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Gauss's principle of least constraint is used to develop nonequilibrium molecular-dynamics algo­
rithms for systems SUbject to constraints. The treatment not only includes "nonholonomic" 
constraints-those involving velocities-but it also provides a basis for simulating nonequilibrium 
steady states. We describe two applications of this new use of Gauss's principle. The first of these 
examples, the isothermal molecular dynamics of a three-particle chain, can be treated analytically. 
The second, the steady-state diffusiort~of a Lennard-Jones liquid, near its triple point, is studied nu­
merically. The measured diffusion coefficient agrees with inaependent estimates from eqUilibrium 
fluctuation theory and from Hamiltonian external fields. 

I. INTRODUCTION 

Many-body systems have been simulated by solving 
Newton's equations of motion, ever since the development 
of computers. Early constant-energy Newtonian dynamic 
studies were concerned with the nature of equilibrium, and 
the approach to it. But, to drive realistic nonequilibrium 
systems undergoing shear or compressional flows or heat 
flows, a new kind of nonequilibrium molecular dynamics 
was needed. 

About ten years ago, nonequilibrium molecular­
dynamics (NEMD) simulations using heat reservoirs and 
moving boundaries began to be developed, but on a case­
by-case basis, without an underlying basic formalism. 
Very recently, Hoover and Evans discovered that Karl 
Friedrich Gauss, in 1829, had enunciated a fundamental 
dynamical principle (Gauss called it the most fundamental 
principle) which can fruitfully be applied to a wide range 
of irreversible phenomena and used to generate NEMD al­
gorithms. We describe and illustrate our new treatment of 
Gauss's principle of least constraint. 

In dynamical problems "holonomic" constraints are 
used to restrict coordinates only. Such constraints are 
used to fix bond lengths or angles at average values, there­
by avoiding small-amplitude high-frequency motions. 
The equations of motion for a system with these geometric 
constraints were written by Ryckaert, Ciccotti, and 
Berendsen, l using Lagrange multipliers. Their numerical 
method satisfies the constraint equations continuously. 
Here we point out that this same technique I can be gen­
eralized to the nonholonomic (velocity-dependent) case in 
which the constraint forces can do work on the system. 
These constrained equations can be found directly from 
Gauss's principle of least constraint.2 

This simple extension of the kinds of constraints con­
sidered permits us to describe homogeneous nonequilibri­
urn steady states. In characterizing such a state at least 
two constraints are used. The first "driving" constraint 
sets the value of the thermodynamic force or flux and the 
second "stabilizing" constraint fixes a thermodynamic 

variable in order to maintain a steady nonequilibrium 
state. Typically the driving constraint is a strain rate or 
heat flux, and the stabilizing constraint corresponds to 
constant energy or constant temperature.3 - 5 

A steady irreversible process produces entropy, through 
irreversible heating or mixing, and must therefore incorpo­
rate a compensating mechanism for extracting heat or 
separating molecular species. Heat is ordinarily removed, 
by conduction, at isothermal boundaries. However, by 
using stabilizing constraints to maintain a steady state we 
can avoid the need for physical boundaries and substan­
tially reduce the dependence of our results on system size. 
The techniques described here are remarkably flexible, 
permitting steady states to be maintained either by ther­
modynamic forces or by the conjugate thermodynamic 
fluxes. 

Because these constraints are novel, we illustrate them 
first with a familiar system, simple enough for complete 
analysis: the three-particle Hooke's-law chain. We then 
apply the same techniques to a complicated many-body 
problem, the simulation of steady diffusive flow in a 
model liquid. 

II. GAUSS'S PRINCIPLE OF LEAST 

CONSTRAINT (REF. 6) 


It is not widely appreciated that just over 150 years ago 
Gauss formulated a mechanics more general than 
Newton's. Gauss's formulation applies to systems which 
are subject to constraints, either holonomic or nonholo­
nomic. Gauss stated that the trajectories actually followed 
would deviate as little as possible, in a least-squares sense, 
from the unconstrained Newtonian trajectories.6 

If the constraints do no work on the system then it is 
possible to prove that Newton's and Gauss's formulations 
are equivalent.2 The equivalence holds also in the nonho­
lonomic case with linear homogeneous work-performing 
constraints.7

-
9 But in the general case the "proofs" of 

Gauss's principle of least constraint require the addition 
of postulates or assumptions to Newton's equations of 
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motion. Here we follow Appell lO and Ray,S simply ac­
cepting without proof the validity of Gauss's principle. 

To reduce Gauss's principle to a form suitable for nu­
merical work, we first introduce constraints into the equa­
tions of motion. It is necessary to treat holonomic con­
straints g (r,t) =0 and nonholonomic constraints 
g (r,r,t) =0 separately. In the holonomic case, two dif­
ferentiations with respect to time give the relation restrict­
ing the acceleration ;: 

.. ag 2' a2 
g '2 a2 

g 0 (la)r-+ r--+r -+ =.ar arat ar2 at2 
In the nonholonomic case only a single time differentia­
tion is required 

.. ag . ag ago 0
r-+r"".-+-= . (Ib)

ar ar at 
In either case the acceleration;: is constrained to lie on the 
constant-g hypersurface by a restriction of the general 
form 

(2) 

where the explicit functional forms of nand w can be ob­
tained from the imposed constr~nt g according to Eqs. (1) 
above. 

The explicit forms of n (r,r,l) and w(r,r,t) are not 
essential in the general treatment outlined in Eqs. (3)-(6) 
below. At all times the dynamical state of the system r,r 
is confined to the hypersurface which satisfies Eq. (Z). If 
the constraints (1) were absent, then the unconstrained 
motion of the system calculated from 

(3) 

could leave the constraint hypersurface. Gauss's formula­
tion prevents such a violation by adding an acceleration 
normal to the surface 

r~ =r~ -A[n (r,r,t)lm] (4) 

with A chosen to satisfy the restriction (2), and thereby (l) 

A=(n-;:u +w)/[n '(n 1m)] . (5) 

This added acceleration can be expressed in terms of a 
constraint force Fe: 

(6) 

where the instantaneous value of the Lagrange mUltiplier 
A is chosen to satisfy the constraint (1) according to Eg. 
(5). 

There are many different ways to project unconstrained 
accelerations back onto the constrained hypersurface. 
Gauss's principle of least constraint states that the actual 
constrained motion should be obtained by the normal pro­
jection technique just described. An alternative descrip­
tion of this simple principle is the statement that the 
mean-square value of the constraint force divided by the 
particle mass (F;lm >should be minimized. 

III. APPLICATION TO AN ISOTHERMAL 

LINEAR CHAIN (REF. 11) 


The harmonic one-dimensional chain is a familiar pro­
totype for ordered crystalline solids. Each particle in such 

a chain interacts with its neighbors through a Hooke's-law 
potential. The equations of motion have the form 

(7) 

where Xi + 1 and Xi -1 are the coordinates of the particles 
adjacent to that at Xj' Because this problem is linear, the 
various "normal-mode" solutions can be superposed to 
match any initial conditions (the set of Xi and Xi), and to 
follow the constant-energy dynamical development of the 
chain in time . 

In nonequilibrium problems it is convenient to specify 
isothermal conditions to extract irreversibly generated 
heat. For that reason we consider here isothermal, as op­
posed to equilibrium isoenergetic, dynamics for the linear 
chain. The isothermal restriction complicates the micro­
scopic dynamics by imposing a collective constraint, cou­
pling together the previously independent normal modes. 
But on the other hand, the macroscopic, thermodynamic 
behavior of the chain is simplified by preventing tempera­
ture fluctuations. Our definition of temperature is based 
on the ideal-gas thermometer; that is, temperature is pro­
portional to the kinetic energy. Thus the constant­
temperature constraint has the form 

(8) 

The constraint is nonholonomic, because it includes veloci­
ties, and is also nonlinear. The functions nand w corre­
sponding to the isothermal constraint (8) are, respectively, 
mx and O. Gauss's principle leads to the constrained ac­
celerations 

Xc =F1m -{;x , (9) 

{;=2.1FX)/~mx2 
The collective variable {; plays the role of a friction 

coefficient, but it takes on both positive and negative 
values as time goes on, as required to keep temperature 
constant. The set of Eqs. (9) cannot be solved analytically, 
but numerical solutions show that the system is stable and 
well behaved and that the time-averaged potential energy 
approaches the equipartition value as the number of 
masses in the chain increases. 

The two-particle chain is uninteresting, because the 
fixed-kinetic-energy constraint allows no a9celerations­
the two particles move to infinity at constant speeds. The 
constrained three-particle chain with fixed center of mass 
is the simplest interesting problem, because all velocities 
change with time and cover a broad range of dynamical 
states (see Fig. 1). We consider the three-particle problem 
here in detail. We use displacement coordinates (measured 
relative to a minimum-energy configuration) and periodic 
boundaries. We have the restrictions 

(lOa)Xl+X2+ X 3=0 , 

Xl +X2+ X3=0 , (lOb) 

(lOc) 

The dynamical state of the three-mass system 
{XbX2,x3>Xl>X2,X3J can then be described by three in­
dependent variables: Xl> X2, and Xl> for instance. The 
remaining coordinates and velocities follow from the con­
stants of the motion (10). 
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FIG. 1. Two stereo views of the motion of a three-particle isothermal chain. Discrete points x j, X2, mx I corresponding to a numer­
ical solution of Eqs. (11) of the text are plotted. The corresponding Newtonian chain would describe an ellipse in this space. 

The isothermal equations of motion then become 

mXj=-3KXj-'mX l , 

mX2= 3Kx2-'mx2 (11) ,= 3K[X IXI +X2X2 +(XI +X2)(X I +x2)]!2Ekin 

The problem can be simplified, analytically, by introduc­
ing plane polar coordinates rand () in place of the particle 
coordinates x I and x 2: 

r coS()=V3(Xl +X2) 
(12) 

rsin()=XI-X2 • 

In polar form the problem reduces to one-dimensional (ra­
diaD motion in an effective potential which includes the 
angular momentum. This transformed description of the 
problem establishes that the isothermal chain dynamics 
consists of nonlinear oscillations between the two turning 
points of the effective potential 

(13) 

where the constants A and B depend upon the initial con­
ditions. 

A typical series of representative points (xl> X2, mXI), 
from a numerical solution of equations (11), is displayed 
in Fig. 1. The motion is relatively complex, compared to 

the Newtonian solution, which is an ellipse in the same 
space. 

Gauss's principle provides a unique solution to the iso­
thermal initial-value problem. As noted above there are 
many other motions which preserve the kinetic energy. 
For instance, consider the Lagrangian equations of motion 
involving the nonphysical momentum Px 

px=mx(l+A) , 
(14) 

Px -3KX. 

These equations, with the constraint (10) governing the 
time development of A, are identical to the constrained 
Gaussian set (11) if the Lagrange multiplier vanishes, so 
that Px is equal to mi. Then the Lagrangian and Gauss­
ian values of x' differ. In any other case, Eqs. (14) lead to 
different values of xfrom the same initial conditions. Be­
cause Px is not a physical momentum the initial conditions 
{x ,x J are insufficient to specify a well-posed problem. 
Once a particular initial choice of A has been made, the 
motion can again be studied in polar coordinates, with an 
effective potential which is the reciprocal of a sixth-order 
polynomial in r. The resulting Lagrangian dynamics, Eq. 
(14), resembles qualitatively the Gaussian dynamics of 
Fig. 1. The two approaches can be made to coincide by 
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continuously forcing the Lagrange multiplier in Eq. (14) 
to vanish. 

IV. 	 HAMILTONIAN ALGORITHM 
FOR SELF·DIFFUSION 

To complement the periodic and homogeneous treat­
ments of momentum 12 and heat flows 13 we develop here a 
Hamiltonian method for determining the self-diffusion 
coefficient D. D can alternatively be calculated from the 
equilibrium Green-Kubo expression 

(15) 

Many calculations have been based on this method, start­
ing with the hard-sphere calculations of Alder and Wain­
wright.14 An alternative approach introduces an external 
field into the Hamiltonian which couples to a particle 
property qj analogous to electric charge. We call this 
property "color" rather than "charge" to emphasize that it 
does not enter into interparticle interactions. The many­
body Hamiltonian 

(16) 

has added to it a perturbing external field at time 0 The diffusion problem can 
Gauss's principle of least constraint. 

H =Ho- 2.qxE, t >0 . (17) 

The external field E stimulates a current density J 
gs provides constant y and z temperatures 

J", (l/V)2.qx , 	 (I8) 

analogous to an electric current density. For simplicity we 
choose qj equal to I for i S; n 12 and qj equal to + I for 
the remaining particles. The linear-response thec::,yl5 es­
tablishes that the limiting small-field nonequilibrium 
current density can be written in terms of an equilibrium 
color conductivity memory function a: 

(J(t) fotau Il.t)E(ll.t)dll.t 

(19) 
a(t) (VIkT)(J(O)J(t) >eq . 

The current-density autocorrelation function is simply 
related to the velocity autocorrelation function in Eq. (15). 

This is because (Xj> is -xl/(N-1) for j=2,3, ... ,N, 
which can be used to show that the steady color conduc­
tivity is proportional to the self-diffusion coefficient D 

a= fo'" a(t)dt /[(N IlVkT]. (20) 

Thus the self·diffusion coefficient can be determined by 
carrying out a series of constant-field simulations and ex­
trapolating the resulting conductivities to the zero-field 
limit. See Fig. 2. 

The work done by the external field would normally 
cause the system to heat up at a rate proportional to E2 in 
the small-field limit. This heating can be eliminated by 
carrying out the calculation at fixed temperature. In the 
numerical work described in Sec. VI we do this by rescal­
ing the y and z components of the velocity distribution to 
maintain the corresponding second moments at fixed 
values. 16, 17 

0.10 r---,---,---,...----,- ­

~ 
!':: Green-Kubo ~-

~ 
E 

0.05 Hff -t-
LENNARD-JONES 

a DIFFUSION COEFFICIENT 

Is3 (ml<) 1/2 

FIG. 2. Self-diffusion coefficient for a Lennard-Jones liquid 
at a reduced density Ns l IV =0. 85 and reduced temperature 
kTI€'= 1.08. Calculations according to Gaussian dynamics and 
using Hamiltonian external fields are indicated by G and H, 
respectively. Green-Kubo calculation, from Ref. 18, is probabiy 
an overestimate, as explained in Sec. VI of the text. 

V. GAUSSIAN ALGORITHM 

FOR SELF-DIFFUSION 


be treated directly using 
A driving constraint 

gd provides a constant current, and a stabilizing constraint 

gd 2.(qx )-1 =0 , (21) 
gs 2.m(y2+z1)/2-NkT =0 

The equations of motion include contributions from the 
two Lagrange parameters used to satisfy these constraints 

mx Adq , 

(22)my -Asmy , 

mz -Asmz 

The multipliers can be identified explicitly by multiplying 
the equations of motion (22) by (q /m), y, and i, and sum· 
ming over all particles 

2.(qX)= ~~ =0= 2.(qF",/m)-(Ad/m )2.q2 , 
(23)

2.(myy +mzz)=O= 2.CVFy +zFz ) 


-As2.m (y2+i 2) 


Thus the Lagrange multipliers are functions of time which 
depend only upon the particle colors, velocities, and forces 

Ad= 2.(qFx )/2.(q2) , 

As = 2. (yFy +zFz /2.m (y2 +(2) . 
(24) 

The forces of constraint associated with the current densi­
ty and the temperature do work on the system at the rates 

= 2.(qF",)2.(qx) / 2.(q2) 

and 

Pd 

(25) 

http:l/V)2.qx
http:wright.14
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respectively. 
The color conductivity can be determined either from 

the driving power Pd associated with maintaining the 
current or with the stabilizing power p. used to keep the 
temperature constant: 

(26) 

The angular brackets in Eq. (26) indicate long-time 
steady-state averages. For short times Pd tends to exceed 
-PI by the rate at which energy is being stored in the sys­
tem through its developing nonequilibrium distribution 
function. 

Although this nonequilibrium diffusion problem is a 
relatively simple one, it is clear that Gauss's principle 
makes it possible to formulate many problems in a con­
venient way. The principle is particularly valuable in es­
tablishing nonequilibrium steady states suitable for 
theoretical analysis. 

VI. SIMULATION RESULTS 

Levesque and Verlet18 determined the self-diffusion 
coefficient for a dense liquid composed of 864 particles in­
teracting with the Lennard-Jones potential 

(27) 

They used the Green-Kubo formula [Eq. (15)] and con­
sidered a temperature 1.08Elk and number density 
(N IV)=0.85Is 3 close to the liquid triple point. In our 
lOS-particle calculations, at this same thermodynamic­
state point, we truncate the potential at r =2.5s. 

Calculations using the Hamiltonian algorithm described 
in Sec. IV have been carried out by Snook, Evans, and Is­
bister. J9 For comparison with those results we have solved 
the Gaussian equations of motion (using a fifth-order 
predictor-corrector "Gear" integration) with a time step of 
0.OO2(m IE) 1/2s. The constraints maintained constant 
current and temperature to an accuracy of plus or minus 
0.05% in 10000 time steps. Typical run lengths were 
15 000 steps. 

Figure 2 shows the diffusion coefficient [related to the 
color conductivity by Eq. (20)] as a function of current. It 
is noteworthy that the two nonequilibrium methods are 
self-consistent within the statistical uncertainties. The 
eqUilibrium Green-Kubo conductivity, which appears to 
exceed the nonequilibrium conductivities, is probably 
slightly overestimated. The intermediate-time negative 
velocity correlation function was truncated in carrying out 
the Green-Kubo calculation according to Eq. (15). 

The Gaussian method is more efficient than the Hamil­
tonian one because the transition time required to reach 
steady-state conditions is substantially reduced. In the 
Hamiltonian simulation approximately 10000 time steps 
are necessary to attain the steady state from an initial 
equilibrium state. The accuracy with which the con­
straints are satisfied, and the balance between the work 

done and heat rejected, are convenient checks on the nu­
merical work. 

VII. CONCLUSION 

In classical mechanics, constraints are used to simplify 
the analysis of dynamical systems. These constraints can 
be removed entirely if a full analysis is made of the in­
teraction of the system and its surroundings. Constraints 
are used to replace the (possibly very complex) dynamics 
of the surroundings by their net effect (through the forces 
of constraint) on the system of interest. Gauss's principle 
of least constraint provides us with a systematic means for 
correctly formulating the equations of motion in such con­
strained systems. 

Gauss's principle is ideal for developing nonequilibrium 
computer simulations. It allows us to project out of the 
motion the degrees of freedom corresponding to external 
reservoirs, replacing these thermodynamic baths by forces 
of constraint. We believe that the fundamental properties 
of nonequilibrium steady states can best be determined in 
this way. 

There are several indications that Gauss's principle, as 
an extension of Newtonian mechanics, is consistent with 
statistical mechanics and kinetic theory. First, the iso­
thermal dynamics is consistent with the Gibbs canonical 
ensemble.) A set of systems initially distributed canoni­
cally. in the phase space remains distributed canonically, 
despIte the changes in the energies of the systems making 
u~ the ensemble. .Second, the isothermal dynamics, ap­
phed to a low-denSIty shear-flow problem, predicts exactly 
the same shear and normal stresses as those derived from 
the Burnett-level solution of the Boltzmann equation.2o 

Finally, equilibrium configurational properties, calculated 
using the isothermal equations of motion, can be shown to 
agree with the same properties calculated using the canon­
ical ensemble of Gibbs.s 

Here we have stressed the application of Gaussian 
dynamics to nonequilibrium steady states. It is evident 
that similar calculations can be applied to nonsteady prob­
lems and to systems in other ensembles, such as constant 

2pressure. ! 
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