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Nonequilibrium Phase Transitions in Models of Aggregation, Adsorption, and Dissociation
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We study nonequilibrium phase transitions in a mass-aggregation model which allows for diffusion,
aggregation on contact, dissociation, adsorption, and desorption of unit masses. We analyze two limits
explicitly. In the first case mass is locally conserved, whereas in the second case local conservation
is violated. In both cases the system undergoes a dynamical phase transition in all dimensions. In
the first case, the steady state mass distribution decays exponentially for large mass in one phase, and
develops an infinite aggregate in addition to a power-law mass decay in the other phase. In the second
case, the transition is similar except that the infinite aggregate is missing. [S0031-9007(98)07462-6]

PACS numbers: 64.60.—i, 05.40.+j, 68.45.Gd

The steady state of a system in thermal equilibriumare quite straightforward. Beginning with a state in which
is described by the Gibbs distribution. Phase transitionthe masses are placed randomly, a site is chosen at
which occur in such equilibrium systems as one changesandom. Then one of the following events can occur.
the external fields such as temperature or magnetic field (1) Adsorption: With ratey, a unit mass is adsorbed at
are by now well understood. On the other hand, there isitei; thusm; — m; + 1.

a wide variety of inherentlyponequilibriumsystems in na- (2) Desorption: With rate, a unit mass desorbs from
ture whose steady states are not described by the Giblsite i; thusm; — m; — 1 providedm; = 1.

distribution, but are determined by the underlying micro- (3) Chipping (single-particle dissociation): With rate
scopic dynamical processes and are often hard to detew, a bit of the mass at the site “chips” off, i.e., provided
mine. Examples include systems exhibiting self-organized:; = 1, a single particle leaves site and moves with
criticality [1], several reaction-diffusion systems [2], fluc- equal probability to one of the neighboring sites 1 or
tuating interfaces [3], and many others. As one changes + 1;thusm; — m; — 1 andm;+; — m;+; + 1.

the rates of the underlying dynamical processes, the steady (4) Diffusion and aggregation: With rate the mass
states of such systems may undergo nonequilibrium phase; at sitei moves either to sité — 1 or to sitei + 1. If
transitions. As compared to their equilibrium counter-it moves to a site which already has some patrticles, then
parts, these nonequilibrium steady states and the trandhe total mass just adds up; thug — 0 and m;+; —
tions between them are much less understood due to the;~, + m;.

lack of a general framework. It is therefore important and Note that we have assumed that both desorption and
necessary to study simple models amenable to analysdiffusion rates are independent of the mass. In a more re-
in order to understand the mechansims of such phasdistic situation these rates would depend upon the mass.
transitions. However, our aim here is not to study this model in full

Here we study the nonequilibrium phase transitions irgenerality, but rather to identify the mechanism of a dy-
an important class of systems which involve microscopicmamical phase transition in the simplest possible scenario
processes of diffusion and aggregation, dissociation, adavolving these microscopic processes. Indeed, we show
sorption and desorption of masses. These processes drelow that even within this simplest scenario, novel dy-
ubiquitous in nature, and arise in a variety of physicalnamical phase transitions occur which are nontrivial yet
settings, for example, in the formation of colloidal sus-amenable to analysis.
pensions [4] and polymer gels [5], on the one hand, and Though the model can be studied in the full parameter
aerosols and clouds [6], on the other. They also enter ispace of all four basic processes, for simplicity we re-
an important way in surface growth phenomena involv-strict ourselves here to the following two limiting cases:
ing island formation [7]. In this Letter, we introduce a (i) p = 0, ¢ = 0, i.e., only chipping, diffusion, and ag-
simple lattice model incorporating these microscopic pro-gregation moves are allowed. In this limit, mass is lo-
cesses and study the nonequilibrium steady states and thally conserved by the moves, and we call this model the
transitions between them both analytically within mean-conserved-mass aggregation model (CMAM). {i)= 0,
field theory and numerically in one dimension. i.e., all moves except for chipping are allowed. In this

Our lattice model, which evolves in continuous time, iscase, adsorption and desorption lead to violation of local
defined as follows. For simplicity we define the modelmass conservation. We call this the in-out model. In this
on a one-dimensional lattice with periodic boundaryLetter, we analyze the CMAM model in some detail and
conditions although generalizations to higher dimensionsnly outline the main results for the in-out model.
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Let us summarize our main results as follows: (i) Into either of the neighboring sites, or a mass from the
the CMAM, single particles are allowed to chip off neighboring site might move or chip off to the site
from massive conglomerates. This move corresponds tm consideration. The probability of occupation of the
the physical process of single functional units breakingneighboring sites(r) = > ,,—, P(m,t), multiplies P(m, t)
off from larger clusters in the polymerization problem. within the mean-field approximation where one neglects
It leads to a replenishment of the lower end of thethe spatial correlations in the occupation probabilities of
mass spectrum, and competes with the tendency of theeighboring sites. The remaining three terms in Eq. (1)
coalescence process to produce more massive aggregat@se the “gain” terms enumerating the number of ways
The result of this competition is that two types of that a site with massn’ # m can gain the deficit
steady states are possible, and there is a dynamical phasassm — m’. The second equation Eg. (2) is a similar
transition between the two. In one state, the steady staenumeration of the possibilities for loss and gain of empty
mass distributionP(m) decays exponentially, while the sites. Evidently, the mean-field equations conserve the
other is more striking and interestind’(m) decays as total mass.

a power law for largem but in addition develops a  To solve the equations, we compute the generating
delta function peak ain = «. Physically this means function,Q(z,t) = > _, P(m,t)z™ from Eq. (1) and set
that an infinite aggregate forms that subsumes a finiteQ/dr = 0 in the steady state. We also need to use
fraction of the total mass, and coexists with smallerEq. (2) to write P(1,¢) in terms ofs(r). This gives us
finite clusters whose mass distribution has a power-lava quadratic equation fap in the steady state. Choosing
tail. In the language of sol-gel transitions, the infinite the root that corresponds ®(z = 0) = 0, we find

aggregate is like the gel while the smaller clusters form W+ 25 + ws W WSz
the sol. However, as opposed to the models of irreversible 0@) = ——F—F— — 77— —
) ; . 2 2z 2
gelation where the sol disappears in the steady state,
in our model the sol coexists with the gel even in the 4 ows (1 -2 \/( ~ )G - ) 3)
steady state. Interestingly, the mechanism of formation of 2z LT Tl

the infinite aggregate in the steady state resembles Bose- _
Einstein condensation (BEC), though the condensate (th¥here zi2 = (w + 2 = 2vw + 1)/ws. The value of
infinite aggregate here) forms in real space rather thaH'€ Occupation probability is fixed by mass conserva-
momentum space as in conventional BEC. (ii) In the in-10n which implies tha®. mP(m) = M/L = p. Putting
out model too we find a phase transition in the steady stat&@(z = 1) = p, the resulting relation betweep and
as the adsorptiongf and desorptionf) rates are varied. 'S

In one phase (low values @l P(m) decays exponentially, _ oy _ _

whereas in the other phase (highit has a power-law tail. 2p =w(l =) WS\/(ZI Dz = 1. “)
This power-law phase is similar to that of the Takayasu The steady state probability distributiaf(m) is the

model [8] of particle injection and aggregation. coefficient ofz™ in Q(z) and can be obtained from(z)
We first analyze the CMAM within the mean-field in Eq. (3) by evaluating the integral

approximation, ignoring correlations in the occupancy of 1 0(z)

adjacent sites. Then we can directly write down equations P(m) = i 14z (5)

for P(m,t), the probability that any site has a massat TG 2

time ¢: over the contoulCy encircling the origin. The singulari-
dP(m, 1) ties of the integrand govern the asymptotic behavior of
—0 - —(1+w)[1 + s(@)]P(m,1) P(m) for largem. Clearly the integrand has branch cuts

atz = z;,. For fixedw, if one increases the densipy,

T wP(m + 10 + ws(t)Plm = 1,1) the occupation probability also increases as evident from

+ P *x P; m=1, (1) EQq. (4). As aresult, both the roots, start decreasing.
As long as the lower root; is greater thar, Eq. (4) is
ar©,1) _ —(1 + w)s()P(0,7) + wP(1,1) + s(1). well defined and the analysis of the contour integration
dt @) around the branch cut= z; yields for largem,

Here s(r) = 1 — P(0,1) is the probability that a site is P(m) ~ e~ [m2, (6)
occupied by a mass, all* P = > _ P(m',t)P(m —  where the characteristic mass* = 1/In(z;) and di-
m’, t) is a convolution term that describes the coalescenceerges as~(s. — s)~! ass approaches. = (w + 2 —
of two masses. 24w + 1)/w. s. is the critical value ofs at which

The above equations enumerate all possible ways i, = 1. This exponentially decaying mass distribution
which the mass at a site might change. The first term ins the signature of the “disordered” phase which occurs
Eq. (1) is the “loss” term that accounts for the probabilityfor s < s. or equivalently from Eg. (4) forp < p. =
that a massm might move as a whole or chip off vw + 1 — 1.
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When p = p., we havez; = 1, and analysis of the results here for a relatively small size lattide,= 1024,
contour around; = z; = 1 yields a power-law decay of we have checked our results for larger sizes as well. We
P(m), confirmed that all the qualitative predictions of the mean-

P(m) ~ m™5/2, (7) field theory remain true, by calculating(m) numerically
in the steady state. Figure 1 displays two numerically ob-
tained plots ofP(m). The existence of both the “Expo-
nential” (denoted byx) for p < p. and the “Aggregate”
phase (denoted by) for p > p. is confirmed. In particu-
. . . X lar, the second curve shows clear evidence of a power-law
sticks to its critical value, or equivalently the lower root o ayior of the distribution, which is cut off by finite-size
z; sticks tol. Physically this implies that adding more ofacts and for an “infinite”’ aggregate beyond. We con-
particles does not change the occupation probability ofyeq that the mashl, ¢, in this aggregate grows linearly
sites. This can happen only if all the additional particles, ;i the size, and that the spre@M,,, grows sublin-

(as p is increased) aggregate on a vanishing fraction,,.v implving that the ratié M. ... /M... approaches zero
of sites, thus not contributing to the occupation of the; y, impwing sez/Mags 3P

T . in the thermodynamic limit. The exponefrtyam Which
others. Hence in this “infinite-aggregate” pha¥@:) has  cparacterizes the finite-mass fragment power-law decay for
an infinite-mass aggregate, in addition to the power-law

~5/2 i p > pe is numerically fo_u_nd to p€.33 + 0.02 and re-
decaym_ . Concomitantly Eq. (4) ceases to hold, and ,5ins the same at the critical poipt= p..
the relation now becomes

We note that in conserved-aggregation models studied

p = W (1= s¢) + po, (8)  earlier within mean-field theory [9,10], the steady state
2 mass distribution also changed from an exponential distri-

where p.. is the fraction of the mass in the infinite pution to a power law as the density was increased beyond

aggregate. The mechanism of formation of the aggregaig critical value. However, the existence of the striking in-

is reminiscent of Bose-Einstein condensation. In thafinite aggregate in the steady state for> p. was not

case, for temperatures in which a macroscopic condensajgentified earlier.

exists, particles added to the system do not contribute to We next study the steady state phase diagram of the

the occupation of the excited states; they only add to théh-out model in theg-p plane. In this model, mass is

condensate, as they do to the infinite aggregate here.  not locally conserved. The mass per sitér) evidently

Thus the mean-field phase diagram (see inset of Fig. Igbeys the exact equation
of the system consists of two phases, “Exponential” M

As p is increased further beyongd., s cannot increase
any more because if it does so, the reptwvould be less
than1 (while the other root; is still bigger thanl) and

Eq. (4) would be undefined. The only possibility is that

and “Aggregate,” which are sgpara_ted by the phase — =g — ps(1), 9)
boundaryp. = vw + 1 — 1. While this phase diagram dt

remains qualitatively the same even in 1D, the exponentghere s(¢) is the fraction of sites occupied by a mass
characterizing the power laws are different from their,;; = 1. In the steady state, let the mean values6r
mean-field values (see Fig. 1). bes. If ¢/p is low, s adjusts to make; — ps vanish,
We have studied this model using Monte Carlo simula-and the mean mass reaches a time-independent walue
tions on a one-dimensional lattice. Although we presentrhis defines the finite-mass phase. As we will see below,
asq/p increases beyond a critical valuenever catches

‘ T up with ¢/p and reaches a steady state value which is
0.1 . ' Aggregate o | less thany/p; in this phaseM increases linearly in time
I Pl 1 while P(m,t) ~ m~™ f(mt~*) which in the long time
0.001} T B limit converges to a time-independent form, decaying as
i g M a power law with exponentz, even though the moments
c 1le-05} of this distribution diverge as time increases to infinity.
el i We call this the growing-mass or the Takayasu phase.
le-07} In fact, for p = 0 the in-out model reduces exactly to
L # the Takayasu model (TM) of injection and aggregation
le-09! I | of masses [8] which has found widespread applications
I : ranging from river models [11] to granular systems [12].
le-11 ‘ ‘ ‘ Indeed, what we find here is that the growing mass phase
1 10 100 1000 10000  of the TM atp = 0 persists up to a nonzero critical value
m pc(q) for a giveng, while for p > p.(¢) the mass stops

FIG. 1. Log-log plot ofP(m) vs m for the CMAM, for p < growing andP(m) decays exponentially for large in the

=,> p. on a lattice withL = 1000. Inset: Phase diagram. steady state. . . i .
The solid line and the points indicate the phase boundary within The mean-field analysis of the in-out model is similar
mean-field theory and 1D simulation, respectively. to that of the CMAM model though a little bit trickier.
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0 helps, however, to understand physically the nature of the
0 . transition in the in-out model. In the interface language
0 ~ this corresponds to a wetting transition; the key factor
. 0. | responsible for the occurrence of the smooth phase is a
: | substrate, implicit in the constraimi; = 0 in the in-out
8 . % \ model. The wet phase is identified with a growing mass
I * | phase, which has a rough profile, with exact roughness
i . 1 exponent yr = 5/2 [13] in 1D. Since yr > 1, the
-12) - 1 | interface in the wet phase is not self-affine. Recently a
o Fenentel Lt . nonequilibrium wetting transition was also observed in
| T rakayasu . | an interface model [14] where the interface in the wet
-16¢ o " 1 phase is self-affine due to surface tension effects which
4 s s ‘ s are absent in our model. Interestingly, however, in our
0 1 2 3 4 5 6 model the substrate is able to induce a self-affine interface
log m at the critical point with roughness exponept= 1/3
FIG. 2. Log-log plot of P(m) vs m for the in-out model, for ~Within mean-field theory ang ~ 0.7 in 1D [13], despite
p <,=,> p., corresponding to the “Exponential,” critical, and the anomalously large roughness of the wet phase.
“Takayasu” phases. Inset: Phase diagram. The solid line and We thank Deepak Dhar for useful discussions and

the points indicate the phase boundary within mean-field theorg Cueille and S. Redner for pointing out Refs. [9] and
and 1D simulation, respectively. [10] to us

log P(m)
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