quilibrium Phase Transitions and Chemical Reactions
G. NICOLIS and M. MALEK-MANSOUR
Faculté des Sciences, C. P. 226 , Universite Libre de Bruxelles
Campus Plaine, 1050 Bruxelles
equilibrium are reviewed. The effect of fluctuations on the bifurcation is in-
vestigated using a master equation approach. The following situations are
envisaged:
(i) All-or-none transitions in bistable spatially homogeneous systems. The
behavior of the variance below and at the bifurcation point is discussed.
The condition of coexistence of simultaneously stable states is shown to
yield a relation between parameters which differs from the Maxwell type
construction inferred from the deterministic equations. It is pointed out
that in the thermodynamic limit the master equation displays two distinct
solutions.
(ii) Hopf bifurcations leading to limit cycles in spatially homogeneous systems.
Numerical results are reported illustrating the structure of the "proba-
bility crater" descriptive of the limit cycle. It is suggested that in the
thermodynamic limit, in addition to the static solution given by the
probability crater there is a one-parameter family of time-dependent
solutions rotating along the limit cycle.
(iii) Spatially distributed systems. The effect of diffusion on all-or-none tran-
sitions is discussed using an extension of mean-field theory in conjunction
with Monte-Carlo simulations.

[^0]250

G. Nicolis and M. Malek-Mansour

 system.

Equations (1.1) have been investigated extensively in the last decade. ${ }^{1)}$ Under natural boundary conditions-zero flux or periodic-they have been shown to present a number of transition phenomena around the spatially uniform and time-independent state satisfying (1.1) and reducing to the law of mass action at equilibrium. These transitions occur through a bifurcation mechanism, which usually involves an exchange of stability between an initially stable "reference" solution and a new stable branch of solutions. The situation is depicted in Fig. 1.

$\therefore \quad \lambda_{1} \quad \lambda_{15} \lambda_{2} \lambda_{25} \lambda_{25}$
The most common bifurcations are those leading (i) to multiple steady states and hysteresis without any change in spatial and temporal symmetries,
 solutions of the limit-cycle type, and (iii) to a space symmetry-breaking associated with the emergence of space order. The last two types of behavior are possible in systems involving at least two coupled variables.

Now, the occurrence of transitions extending over macroscopic space and

 be determined exclusively by the immediate neighborhood of a particular volume element, as Eq. ($1 \cdot 1$) would imply. Rather, each element of the system feels the cumulative effect of distant parts which ultimately introduce deviations

 ymptotic stability, attain macroscopic values in the vicinity of and past the bifurcation points.

[^1]Nonequilibrium Phase Transitions and Chemical Reactions, 251
fluctuations for the three types of bifurcation reviewed above. Fluctuations will be modelled as Markov processes in appropriate phase space. For instance, dividing the reaction volume into spatial cells and considering as variables the numbers of particles $X_{i \alpha}$ of species i within cell α, one will have a multivariate probability $P\left(X_{i \alpha}, t\right)$ obeying a master equation generated by the forward Kolmogorov equation: ${ }^{2}$
$$
\frac{\left(X_{i \alpha}, t\right)}{d t}=\sum_{\alpha}\left\{\sum_{X_{i \alpha}^{\prime}} W\left(X_{i \alpha}^{\prime} \mid X_{i}\right) P\left(X_{i \alpha}^{\prime}, t\right)+\sum_{i} d_{i}\left(\left(X_{i \alpha}+1\right)\right.\right.
$$
$\times\left(P\left(X_{i \alpha-1}-1, X_{i \alpha}+1, t\right)+P\left(X_{i \alpha}+1, X_{i \alpha+1}-1, t\right)\right)$
since they correspond to the appearance or disappearance of a small number
where d_{i} are the diffusion rates across cells and W the transition probabilities per unit time for the chemical porcesses. Here diffusion is modelled as a random

 lmogorov e
(1-3)

 ferred to as nonlinear Fokker-Planck equation. Its relation to (1.2) has recently been investigated by Horsthemke and Brenig; ${ }^{3)}$ see also Hänggi.

 states lacking asymptotic stability.

 diffusion, whereas $\S 5$ is devoted to some general comments.
252

Nonequilibrium Phase Transitions and Chemical Reactions : 253
As δ, δ^{\prime} move to negative values along the line $\delta=\delta^{\prime}$ a bifurcation phenomenon takes place at the point $\delta=\delta^{\prime}=0$ (see Fig. 2). For negative values of δ, δ^{\prime}
 is unstable, and two non-trivial states $\bar{x}_{ \pm}= \pm \sqrt{-\delta}$ which are stable. If on the other hand one moves into the multiple steady-state region away from the
 want to analyze the behavior of fluctuations associated to bifurcation across the point $\delta=\delta^{\prime}=0$, in the limit where the size of the system N gets large.

$\left[\left(2^{\prime} X\right) d(\xi-X)(\tau-X) X-\left(2^{\prime} \tau+X\right) d(\tau-X)(\tau+X) X\right]_{\xi}-N=\frac{2 p}{\left(2^{\prime} X\right) d p}$

$$
(2 \cdot 4)
$$

$\langle T\rangle=\sum_{X=0}^{\infty} \frac{1}{N^{-2} X(X-1)(X-2)+3 N^{-1} X(X-1)+(3+\delta) X+\left(1+\delta^{\prime}\right) N}$.

 (2.5)

--

 entrance boundary. Once there, the system is attracted very rapidly to a
 that for any finite N the transition probabilities verify a theorem due to
 uniqueness of the stationary probability distribution.
We proceed now to construct this steady-state distribution. ${ }^{9,10)}$ A fortu-
 integral representation of the generating function. ${ }^{11}$ From this one can evalu-
 cation point $\delta=\delta^{\prime}=0$ is approached along the line $\delta=\delta^{\prime}$ one finds
Thus, fluctuations are extensive although as $|\delta| \rightarrow 0$ they tend to diverge. The

 point $\delta=\delta^{\prime}=0$ the fluctuations are not extensive:

$$
\lim _{N \rightarrow \infty} \frac{\left\langle(\delta X)^{2}\right\rangle}{N^{3 / 2}}=\text { finite } \quad(2 \cdot 6 \mathrm{~b})
$$

Still, in the limit $N \rightarrow \infty$ the first moment equation generated by Eq. (2.4) reduces to the phenomenological rate equation, in agreement with Kurtz's theorem.
Let us next focus on the region of coexistence of simultaneously stable states. ${ }^{12)}$ As expected, bistability is reflected by a two-humped probability distribution with peaks centered on the asymptotically stable solutions of Eq. $(2 \cdot 3 \mathrm{a})$ and with a minimum on the unstable solution:

$$
P=\phi(x) \exp N Q(x):\left\{\begin{array}{l}
\left.\frac{d q(x)}{d x}\right|_{\bar{x}_{*}}=0,\left.\quad \frac{d^{2} Q(x)}{d x^{2}}\right|_{\bar{x}_{*}}<0, \\
\left.\frac{d थ(x)}{d x}\right|_{\bar{x}_{0}=0}=0, \\
\left.\frac{d^{2} थ(x)}{d x^{2}}\right|_{\bar{x}_{0}=0}>0,
\end{array}\right.
$$ If one requires the ratio of the two probability peaks to be of the order of unity, one finds a condition between parameters δ and δ^{\prime} defining the line than the other by a factor of the order of e^{-N}, and therefore disappears in

 variance of the same order of magnitude as \bar{x}_{+}or \bar{x}_{-}

$$
(2 \cdot 7)
$$ C on Fig. 2. Outside this "coexistence line" one of the two peaks is smaller

Nonequilibrium Phase Transitions and Chemical Reactions: 255
This introduces macroscopic deviations of the equations of evolution from the phenomenological form, Eq. (2•3a)
A question of considerable importance concerns the structure of the proba-
 show ${ }^{12)}$ that each of the humps of the probability function collapses to a delta function in this limit. One gets therefore a stationary probability distribution of the form

$$
P(x)=C_{+} \delta\left(x-\bar{x}_{+}\right)+C_{-} \delta\left(x-\bar{x}_{-}\right),
$$

where the weights C_{+}and C_{-}sum to unity and are otherwise determined explicitly in terms of the stochastic potential $Q(x)$ and the preexponential factor $\phi(x)$ appearing in Eq. $(2 \cdot 7)$.
 case (N finite), in the sense that \bar{x}_{+}and \bar{x}_{-}now seem to act as "absorbing

 master equation independently, whereas their "mixture" gives the thermody-
 ogy with the Ising model is striking.
The results reported so far are all derived from the explicit solution of
 әโчวед of sn .סи!

 phenomenological level.

 balance condition associated with the onset of the limit cycle.

$$
\begin{array}{ll}
\overparen{O} \\
\stackrel{\oplus}{\ominus} & \stackrel{\oplus}{\oplus}
\end{array}
$$

256

 cycle behavior of the Brusselator: ${ }^{1}$

$$
' X
$$

$$
\begin{aligned}
2 \mathrm{X}+\mathrm{Y} & \longrightarrow 3 \mathrm{X} \\
\mathrm{X} & \longrightarrow \mathrm{E}
\end{aligned}
$$

 -8unụts əұеnbวре κq In order to realize the complexity of the stochastic problem associated
with model (3•1) we consider, as in $\S 2$, the underlying Markov chain. In

 the transition rates appearing in the master equation, Eq. (1-2). The result

$$
\Pi(X, Y ; X+1, Y)=\frac{A}{W(X, Y)}
$$

$$
\Pi(X, Y ; X+1, Y-1)=\frac{X(X-1) Y / N^{2}}{W(X Y)}
$$

$$
I(X, Y ; X-1, Y+1)=\frac{B X / N}{W(X, Y)}
$$

$$
\Pi(X, Y ; X-1, Y)=
$$

ә.ІәЧМ
Figure 3 represents the allowed transitions in the phase space (X, Y)
We see that some of the transitions connect states that are not nearest
neighbors, whence the mathematical difficulties in solving the problem. These peculiarities are to be connected with the fact that the limit cycle for the Brusselator tends to become triangular when the bifurcation parameter exceeds its critical value
 stochastic process described by $(3 \cdot 1)$ beyond the bifurcation point. As shown in Fig. 4, one obtains a steady-state probability function in the form of a
 trajectory that correspond to a slow motion are weighted by an absolute maximum

Fig. 4. Probability profile below and above the critical value B_{c} (not to scale).
 ent of the autocorrelation function of the concentration of X.
We see the appearance of damped oscillations past the bifurcation point, Interestingly, as the size of the system increases a systematic component close to the phenomenological oscillation becomes more and more evident, with a correspondingly diminishing damping. It is tempting to conjecture that in the thermodynamic limit, $N \rightarrow \infty$, there would be an undamped oscillation indicating a high phase coherence in the form of a probability peak rotating along the

G. Nicolis and M. Malek-Mansour

Fig. 5. Time dependence of normalized autocorrelation function characterizing
the passage to a limit cycle. $\quad \beta=$ intensive bifurcation parameter; $N=$ size parameter (in arbitrary units).

$$
\text { (see Eqs. }(A \cdot 3),(A \cdot 4))
$$

There is of course no discrepancy between these results and the existence of a stationary probability crater found when the long-time limit $t \rightarrow \infty$ is taken
 gets larger, the crater gets sharper, so that for $N \rightarrow \infty$ and $t \rightarrow \infty$ one gets: (3.2)
Here ρ denotes the couple $(X / N, Y / N), \bar{\rho}(t ; \phi)$ is the phenomenological trajectory, ϕ denotes the phase along the periodic trajectory and $a(\phi)$ are appropriate
 characterizing the ferromagnetic transition, and indeed, any transition associated with the breaking of a continuous symmetry group.
Nonequilibrium Phase Transitions and Chemical Reactions 259
A reasonable Ansatz is that $a(\phi)$ is an increasing function of the mean
sojourn times along the corresponding part of the limit cycle. This point is currently being investigated. ${ }^{19)}$

§ 4. Effect of diffusion

 ing a single fluctuating variable changing by jumps of ± 1 as in model (2.1). However, we are now interested in the effect of spatial fluctuations on the transition across the bifurcation point. We write the multivariate master equation in the more explicit form$\frac{P\left(\left\{X_{\alpha}\right\}, t\right)}{d t}=\sum_{\alpha^{\prime}}\left\{\lambda\left(X_{\alpha^{\prime}}-1\right) P\left(\cdots, X_{\alpha^{\prime}}-1, \cdots, t\right)-\lambda\left(X_{\alpha^{\prime}}\right) P\left(\left\{X_{\alpha^{\prime}}\right\}, t\right)\right.$

$$
(I \cdot \nabla)
$$

the Schlögl model, Eq. (2•1), they are given by

$\lambda\left(X_{\alpha}\right)=\frac{3}{N} X_{\alpha}\left(X_{\alpha}-1\right)+\left(1+\delta^{\prime}\right) N$

$$
(z \cdot \nabla) \quad{ }^{n} X(\Omega+\varepsilon)+\left(z-{ }^{p} X\right)\left(\tau-{ }^{p} X\right)^{p} X_{z}-N=\left({ }^{p} X\right) \pi
$$

 to approximations. One such approximation used widely recently $\left.{ }^{201} \sim 222\right)$ consists
 to the Schlögl model for a one-dimensional array of n cells with periodic boundary conditions, one finds that the space correlation of fluctuations around the steady state and for $\delta=\delta^{\prime} \geqq 0$ is
$8 R$

$$
\begin{aligned}
& \qquad|\alpha-\beta|=0,1, \cdots, n-1 \\
& \text { ith } \\
& \qquad R=1+\frac{\delta}{d}+\left(\left(1+\frac{\delta}{d}\right)^{2}-1\right)^{1 / 2} \\
& \text { As } n \rightarrow \infty \text { the range of correlations diverges as }|\delta|^{-1 / 2} \text { when the bifurcation } \\
& \text { point } \delta=\delta^{\prime}=0 \text { is approached. This is a classical law of divergence and leads } \\
& \text { to Eq. (2.6a) when integrated over the entire space. }
\end{aligned}
$$

We want now to go beyond this result. To this end, we condider again
 find, at the stationary state:
$\quad P\left(X_{\alpha}+1\right)=P\left(X_{\alpha}\right) \frac{\lambda\left(X_{\alpha}\right)+d / 2\left(E\left(\alpha+1 \mid X_{\alpha}\right)+E\left(\alpha-1 \mid X_{\alpha}\right)\right)}{\mu\left(X_{\alpha}+1\right)+d\left(X_{\alpha}+1\right)},(4 \cdot 4 \mathrm{a})$
where

represents the conditional average of X_{ξ}. A first approximation, developed some time ago by the authors ${ }^{23)}$ consists in adopting a "mean-field picture" whereby $E\left(\xi \mid X_{\alpha}\right)$ is independent of X_{α}. This is a reasonable assumption if the size of the cells is comparable to the correlation length. It leads to a nonlinear master equation for the one-cell probability $P\left(X_{\alpha}, t\right)$. We now ex-
 limit ourselves to a linear dependence: ${ }^{24)}$

(g・ォ)

 the correlation function $G\left(X_{\alpha}, r_{\alpha} ; X_{\beta}, r_{\beta}\right)=P\left(X_{\alpha}, r_{\alpha} ; X_{\beta}, r_{\beta}\right)-P\left(X_{\alpha}, r_{\alpha}\right) P\left(X_{\beta}\right.$,

 -sәse.ठ әsuәр јо Клоәप7

 result is:
with
$c=\frac{\langle X[\mu(X)-\lambda(X)]\rangle}{\left\langle(\delta X)^{2}\right\rangle}$,
$(9 \cdot \nabla)$
$(2 \cdot \nabla)$

(2.1). Numerical inspection suggests that c cannot vanish, whatever the value of δ, δ^{\prime} (N being kept finite). Thus, the spatial correlations do not

 Independently of the predictions concerning the critical region around the

 diffusion. The results are shown in Fig. 6 for $\delta=\delta^{\prime}=0.01$. Also plotted is the result obtained from truncations, Eq. $(4 \cdot 3 a)$. We see that the agreement between the simulations and the correction to the mean-field theory developed in this section is striking.

 tions by an additive noise term $F(\boldsymbol{r}, t)$ in the phenomenological rate laws, which then become stochastic differential equations. This term satisfies the usual condition $\langle F(\boldsymbol{r}, t)\rangle=0$ and $^{2 r)}$
$\left\langle F(\boldsymbol{r}, t) F\left(\boldsymbol{r}^{\prime}, t^{\prime}\right)\right\rangle=2\left\{\Gamma_{1}\left(\boldsymbol{r},\left\{X_{i}\right\}, t\right)+D \nabla^{2} \Gamma_{2}\left(\boldsymbol{r},\left\{X_{i}\right\}, t\right)\right\} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \delta\left(t-t^{\prime}\right)$,
If Γ_{1} and Γ_{2} contain a constant term independent of the state variables,

262

G. Nicolis and M. Malek-Mansour

 systems involving a single fluctuating order parameter, like the systems treated in $\S 2$, or the Brusselator in the vicinity of bifurcation of spatially inhomogeneous steady-state solutions. The result is of the form

(4.9)

$P \sim \exp \Psi$

 infinite one-and two-dimensional systems.

§ 5. Concluding remarks

 is the precise stochastic characterization of Hopf bifurcation, and the effect of diffusion at the level of a systematic perturbative treatment of the master equation in the vicinity of a bifurcation.

In addition to the internal fluctuations discussed throughout this paper

 complex environment that is itself fluctuating. Such fluctuations are modelled

Nonequilibrium Phase Transitions and Chemical Reactions:263
undergo important developments in the next few years.

> Appendix

 function space:

$$
\begin{aligned}
& f(s, t)=\sum_{X=0}^{\infty} s^{x} P(X, t), \quad|s| \leq 1 \\
& \text { We obtain } \\
& \left.\frac{\partial f(s, \tau)}{\partial \tau}=(1-s)\left\{\frac{1}{N^{2}} s^{2} \frac{\partial^{3} f}{\partial s^{3}}-\frac{3}{N} s^{2} \frac{\partial^{2} f}{\partial s^{2}}+(3+\delta) \frac{\partial f}{\partial s}-\left(1+\delta^{\prime}\right) f\right\} . \text { (A } \cdot 2\right)
\end{aligned}
$$

We can check straightforwardly that in the limit $N \rightarrow \infty$ this equation is satisfied by the following family of solutions: $f(s, t)=e^{(s-1)(\bar{x}+1) / \varepsilon} ; \quad \varepsilon=N^{-1} \ll 1, \quad(\mathrm{~A} \cdot 3)$
where \bar{x} satisfies the phenomenological equation $(2 \cdot 3 \mathrm{a})$. Indeed, inserting
into Eq. (A.2) we find:
$\left.(\mathrm{I}+\underline{x})(\Omega+\varepsilon)-\left({ }_{\sigma}(\mathrm{I}+\underline{x}) \varepsilon+{ }_{\varepsilon}(\mathrm{I}+\underline{x})-\right)_{\varepsilon} s\right\}=\underline{x}_{\underline{x} p^{3 /(I+\underline{x})(\tau-s)}}{ }^{2}$
 because of the negative exponential factor. Otherwise, the exponential factors cancel. Setting
we transform the remaining terms to
$\frac{d \bar{x}}{d t}=-\bar{x}^{3}-\delta \bar{x}+\left(\delta^{\prime}-\delta\right)+0(\varepsilon)$
which is identical to $(2 \cdot 3 \mathrm{a})$ in the thermodynamic limit. In other words, in this limit and for $t \rightarrow \infty$ the master equation is satisfied by functions sharply

264
peaked (in fact: functions displaying a delta-function singularity) around the
 with Kurtz's theorem, and suggests a systematic expansion of the master equaion around (A•3)

together with

$f=f^{(0)}\left(1+\varepsilon^{r} f^{(1)}+\varepsilon^{2 r} f^{(2)}+\cdots\right)$,

(诵•V)

$$
(q 7 \cdot V)
$$

 tion theory.

(A.5)

 Matkowsky in the context of singular perturbations. ${ }^{33)}$. We set

$$
(A \cdot 6)
$$

$$
(O I \cdot V) \quad \cdot I=-D+{ }^{+} D
$$

$$
(6 \cdot \mathrm{~V})
$$

$A(x, \varepsilon)=\sum_{n} A_{n}(x) \varepsilon^{n}, \quad n \geq 0$.

$$
\begin{aligned}
& \qquad \frac{V(x)}{D(x)}\left(\dot{A}_{0}{ }^{\prime}+A_{0} \frac{D^{\prime}}{D}\right)=0, \\
& \text { whose solution for any } x \text { different from } \bar{x} \text { is: }
\end{aligned}
$$

C_{0} being an integration constant.

We now apply Eq. (A.6) to (A.8) in the vicinity of the resonance points
\bar{x} by expanding $V(x)$ around these points and keeping the first nontrivial

 obtain in this way a global representation of P of the form:

 unity. Because of the singular dependence of (A.9) in ε this yields
This is equivalent to the coexistence condition derived in $\S 2$ from the exact solution of the master equation, ${ }^{12)}$ except of course that one has to adapt this condition to the Fokker-Planck equation. ${ }^{13)}$
 $=\bar{x}_{0}$. Consider the situation in the example of the Schlögl model. From § 2, $\left(\bar{x}_{ \pm}-\bar{x}_{0}\right)^{2}=|\delta|$. Since $U^{\prime \prime}\left(\bar{x}_{ \pm}\right)$is negative, the matching is a utomatically satis-

 to unity and the matching condition yields

$$
\frac{C_{+}}{C_{-}}=-\frac{D^{-1}\left(\bar{x}_{+}\right)\left(\frac{-2}{D^{\prime \prime}\left(\bar{x}_{+}\right)}\right)^{1 / 2}\left(\bar{x}_{-}\right)\left(\frac{-2}{U^{\prime \prime}\left(\bar{x}_{-}\right)}\right)^{1 / 2}}{\text { Again, this agrees with the results of the exact solution of the master equa- }} \text { (A.12) }
$$

ton ${ }^{12)}$ or of the nonlinear Fokker-Planck equation. ${ }^{13)}$ Thus, the weights of the
probability peaks around the stable solutions can be calculated in a perturba-
ive fashion.
The method is currently being extended ${ }^{32)}$ to a perturbative treatment
the time-dependent version of Eq. $(A \cdot 5)$.

> References

1) G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New

W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York),
Vol. I and Π, $1955 / 1966$.
W. Horsthemke and L. Brenig, Z. Phys. B27 (1977), 341 .
P. Hänggi, Helv. Phys. Acta 51 (1978), 183
2) T. G. Kurtz, J. Appl. Phys. 8 (1971), 344 ;
Stoch. Proc. and Applic. 6 (1978), 223.
F. Schlögl, Z. Phys. 253 (1972), 147.
3) R. Thom, Stabilité Structurelle et Morphogénèse (Benjamin, New York, 1972).
4) S. Karlin and J. L. Mc Gregor, Trans. Amer. Math. Soc. 85 (1957), 489.
H. K. Janssen, Z. Phys. 270 (1974), 67.
I. S. Matheson, D. F. Walls and C. W. Gardiner, J. Stat. Phys, 12 (1975), 21.
G. Nicolis and J. W. Turner, Physica 89A (1977), 326.
G. Nicolis and J. W. Turner, Proceedings of the Conference on Bifurcation Theory and Applications in Scientific Disciplines, Trans. New York Acad. Sci. (in the press) W. Horsthemke, M. Malek-Mansour and L. Brenig, Z. Phys. B28 (1977), 135. 4) I. Procaccia and J. Ross, J. Chem. Phys. 67 (1977), 5558.
5) K. Tomita and H. Tomita, Prog. Theor. Phys. 51 (1974), 1731. 6) M. Malek-Mansour, Ph. D. Dissertation Univ. of Brussels (1979). 17) W. Ebeling, Phys. Letters (submitted).
6) R. Feistel and W. Ebeling, Physica, in press (1978). 19) W. Ebeling and G. Nicolis, to be pubished).
7) C. W. Gardiner, K. Mc Neil, D. Walls and I. Matheson, J. Stat. Phys. 14 (1976), 309.
8) H. Lemarchand and G. Nicolis, Physica 82A (1976), 251.
9) H. Haken, Z. Phys. B20 (1975), 413. 19) W. Ebeling and G. Nicolis, to be published).
10) C. W. Gardiner, K. Mc Neil, D. Walls and I. Matheson, J. Stat. Phys. 14 (1976), 309.
11) H. Lemarchand and G. Nicolis, Physica 82A (1976), 251.
12) H. Haken, Z. Phys. B20 (1975), 413. 23) M. Malek-Mansour and G. Nicolis, J. Stat. Phys. 13 (1975), 197 24) M. Malek-Mansour and J. Houard, Phys. Letters (submitted),
13) G. Dewel, D. Walgraef and P. Borckmans, Z. Phys. B28 (1977), 235. 25) G. Dewel, D. Walgraef and P. Borckmans, Z. Phys. B28 (1977), 235. 26) G. Dewel, P. Borckmans and D. Walgraef, Phys. Rev. Letters (in the press).
14) C. Gardiner, J. Stat. Phys. 15 (1976), 451 . 27) C. Gardiner, J. Stat. Phys. 15 (1976), 451.
H. Mori, Prog. Theor. Phys, 53 (1975), 1617.
15) W. Horsthemke and M. Malek-Mansour, Z. Phys. B24 (1976), 307.
16) L. Arnold, W. Horsthemke and R. Lefever, Z. Phys. B29 (1978), 367
17) S. Kabashima, S. Kogure, T. Kawakubo and T. Okada, J. Phys. Soc. Japan (in the press).
J. L. Lebowitz: What is the relation between the variables entering into the deterministic equation and the stochastic variables? Are the deterministic varia-
G. Nicolis: In simple situations, typically those described by single humped probability distributions, the phenomenological equations describing the evolution of the macrovariables are identical to the first moment equations of the master equation. In this case, the macrovariables are statistical averages of the stochastic variables. The situation may be different in the presence of simultaneously stable states. As we see in $\$ 2$ of my talk, the first moment equation is no longer closed,
since the variance of the fluctuations of extensive quantities is of the order of the square of the size of the system. Still, the phenomenological equations keep a meaning if the macrovariables are now interpreted as the most probable values, around which the probability peaks are centered.
N. G. van Kampen: What do you mean by "continuous Markov process"?
The fact that x takes values in a continuous range does not imply that the nonlinear Fokker-Planck equation is valid.
G. Nicolis: You are right. One must also require that the two well-known Kolmogorov conditions on the transition probability be satisfied.
N. G. van Kampen: I do not think the macroscopic rate equations determine uniquely the transition probabilities that occur in the master equation.
G. Nicolis: To pursue the comment by Prof. van Kampen, one can say that in addition to the formal structure of the rate equations, one should specify that the various terms therein describe the rate of chemical reactions as given by the laws

 J. Ross: What is the relation between $\because(x)$ and $\checkmark(x)$?
G. Nicolis: The expression of the stochastic potential $U(x)$ is complicated in the general case. Near the bifurcation point $\delta=\delta^{\prime}=0$, however, it reduces to

$$
-q(x)=\frac{x^{4}}{4}-\frac{\delta^{\prime}}{2} x^{3}+\frac{3 \delta^{\prime}-\delta}{4} x^{2}+\left(\delta-\delta^{\prime}\right) x,
$$

where x is an intensive variable related to X by the first relation (2•2). Comparing with expression $(2 \cdot 3 b)$ of the phenomenological potential $C(x)$, we see that the major difference is the occurrence of the cubic term in $Q U(x)$. This term compromises the validity of the Maxwell type rule and at
introduces an asymmetry of $P(x)$ around the unstable state x_{0}.
P. C. Martin: I still have not understood. Do different methods give different predictions for the variances, for the existence of bifurcations, for the most pro-

G. Nicolis and M. Malek-Mansour

phase transition is wiped out by fluctuations?
G. Nicolis: In $\S 2$, we have shown that the Kolmogorov equations $(1 \cdot 2)$ or
$(1 \cdot 3)$ [neglecting the effect of diffusion] yield a coexistence condition beyond

 latter is also the condition that one would obtain using a Fokker-Planck equation with a constant diffusion coeffcient. Such an assumption is generally not justified for a chemical system. We conclude therefore that the coexistence condition based
 other hand, before bifurcation takes place these differences become irrelevant.
 approaches. The situation is much more complicated in the case of inhomogeneous
 multivariate master equation and on the renormalization group ideas. The connection between them is, however, still an open problem. Experimental evidence is not yet available at this time.
H. Haken: In the discussion of metastable states and coexistence, one has to
 b) variables. The probability distribution refers to an ensemble. Thus in case (a) at each time only a single (macroscopic) state is realized. In case of bistability,
 to another, but these states don't coexist. The situation is different in case (b)
 diffusion terms can lead to spatial (or temporal) patterns. One is then led to con-

 sұч®,

 ask what the relative number of evolutions, which will be attracted to each of the table states, will be. I believe that this sort of information is provided by the D. Walls: Are the asymptotic distributions in fact Poisson distributions which
approach delta functions in the thermodynamic limit?
G. Nicolis: In the asymptotic evaluation of $P(x)[E q .(2 \cdot 7)]$, the delta functions [see Eq. $(2 \cdot 9)$] appear as limits of Gaussian distribution functions as the size N goes to infinity. The Poisson distributions appear more naturally in the gen

[^0]: § 1. Introduction
 equilibrium has received considerable attention recently. This paper is devoted to the analysis of a particular class of such systems, namely systems in

 is amenable to a set of phenomenological laws of evolution for a limited number of macroscopic observables, typically the concentrations \bar{x}_{i} of the active
 constant temperature throughout, the evolution equations of these variables take the form:
 (1-1)

[^1]:

