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Nonequilibrium Phase Transitions in Models of Aggregation, Adsorption, and Dissociation
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We study nonequilibrium phase transitions in a mass-aggregation model which allows for diffusion,
aggregation on contact, dissociation, adsorption, and desorption of unit masses. We analyze two limits
explicitly. In the first case mass is locally conserved, whereas in the second case local conservation
is violated. In both cases the system undergoes a dynamical phase transition in all dimensions. In
the first case, the steady state mass distribution decays exponentially for large mass in one phase, and
develops an infinite aggregate in addition to a power-law mass decay in the other phase. In the second
case, the transition is similar except that the infinite aggregate is missing. [S0031-9007(98)07462-6]
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The steady state of a system in thermal equilibriu
is described by the Gibbs distribution. Phase transitio
which occur in such equilibrium systems as one chang
the external fields such as temperature or magnetic fie
are by now well understood. On the other hand, there
a wide variety of inherentlynonequilibriumsystems in na-
ture whose steady states are not described by the Gi
distribution, but are determined by the underlying micro
scopic dynamical processes and are often hard to de
mine. Examples include systems exhibiting self-organiz
criticality [1], several reaction-diffusion systems [2], fluc
tuating interfaces [3], and many others. As one chang
the rates of the underlying dynamical processes, the ste
states of such systems may undergo nonequilibrium pha
transitions. As compared to their equilibrium counte
parts, these nonequilibrium steady states and the tran
tions between them are much less understood due to
lack of a general framework. It is therefore important an
necessary to study simple models amenable to analy
in order to understand the mechansims of such pha
transitions.

Here we study the nonequilibrium phase transitions
an important class of systems which involve microscop
processes of diffusion and aggregation, dissociation, a
sorption and desorption of masses. These processes
ubiquitous in nature, and arise in a variety of physic
settings, for example, in the formation of colloidal sus
pensions [4] and polymer gels [5], on the one hand, a
aerosols and clouds [6], on the other. They also enter
an important way in surface growth phenomena involv
ing island formation [7]. In this Letter, we introduce a
simple lattice model incorporating these microscopic pr
cesses and study the nonequilibrium steady states and
transitions between them both analytically within mean
field theory and numerically in one dimension.

Our lattice model, which evolves in continuous time, i
defined as follows. For simplicity we define the mode
on a one-dimensional lattice with periodic boundar
conditions although generalizations to higher dimensio
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are quite straightforward. Beginning with a state in whic
the masses are placed randomly, a site is chosen
random. Then one of the following events can occur.

(1) Adsorption: With rateq, a unit mass is adsorbed a
site i; thusmi ! mi 1 1.

(2) Desorption: With ratep, a unit mass desorbs from
site i; thusmi ! mi 2 1 providedmi $ 1.

(3) Chipping (single-particle dissociation): With rat
w, a bit of the mass at the site “chips” off, i.e., provide
mi $ 1, a single particle leaves sitei and moves with
equal probability to one of the neighboring sitesi 2 1 or
i 1 1; thusmi ! mi 2 1 andmi61 ! mi61 1 1.

(4) Diffusion and aggregation: With rate1, the mass
mi at sitei moves either to sitei 2 1 or to sitei 1 1. If
it moves to a site which already has some particles, th
the total mass just adds up; thusmi ! 0 and mi61 !
mi61 1 mi.

Note that we have assumed that both desorption
diffusion rates are independent of the mass. In a more
alistic situation these rates would depend upon the ma
However, our aim here is not to study this model in fu
generality, but rather to identify the mechanism of a d
namical phase transition in the simplest possible scen
involving these microscopic processes. Indeed, we sh
below that even within this simplest scenario, novel d
namical phase transitions occur which are nontrivial y
amenable to analysis.

Though the model can be studied in the full parame
space of all four basic processes, for simplicity we r
strict ourselves here to the following two limiting case
(i) p ­ 0, q ­ 0, i.e., only chipping, diffusion, and ag-
gregation moves are allowed. In this limit, mass is l
cally conserved by the moves, and we call this model
conserved-mass aggregation model (CMAM). (ii)w ­ 0,
i.e., all moves except for chipping are allowed. In th
case, adsorption and desorption lead to violation of lo
mass conservation. We call this the in-out model. In th
Letter, we analyze the CMAM model in some detail an
only outline the main results for the in-out model.
© 1998 The American Physical Society 3691



VOLUME 81, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 26 OCTOBER1998

n

t

e
a

s

t

e

e

ts
of
1)
ys

r
ty
he

ng

se

of
s

n

n
rs
Let us summarize our main results as follows: (i) I
the CMAM, single particles are allowed to chip of
from massive conglomerates. This move corresponds
the physical process of single functional units breaki
off from larger clusters in the polymerization problem
It leads to a replenishment of the lower end of th
mass spectrum, and competes with the tendency of
coalescence process to produce more massive aggreg
The result of this competition is that two types o
steady states are possible, and there is a dynamical ph
transition between the two. In one state, the steady s
mass distributionPsmd decays exponentially, while the
other is more striking and interesting:Psmd decays as
a power law for largem but in addition develops a
delta function peak atm ­ `. Physically this means
that an infinite aggregate forms that subsumes a fin
fraction of the total mass, and coexists with small
finite clusters whose mass distribution has a power-l
tail. In the language of sol-gel transitions, the infinit
aggregate is like the gel while the smaller clusters for
the sol. However, as opposed to the models of irreversi
gelation where the sol disappears in the steady sta
in our model the sol coexists with the gel even in th
steady state. Interestingly, the mechanism of formation
the infinite aggregate in the steady state resembles Bo
Einstein condensation (BEC), though the condensate (
infinite aggregate here) forms in real space rather th
momentum space as in conventional BEC. (ii) In the i
out model too we find a phase transition in the steady st
as the adsorption (q) and desorption (p) rates are varied.
In one phase (low values ofq) Psmd decays exponentially,
whereas in the other phase (highq) it has a power-law tail.
This power-law phase is similar to that of the Takaya
model [8] of particle injection and aggregation.

We first analyze the CMAM within the mean-field
approximation, ignoring correlations in the occupancy
adjacent sites. Then we can directly write down equatio
for Psm, td, the probability that any site has a massm at
time t:

dPsm, td
dt

­ 2s1 1 wd f1 1 sstdgPsm, td

1 wPsm 1 1, td 1 wsstdPsm 2 1, td

1 P p P; m $ 1 , (1)

dPs0, td
dt

­ 2s1 1 wdsstdPs0, td 1 wPs1, td 1 sstd .

(2)

Here sstd ; 1 2 Ps0, td is the probability that a site is
occupied by a mass, andP p P ­

Pm
m0­1 Psm0, tdPsm 2

m0, td is a convolution term that describes the coalescen
of two masses.

The above equations enumerate all possible ways
which the mass at a site might change. The first term
Eq. (1) is the “loss” term that accounts for the probabili
that a massm might move as a whole or chip off
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to either of the neighboring sites, or a mass from th
neighboring site might move or chip off to the site
in consideration. The probability of occupation of th
neighboring site,sstd ­

P
m­1 Psm, td, multipliesPsm, td

within the mean-field approximation where one neglec
the spatial correlations in the occupation probabilities
neighboring sites. The remaining three terms in Eq. (
are the “gain” terms enumerating the number of wa
that a site with massm0 fi m can gain the deficit
massm 2 m0. The second equation Eq. (2) is a simila
enumeration of the possibilities for loss and gain of emp
sites. Evidently, the mean-field equations conserve t
total mass.

To solve the equations, we compute the generati
function,Qsz, td ­

P`
m­1 Psm, tdzm from Eq. (1) and set

≠Qy≠t ­ 0 in the steady state. We also need to u
Eq. (2) to writePs1, td in terms of sstd. This gives us
a quadratic equation forQ in the steady state. Choosing
the root that corresponds toQsz ­ 0d ­ 0, we find

Qszd ­
w 1 2s 1 ws

2
2

w
2z

2
wsz

2

1 ws
s1 2 zd

2z

q
sz 2 z1d sz 2 z2d , (3)

where z1,2 ­ sw 1 2 7 2
p

w 1 1 dyws. The value of
the occupation probabilitys is fixed by mass conserva-
tion which implies that

P
mPsmd ­ MyL ; r. Putting

≠zQsz ­ 1d ­ r, the resulting relation betweenr and
s is

2r ­ ws1 2 sd 2 ws
q

sz1 2 1d sz2 2 1d . (4)

The steady state probability distributionPsmd is the
coefficient ofzm in Qszd and can be obtained fromQszd
in Eq. (3) by evaluating the integral

Psmd ­
1

2pi

Z
C0

Qszd
zm11 dz (5)

over the contourC0 encircling the origin. The singulari-
ties of the integrand govern the asymptotic behavior
Psmd for largem. Clearly the integrand has branch cut
at z ­ z1,2. For fixedw, if one increases the densityr,
the occupation probabilitys also increases as evident from
Eq. (4). As a result, both the rootsz1,2 start decreasing.
As long as the lower rootz1 is greater than1, Eq. (4) is
well defined and the analysis of the contour integratio
around the branch cutz ­ z1 yields for largem,

Psmd , e2mymp

ym3y2, (6)

where the characteristic mass,mp ­ 1y lnsz1d and di-
verges as,ssc 2 sd21 as s approachessc ­ sw 1 2 2

2
p

w 1 1 dyw. sc is the critical value ofs at which
z1 ­ 1. This exponentially decaying mass distributio
is the signature of the “disordered” phase which occu
for s , sc or equivalently from Eq. (4) forr , rc ­p

w 1 1 2 1.
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When r ­ rc, we havez1 ­ 1, and analysis of the
contour aroundz ­ z1 ­ 1 yields a power-law decay of
Psmd,

Psmd , m25y2. (7)

As r is increased further beyondrc, s cannot increase
any more because if it does so, the rootz1 would be less
than1 (while the other rootz2 is still bigger than1) and
Eq. (4) would be undefined. The only possibility is thats
sticks to its critical valuesc or equivalently the lower root
z1 sticks to1. Physically this implies that adding more
particles does not change the occupation probability
sites. This can happen only if all the additional particle
(as r is increased) aggregate on a vanishing fractio
of sites, thus not contributing to the occupation of th
others. Hence in this “infinite-aggregate” phasePsmd has
an infinite-mass aggregate, in addition to the power-la
decaym25y2. Concomitantly Eq. (4) ceases to hold, an
the relation now becomes

r ­
w
2

s1 2 scd 1 r` , (8)

where r` is the fraction of the mass in the infinite
aggregate. The mechanism of formation of the aggreg
is reminiscent of Bose-Einstein condensation. In th
case, for temperatures in which a macroscopic condens
exists, particles added to the system do not contribute
the occupation of the excited states; they only add to t
condensate, as they do to the infinite aggregate here.

Thus the mean-field phase diagram (see inset of Fig.
of the system consists of two phases, “Exponentia
and “Aggregate,” which are separated by the pha
boundary,rc ­

p
w 1 1 2 1. While this phase diagram

remains qualitatively the same even in 1D, the expone
characterizing the power laws are different from the
mean-field values (see Fig. 1).

We have studied this model using Monte Carlo simul
tions on a one-dimensional lattice. Although we prese
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FIG. 1. Log-log plot ofPsmd vs m for the CMAM, for r ,,
­, . rc on a lattice withL ­ 1000. Inset: Phase diagram.
The solid line and the points indicate the phase boundary with
mean-field theory and 1D simulation, respectively.
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results here for a relatively small size lattice,L ­ 1024,
we have checked our results for larger sizes as well. W
confirmed that all the qualitative predictions of the mea
field theory remain true, by calculatingPsmd numerically
in the steady state. Figure 1 displays two numerically o
tained plots ofPsmd. The existence of both the “Expo-
nential” (denoted by3) for r , rc and the “Aggregate”
phase (denoted by1) for r . rc is confirmed. In particu-
lar, the second curve shows clear evidence of a power-
behavior of the distribution, which is cut off by finite-size
effects, and for an “infinite” aggregate beyond. We co
firmed that the massMagg in this aggregate grows linearly
with the size, and that the spreaddMagg grows sublin-
early, implying that the ratiodMaggyMagg approaches zero
in the thermodynamic limit. The exponenttCMAM which
characterizes the finite-mass fragment power-law decay
r . rc is numerically found to be2.33 6 0.02 and re-
mains the same at the critical pointr ­ rc.

We note that in conserved-aggregation models stud
earlier within mean-field theory [9,10], the steady sta
mass distribution also changed from an exponential dis
bution to a power law as the density was increased beyo
a critical value. However, the existence of the striking i
finite aggregate in the steady state forr . rc was not
identified earlier.

We next study the steady state phase diagram of
in-out model in theq-p plane. In this model, mass is
not locally conserved. The mass per siteMstd evidently
obeys the exact equation

dM
dt

­ q 2 psstd , (9)

where sstd is the fraction of sites occupied by a mas
mi $ 1. In the steady state, let the mean value ofsstd
be s. If qyp is low, s adjusts to makeq 2 ps vanish,
and the mean mass reaches a time-independent valueM.
This defines the finite-mass phase. As we will see belo
asqyp increases beyond a critical value,s never catches
up with qyp and reaches a steady state value which
less thanqyp; in this phase,M increases linearly in time
while Psm, td , m2tT fsmt2xd which in the long time
limit converges to a time-independent form, decaying
a power law with exponenttT , even though the moments
of this distribution diverge as time increases to infinit
We call this the growing-mass or the Takayasu pha
In fact, for p ­ 0 the in-out model reduces exactly to
the Takayasu model (TM) of injection and aggregatio
of masses [8] which has found widespread applicatio
ranging from river models [11] to granular systems [12
Indeed, what we find here is that the growing mass pha
of the TM atp ­ 0 persists up to a nonzero critical valu
pcsqd for a givenq, while for p . pcsqd the mass stops
growing andPsmd decays exponentially for largem in the
steady state.

The mean-field analysis of the in-out model is simila
to that of the CMAM model though a little bit trickier.
3693
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FIG. 2. Log-log plot ofPsmd vs m for the in-out model, for
p ,, ­, . pc, corresponding to the “Exponential,” critical, and
“Takayasu” phases. Inset: Phase diagram. The solid line a
the points indicate the phase boundary within mean-field theo
and 1D simulation, respectively.

We defer the details for a future publication [13] an
only outline the results here. We find that the critica
line pcsqd ­ q 1 2

p
q separates two phases in theq-p

plane. For p . pc, Psmd , m23y2 exps2mympd for
large m. For p ­ pc, Psmd , m25y2, and forp , pc,
Psmd , m23y2 for large m. For a fixedq, the steady
state occupation densityssp, qd develops an interesting
cusp asp crossespcsqd. For example, atq ­ 1, where
pc ­ 3, sspd ­ 1yp for p . 3 as follows simply from
Eq. (9), but for p , 3, the determination ofsspd is
nontrivial [13] and is given by the positive root of the
cubic equation,16ps3 1 s8p2 1 4p 2 25ds2 1 sp3 2

11p2 2 43p 2 25ds 2 p3 1 2p2 1 17p 1 25 ­ 0.
The qualitative predictions of mean-field theory—th

existence of a power-law (Takayasu) phase [Psmd ,
m2tT ] and a phase with exponential mass distributio
with a different critical behavior at the transition [Psmd ,
m2tc ]—are found to hold in 1D as well. The Takayasu
exponenttT is known exactly to be4y3 in 1D and3y2
within mean-field theory [8]. Figure 2 shows the result
of numerical simulations in 1D for the phase diagram an
the decay of the mass distribution in the two phases a
at the transition point. The values obtained,tT ­ 4y3
andtc . 1.833, are quite different from their mean-field
values,tT ­ 3y2 andtc ­ 5y2, reflecting the effects of
correlations between masses at different sites.

We may reinterpret the configuration of masses in th
in-out model as an interface profile on regardingmi as a
local height variable. While the model may have som
unphysical features in the context of an interface due
the columns of masses moving as a whole, the analo
3694
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helps, however, to understand physically the nature of
transition in the in-out model. In the interface langua
this corresponds to a wetting transition; the key fac
responsible for the occurrence of the smooth phase
substrate, implicit in the constraintmi $ 0 in the in-out
model. The wet phase is identified with a growing ma
phase, which has a rough profile, with exact roughn
exponent xT ­ 5y2 [13] in 1D. Since xT . 1, the
interface in the wet phase is not self-affine. Recently
nonequilibrium wetting transition was also observed
an interface model [14] where the interface in the w
phase is self-affine due to surface tension effects wh
are absent in our model. Interestingly, however, in o
model the substrate is able to induce a self-affine interf
at the critical point with roughness exponentx ­ 1y3
within mean-field theory andx ø 0.7 in 1D [13], despite
the anomalously large roughness of the wet phase.

We thank Deepak Dhar for useful discussions a
S. Cueille and S. Redner for pointing out Refs. [9] an
[10] to us.
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