal mixtures have a local
maximum in xh at the interface (see, e.g., cases 9 and
11). The chemical potential gradient is related to the
mole fraction gradient simply by ∇Tµh ) RT∇ ln xh for
the ideal isotope mixture. The variation in the ther-
modynamic force ∇ Tµh is therefore continuous across
the interface. If the same applies to the nonideal
mixtures, the additional term RT∇ ln fh varies in a
nonmonotonous way; i.e., the activity coefficient depends
strongly on the position across the interface.
The approximately linear mole fraction profiles in the

liquid phase as well as in the gas phase in cases 3, 4,
and 6 of the ideal mixtures show that the product Dc/xl
is approximately constant across the interface. This
does not lend support to the correlation forD introduced
by Sigmund (1976), in which Dc, not Dc/xl, is assumed
to be constant over a wide density range. The Sigmund
correlation was not also a good approximation for
nonideal mixtures, according to experimental results for
the methane/n-decane mixture (Dysthe et al., 1995). For
the ideal mixtures, cases 3, 4, and 6, Fick’s law can be

Figure 2. Density profiles across the vapor/liquid interface for
the systems specified in Table 1.

Figure 3. Mole fraction profiles across the vapor/liquid interface
for the systems specified in Table 1.
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used with constant Dc/xl also across the interface. This
cannot be done for cases 5 and 7, where the diffusive
fluxes are larger and Dc/xl jumps at the surface. The
difference between cases 4 and 5 is noteworthy since
these cases model similar situations: equimolar diffu-
sion. It is the difference in molar flux that gives the
difference in mole fraction profiles between cases 4 and
5, as the heat flux is very similar in the two cases (see
Table 1).
The nonideal mixtures have a region near the inter-

face where diffusion occurs against the composition
gradient. The consequence is that the mutual diffusion
coefficient, as defined locally by Fick’s law, is negative
in this region, cf. eq 10. The transport is, however,
along with the chemical potential gradient. The trans-
port is also along the temperature gradient. The process
is therefore not in disagreement with the second law of
thermodynamics. The importance of using forces for the
transports given by nonequilibrium thermodynamics is
emphasized by this finding.
We conclude that the product Dc/xl in Fick’s law is

constant in bulk mixtures of ideal liquids and gases. At
the interface, there may be a jump in this variable. The
product may be taken as constant for bulk nonideal gas

and liquid mixtures only with great care. Fick’s law
fails in the surface region of the these mixtures.
The temperature profiles for all cases studied are

shown in Figure 4. All cases have a linear temperature
profile in the liquid phase, which means that the heat
conductivity of Fourier’s law is constant in this phase.
The relatively small temperature gradients in the liquid
phase mean that the heat conductivity is larger for this
phase than for the vapor. Cases 1, 3, and 8 were used
to compute the thermal conductivity. A significant
increase from gas to liquid and a smooth variation

Figure 4. Temperature profiles across the vapor/liquid interface
in the stationary states given in Table 1.

Figure 5. Variation in the heat flux across the interface for some
selected ideal (white symbols) and nonideal (black symbols)
mixtures.

Figure 6. Relative molar flux across the interface for some
selected ideal (white symbols) and nonideal (black symbols)
mixtures.
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across the interface was found (not shown here). Fou-
rier’s law can then be applied locally only when the
position dependency of the heat conductivity is known.
The most interesting feature of the stationary-state

temperature profile in the gas phase and through the
interface is its nonlinearity near the interface. The
nonlinear part near x/Lx ) 0 is a “wall” effect of the H
layers due to the thermostat and low density, but the
shoulder that shows in most profiles is due to properties
of the gas-liquid system. It should be noted that even
the simple cases of heat conduction only (cases 1, 3, and
8) show the shoulder in the temperature profile. The
position of the shoulder is clearly on the gas side of the
interface. An independent simulation of a single-phase
vapor mixture subject to the same temperature differ-
ence did not give this shoulder. We conclude that the
shoulder is a consequence of heat effects at the liquid/

vapor interface. This has support in kinetic theory
(Ytrehus and Østmo, 1996) and molecular dynamics
simulations (Yasuoka et al., 1995). Different kinetic
energies are then associated with the condensing and
evaporating molecules, and these energies must have
an impact on the steady-state distribution of mass in
the temperature gradient (the Soret equilibrium), cases
3 and 8 (Hafskjold et al., 1993).
We know that the Soret effect can be neglected in the

vapor phase and gives a 10% contribution from the first
term of eq 13 in the liquid phase (Kincaid et al., 1992;
Kincaid and Hafskjold, 1994). At the surface, the Soret
effect is as yet unknown. We have seen that the
presence of an interface has an impact on the temper-
ature profile in the gas phase. It therefore appears that
a bigger value can be expected at the interface than in
the bulk phases. We predict a big value from eq 24
below.
Heat Flux across the Phase Boundary. The heat

fluxes for selected cases are shown in Figure 5. The
general picture is that the heat flux is close to constant
in the bulk phases, but in cases with a source term at
the interface (the heat of condensation), it changes
sharply at the interface, i.e. the coupling coefficients of
eqs 3 and 4 are significant. This is illustrated by case
7, in which there is a net condensation of vapor (|Jh| >
|Jl|). In cases 1, 3, and 8, Jq is constant because Jl ) Jh
) 0. In case 5, Jq is constant because Jl ) -Jh and the
two components have the same heat of vaporization.
Equation 15 explains why the measurable heat flux,

Jq, is generally not constant throughout the system.
Generally, the last terms contribute. Neglecting the
contributions from the heat of mixing, we may rewrite
the heat flux of eq 15:

where superscripts l and v represent liquid and vapor,
respectively, and ∆vap represents a change upon vapor-
ization. Depending on the relative magnitude of the
fluxes, the first or the last two terms on the right-hand
side of eq 20 may be small compared to the other terms.
For small temperature gradients, it may be useful to
assume that the heat flux in the liquid phase is given
by the net heat effect of condensation and evaporation,
i.e., the last two terms of eq 20. This means that we
can write

These terms will sum to a constant when the mass
fluxes are constant. Constant mass fluxes were used
throughout these simulations, meaning that the ap-
proximation (21) is valid only for case 7 in Figure 5. In
the other cases of this figure, we have Jq

l ) Jq
v.

The pure heat conductance term (the first term on
the right-hand side of eq 20 since the thermal diffusion
factor is small) is of the order 2-3 × 10-3 in Lennard-
Jones units as taken from Figure 5. Although the
scatter of the data is higher in the liquid than in the
vapor, Jq

l is of the same order in all the cases shown
except case 7, where it is approximately 13 × 10-3. In
case 7, there is a net mass flux from the vapor to the
liquid, which means that there is a significant heat
source due to condensation at the interface (see eqs 7
and 20). Even though there is also a diffusive mass flux
in case 5, it does not give a heat source since the heat
of condensation of component h exactly cancels the heat

Figure 7. Entropy production rate for heat and mass transport
across an interface with ideal (white symbols) and nonideal (black
symbols) mixtures.

Figure 8. Entropy production rate for heat and mass transport
in an ideal homogeneous mixture.

Jq
l ) Jq

v + ∆vapHlJl + ∆vapHhJh (20)

Jq
l ≈ ∆vapHlJl + ∆vapHhJh (21)
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of vaporization of component l in the isotope mixture.
Cases 1, 3, and 8 are cases of pure heat conduction in
systems without net mass flux.
The approximation (21) is not generally true for

condensation or distillation. Equimolar diffusion of the
components in ideal mixtures gives no heat sink or
source at the interface, and then the terms of eq 21
cancel, and vice versa, equimolar diffusion need not be
maintained when the enthalpies of vaporization are
different as in case 9 or 10. This result is in agreement
with the conclusion reached long ago by Krishna (1977)
from analysis of multicomponent distillation.
Nonequilibrium thermodynamics gives, for these rea-

sons, a more accurate description of distillation than the
equilibrium stage model. From knowledge of the heat
of transfer, one may calculate the impact of the mass
flux on the heat flux in eq 7. This will further determine
the mass or volume of the bulk streams in a distillation
column, the operating line, and the number of theoreti-
cal stages.
Relative Mass Flux across the Interface. The

relative mass flux, Jh
r , is shown in Figure 6. We see a

systematic difference between the fluxes for ideal and
nonideal mixtures. The ideal mixtures, cases 4-6, are
not associated with a large change in composition across
the interface, and Jh

r is monotonous. The nonideal
mixtures, cases 9-12, show an interesting feature:
There are extremal values for Jh

r at the interface.
A minimum in Jh

r represents a tendency to collective
motion of the two components, whereas a maximum in
Jh
r indicates a strong tendency for separation at the

interface, cf. eq 6, in accordance with ∂ ln fh/∂ ln xh being
negative in eq 12. When the thermodynamic driving
force, ∇Tµh/T, is monotonous across the interface, the
phenomenological coefficient, lhh, has a a maximum at
the interface and a minimum just outside (on the vapor
side). Physically, this means that the rate-limiting step
for mass transfer is in the vapor. The explanation for
the maximum at the interface is that the equilibrium
compositions favor a higher concentration of h in the
liquid than in the vapor and vice versa for component l
(see Figure 2). Since fluxes Jh and Jl are constant across
the interface, the maximum in Jh

r is a direct conse-
quence of the mole fraction ratio xh/xl in eq 2. Although
there is probably no anomaly in the thermodynamic
driving force, the equilibrium compositions are such that
separation is enhanced at the interface. The minimum
in Jh

r is more subtle, although it may simply be a
consequence of the maximum discussed above, super-
imposed on the sloping curves we also see for the ideal
mixtures. The apparent collective motion may, how-
ever, also be a separate phenomenon near the interface
and, like the shoulder in the temperature profile shown
in Figure 4, be related to the escape/capture process
between the vapor and the liquid.
The relative mass fluxes for cases 2, 4, and 6 show a

smaller change in Jh
r at the interface. The fluxes are

also relatively small. Considering the large gradients
that we apply in the simulation, we may expect a nearly
constant value in practical situations for such ideal
mixtures.
Heat of Transfer. One procedure to find the heat

of transfer can be obtained by combining eqs 7 and 20,
which gives for the liquid phase

where superscripts v and l represent vapor and liquid,
respectively. For equimolar overflow, Jl ) -Jh, this
expression reduces to

We found from Figure 5 that the measurable heat flux
for the ideal mixtures was rather independent of the
mass fluxes in the gas phase for equimolar flow and
constant across the interface. This implies that Jq

v ≈
-λ∇T, and the numerator in the first term on the right-
hand side of eq 23 vanishes. In such cases, the model

should be reasonably good. For ideal mixtures with
∆vapHh ≈ ∆vapHl, we than see that q* vanishes at the
interface. This explains why the interface has such a
small impact on the separation of isotopes, cf. upper part
of Figure 3. The heat of transfer can always be expected
to be significant at the interface for nonideal mixture
distillation, as exemplified by cases 9, 10, and 6.
The value of Jh

r differs from stage to stage in a
distillation column, depending on the driving forces for
separation at the stage in question. This means that
q* probably varies across the column. The heat of
transfer may be positive or negative depending on the
relative magnitude of the two heats of vaporization in
eq 22. This has an impact on the action of the forces of
eqs 3 and 4. The forces may enhance or counteract each
other, depending on the sign of q*. A positive thermal
force reduces Jh

r when q* is negative. A positive value
for the heat of transfer is beneficial when a large value
for Jhr is wanted.
Entropy Production Rate. The local entropy pro-

duction rate from the thermal flux and force and the
mass separation flux and force was calculated according
to eq 1 and shown in Figure 7.
The first conclusion to be drawn from this is that the

entropy production rate of the surface may be significant
compared to the entropy production rates in layers of
similar thickness in the adjoining bulk phases. It is only
when the mass fluxes are at the largest (case 7) that
the entropy production rate in the liquid becomesmuch
larger than that of the surface. Otherwise, the values
are comparable in magnitude. We expect that this will
hold also for smaller (real) gradients. All parts of the
entropy production rate therefore play a role in the
excess energy needed in terms of ∆G in eq 5. This fits
with practical experience. It is hard to make a clear-
cut assignment of the phase which is rate limiting for
column performance.
The contribution from the thermal flux and force to

the entropy production rate is generally smaller than
the contribution from the chemical flux and force, and
it is negligible in the liquid. However, the peak near
the interface is dominated by the thermal contribution
(not shown) and can account for as much as one-third
of the total entropy production rate in the vapor (Haf-

q* )
Jq
v + ∆vapHlJl + ∆vapHhJh + (λ∇T)l

Jh
r

(22)

q* )
Jq
v + (λ∇T)l

Jh
r

+ (∆vapHh - ∆vapHl)
Jh
Jh
r

(23)

q* ≈ (∆vapHh - ∆vapHl)
Jh
Jh
r
≈

constant(∆vapHh - ∆vapHl) (24)
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skjold and Kjelstrup Ratkje, 1996). The entropy pro-
duction rate is of the same order of magnitude in the
liquid and vapor. These results do not support the
assumptions made by Kjelstrup Ratkje et al. (1995) in
their estimation of the entropy production rate, viz.
neglecting the thermal contribution to the entropy
production and the entropy production in the liquid
phase. We see that NEMD can be used to give the local
value of the entropy production rate.
Comparison of eqs 1 and 17 gives that, if lhq ) lqh >

0 (usually the case), it is better to neglect the “thermal
contribution” to the entropy production rate in eq 17
than in eq 1. In eq 17, the two terms proportional to
the coupling terms in eq 16 cancel. The finite value of
the coupling term reduces the thermal contribution (cf.
eq 16) and increases the contribution from the mass
flux. For the same reason, it is better to neglect the
contribution from the mass flux in eq 1 than in eq 17.
The two forms therefore serve different purposes.
The striking feature of Figure 7 is that all simulations

performed even for the one-component system show a
maximum in the entropy production rate slightly at the
vapor side of the interface. The maxima are larger for
cases which have a nonnegligible q*.
By contrast, the entropy production rate in a homo-

geneous ideal two-component mixture shows a monoto-
nous increase from the hot to the cold side (Figure 8).
The entropy production rate is not uniformly distributed
in the stationary state, neither in the one-component
system nor in the two-component system.
The results also show that forces are generally not

constant across the interface. The concentration gra-
dients in the liquid and gas ideal mixtures are constant
(Figure 3). The temperature gradients are constant only
in the liquid phase (Figure 4) (for both ideal and
nonideal mixtures). Consequently, the definition of an
average diffusion coefficient for transport across the
interface (eq 18) is easy for ideal mixtures; otherwise,
the definition is nontrivial in the sense that the inte-
grand in eq 18 may change abruptly across the interface.
More work is needed to find such average coefficients.
We have previously studied molecular mechanisms

of transport of heat and mass in one-phase systems in
the stationary state (Hafskjold et al., 1993; Hafskjold
and Kjelstrup Ratkje, 1995). The heat was most ef-
fectively conducted in this state by a distribution of the
components which gave a constant-concentration gradi-
ent in a constant-temperature gradient. When a liquid-
gas transition is involved, it is clear from Figure 3 that
effective heat transfer does not imply such a simple
distribution. We intend to examine how the system
responds most effectively to given boundary conditions
on a molecular level in a future work.
Liquid/Vapor Surface. This study has shown that

the surface has special transport properties and that it
is necessary to use nonequilibrium thermodynamics in
the description of transport in this region. A larger
portion of the energy dissipated in the system is
dissipated at the surface. (This part of the dissipation
is probably unavoidable in the distillation column.)
The special properties of the surface region indicate

that the surface can be regarded as a separate system
in the thermodynamic sense, a topic we shall elaborate
on in a future article. It is possible to compute all
variables of Figures 2-8 in a well-defined manner also
in the surface region. The length scale for our investi-
gation is a molecular one (in nanometer), not a macro-
scopic scale (in micrometers). A formulation of the

transport problem on a micrometer scale can be ob-
tained by integration over the surface variables; see
Bedeaux et al. (1992). Albano et al. (1979) showed that
the dynamic behavior of the interfacial densities can be
given in terms of interfacial fluxes and extrapolated
bulk densities and fluxes alone. The description is
equivalent to a description which uses densities and
fluxes which are singular at the surface. The intriguing
shoulder of the temperature profile (Figure 4) is an
indication that singularities may occur in such a mac-
roscopic description.
Applications to Distillation. The present work is

an attempt to encourage work on nonequilibrium ther-
modynamic modeling of distillation. We have shown
how forces and fluxes during distillation of binary
mixtures can be defined locally and how they can be
included into an efficiency calculation of the process.
Severe gradients have been applied in the study, but

this means that the general conclusions can be trans-
ferred with certainty to less severe situations. Non-
equilibrium molecular dynamics simulation yields val-
ues for transport coefficients under conditions that are
hardly accessible in practice. The fact that transport
data for the complex transport equations (3 and 4) are
available through computer simulations may facilitate
the application of nonequilibrium modeling of distilla-
tion columns. The coefficients obtainable from the
present data and their molecular interpretation will be
discussed in a further work.
In our simulation technique, we set the condition of

equimolar overflow in the computer experiment and
investigated its consequences (cases 2, 4, 5, 9, and 10).
In the real case, the situation is different: The heat
supply to the column is controlled (adiabatic column),
and separation follows. When we see a net heat effect
at the surface in our simulations, we know that the last
term of eq 7 plays a role. This is compatible with a
bending operating line. The sign of the heat of transfer
will relate to the curvature of the operating line. A
positive value for q* means that the heavy component
has a higher flux than the light component (cf. eq 13).
The volume of the vapor phase may be reduced, and the
operating line in the rectifying section, say, will increase
its slope. It should be possible to find a revised number
of theoretical stages needed from this information.
We have found that average phenomenological coef-

ficients (eq 18) can be calculated by integrating across
each of the phases in the ideal system. The assumption
of a negligible contribution to the entropy production
rate from the liquid phase (Kjelstrup Ratkje et al., 1995)
was not substantiated from these data, however. The
present results mean that the entropy production rate
of distillation may depend on the transport properties
of the surface. This means that it will be important to
find transport coefficients for the surface.

Conclusions and Perspectives

The present work is an attempt to get direct informa-
tion on the relationship between the molecular and
macroscopic heat- and mass-transfer properties at the
gas/liquid interface. We have seen that the ordinary
Fick’s and Fourier’s laws can be used for the liquid and
gas separately. As soon as the mixture is not ideal, the
thermodynamic equations of transport are needed, and
the properties of the liquid-vapor interface have to be
taken into account.
On a molecular (nanometer) scale, the intensive

variables of the system are smooth functions across the
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interface. There are, however, indications of an anomaly
in the temperature profile (a shoulder). Nonequilibrium
thermodynamics for surfaces may therefore give a
discontinuity in the temperature at a macroscopic scale.
More work is needed to establish the boundary condi-
tions for integrations across the surface in this case.
The entropy production rate has a peak near the

interface in all the cases we have studied in this work.
This peak stems from the shoulder in the temperature
profile. In the cases studied, the entropy production is
of the same order of magnitude in the gas and liquid.
The thermal and mass-transfer contributions to the
entropy production are also comparable in magnitude.
We have indicated how the equations of transport

given by nonequilibrium thermodynamics can be used
to analyze the efficiency of column elements and calcu-
late operating lines. The burden of getting transport
coefficients can probably also be eased by application
of nonequilibrium molecular dynamics simulation tech-
niques.
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