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Abstract The propeaies of a family of non-equilibrium spin models with updown symmetry 
on a square latfice are determined by a mean-field pair approximation and by Monte Carlo 
simulation. The phase diagram in the parameter space displays a critical line that tm”tes at 
a first-order critical p i n t  It is found that the critical aponenls are the same as lhose of the 
equilibrium king model. 

1. Introduction 

It is well known that spin systems can be grouped together according to their universal 
critical behaviour in classes of universality and that the universal behaviour depends only 
on such general properties as symmetry, dimension of the system and the dimension of the 
order parameter. This result is valid for equilibrium and possibly also for non-equilibrium 
spin systems (systems whose stochastic dynamics does not obey detailed balance) in a steady 
state [l-31. Several models have been studied in order to find the classes of universality 
for non-equilibrium spin models. A well known example is the universality class of the 
Reggeon field theory [MI. Lattice gas models [3,7,8] belonging to such a class, as the 
contact process [9, lo], have the important property of exhibiting an absorbing state. In a 
steady state these models are always far from equilibrium, no matter what control parameters 
are varied, since the existence of the absorbing state makes the dynamics irreversible. 

Another universality class for non-equilibrium spin systems is the one which includes the 
equilibrium king model. According to Grinstein et a1 [ 111, any non-equilibrium stochastic 
spin system with spin-flip dynamics and updown symmetry falls in this universality class. 
This result has been found to be valid for specific spin models that do not obey detailed 
balance [12-201. With the aim of testing Grinstein et a1 [ll] prediction and investigating 
new non-equilibrium models wz analyse here a hvo-parameter family of spin models with 
up-down symmetry on a square lattice whose stochastic dynamics is isotropic and short 
ranged. The model is defined by giving the transition rates between configurations, with 
the spin independent variables in the transition rates playing the role of control parameters. 
For particular values of the parameters we recover other familiar models: the equilibrium 
Ising, voter and majority voter. 

As usual, exact calculations are only possible under very restricted conditions, so we 
have used mean-field-like methods (pair-aproximation) to obtain a qualitative description 
of the phase diagram. In order to study the critical behaviour and address the question 
of universality we have complemented the mean-field calculations with Monte Carlo 
simulations and finite-size scaling analysis. 
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2. Model 

Consider a square lattice where at each site there is a spin variable ui = f l .  The 
configuration U = (q} evolves in time according to a one-spin flip stochastic dynamics. 
The spin-flip probability wj(u) is of the form 1211 
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Wi(U) = 411 - Uifi(U)l (1) 
where fi(u) is a local function with Ifi(u)l < 1. Here we consider fi(u) such that wj(u) 
has updown symmetly and is spatially symmetric. That is, fi(u) = f(xs Uj+S), a function 
of the sum of the nearest-neighbour spin variables with f(0) = 0, f(2) = -f(-2) = x 
and f(4) = -f(-4) = y, where x and y are two parameters restricted to 1x1 6 1 and 
IyI < 1. This function can also be written in the form 

f(ui + uz + u3 + ~ 4 )  = ~ ( U I  + uz + u3 + ~ 4 )  + ~ ( U I U Z U ~  + O I ~ Z U ~  + U I U ~ U ~  + Oz~%u4) 

(2) 

where the parameters a and b are related to x and y by Q = (y+2.x)/8 and b = (y-2.x)/8. 
Several known models are special cases of the family of stochastics dynamics defined 

by equations (1) and (2). The voter model [IO] corresponds to x = 1/2 and y = 1; the 
isotropic majority-vote model [20] is obtained when x = y; and the Glauher model [22], 
for which f(S) = tanh(KS) where K is proportional to the inverse temperature, is given 
parametrically by x = tanh(2K) and y = tanh(4K). or even by y = k / ( l  + xz). With 
the exception of the x and y values corresponding to the Glauber model, the stochastic 
dynamics does not obey detailed balance for arbitrary values of x and y. Consider, for 
instance, a local configuration consisting of a nearest-neighbour pair of up spins, the first 
being surrounded by up spins and the second having one (or two) down spins as nearest . 
neighbours. From the spin-flip probability, we find that the probability of a closed path of 
configurations obtained by flipping these two spins in the sequence first-second-first-second 
is (l-y)(l+x)'/16 whereastheprobabilityofthereversedpathis ( I + y ) ( l - ~ ) ~ / l 6 .  The 
microscopic reversibility (detailed balance) occurs, then, only when these two probabilities 
are equal, that is when y = k / ( l  + x z ) .  

Figure 1 shows the phase diagram in the x-y plane. The Monte Carlo and the dynamic 
pair approximation show that for x > 0 there is a ferromagnetic critical line that crosses the 
majority-vote model and the Glauber model lines and terminates at the voter model point 
(x  = 1/2 and y = 1). Along the critical line the order parameter vanishes continuously. 
Reaching the voter point along the line y = 1 (from the ferromagnetic phase) one finds a 
jump in the order parameter. This point is therefore identified as a first-order critical point 
[23]. When b = 0 ( y  = 2.x) the model is linear and can be solved exactly. However, there 
is no ordering except at the voter point x = 1/2, y = 1. 

Trapping states occur at 1x1 = 1 and at IyI = 1. Along the line y = 1, there are two 
absorbing states: all spins up and all spins down. These two states are, however, unstable 
for x -= 1/2. Along the line x = 1 ,  the absorbing states are vertical or horizontal double 
stripes of + and - spins, similar to the (22) phases in equilibrium "NI models, and are 
all unstable; for x = y = 1 the model reduces to the ZD king model at zero temperature. 

3. Pair approximation 

In the stationary state the following equations hold 

hi) (fi(u)) (3) 
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Fwre 1. Phase diagram in the x-y parameter space showing the femwpet i c  (F) and the 
paramagnetic (P) phases. The lines staning at the origin carrespond to: a, the mjorily vote 
model: b, the Glauber model; c, the linear model. The open circles wmpond lo the voter 
model. The line, d, is the critical line in the pairappmximation. The full circles are points over 
the uitical line estimated by Monte Carlo simulation. Point '0' is onsager's exact solution. 

and 

2(ujuk) = ( U j f d O ) )  f ('kh(u)). (4) 

These equations do not constitute closed equations for (U;! and (ujuk), except in the l inear  
case (b = 0). One can obtain approximate closed equations for these quantities as follows. 
Let P(uo, U I ,  02, u3, u4) be. the probability of a cluster of spins composed of a central spin 
00 and its four nht-neighbour spins UI ,  u2, u3 and u4, which can be. written, using 
conditional probabilities as P(u,)P&, u2, ~3,04100). The pair approximation consists of 
writing the conditional probability as the product n:=, PC(u&o) = n:=, P(uo, ui)/P(uo). 
By using this approximation to calculate the right-hand sides of equations (3) and (4). we 
get the following equations for the magnetization m = (ui) and the nearest-neighbour pair 
correlation r = (Lrjok) 

and 

The paramagnetic solution is given by m = 0 and r = a + 3(a + b)rZ + br4. By a linear 
analysis this solution becomes unstable for a + 7b/27 < 1/4. This gives rise to a critical 
line defined by a + 7b/27 = 114 or y + 2Ox/17 = 27/17. The extremal points of this line 
are x = 112, y = 1 (the voter point) and x = 1, y = 7/17. 

4. Monte Carlo simulation 

We have simulated the model on a square lattice with N = L x L sites and periodic 
boundary conditions, for several values of L ranging from L = 5 up to L = 80. For each 
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simulation we have started with a random configuration of spins (we have checked that the 
results are not affected by a different choice initial conditions). The quantities of interest 
were calculated by using a number of Monte Carlo steps ( M a )  of the order 1 6 ,  each MCS 
being equal to N spin-flip trials. The relaxation time for the magnetization in the largest 
system (L = 100) close to the critical point was found to be of order or less than 5 x lo3 
MCS, thus 105 MCS were sufficient to reach the steady state and to obtain enough data for 
satisfatory statistics. The simulations were performed for points of the x-y plane along 
several straight lines starting from the point x = 1, y = 1. 

Figure 2 shows the magnetization ML = (Iml), where m = EL, q / N ,  as a function 
of 9 = (1 - y)/4 along the l i e  x = 1. Figure 3 shows the magnetization as a function of 
1 /L  for the case x = 1. From this plot it is possible to locate the critical point However, a 
more a c u t e  value is obtained by considering the plot of the reduced fourth-order cumulant 
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as a function of 9 for several values of L. All curves should intersect at the critical point. 
Along the line x = 1, figure 4 gives qC = 0.073 rt 0.001. By using this technique we have 
located other points along the critical line. They are all shown in figure 1. 

h 
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F ~ r e  2. Magnetization Mr(q) as a function of q = (1 - y)/4 for several values of L along 
the line x = 1. 

After having located a critical point the critical exponents are estimated hy plolting 
In M L  and In XL. where XL = N (  (m2) - ( lm1)2}, as a function of In L, as shown in figures 
5 and 6. The slopes of the straight line fitted to the data points give p/v and y l v .  From 
the figures we have p / v  = 0.13f0.01 and y / v  = 1.77f0.05. These values compare well 
with the exact values p/v = 118 and y / v  = 714 for the equilibrium king model. For other 
values of x and y along the critical line we have also obtained, within the statistical errors, 
the same critical exponents. 

5. The fkst-order critical point 

The Monte Carlo and mean-field results indicate that the critical line in the x-y plane 
terminates in the voter-model point x = 1/2, y = 1. In two dimensions, the voter model 
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F i r e  3. Magnetization M'(9) as a function of L-' for several values of 9 = (1 - y) /4  along 
the linex = 1. 
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Figure 4. Reduced fourth-onler cumulant U'(9) as a function of 4 = (1 - Y) /4  for several 
values of L along the line x = 1. The intersection of the curyes gives qc = 0.073 i= 0.001. 
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Figure 5. Log-log plot of ML ai the critical p i n t  against L for &e m e  x = 1. 



2322 M J de Oliveira et a1 

T--+-77 uh. = 1.77 i 0.05 uh. = 1.77 i 0.05 
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Figure 6. Log-log plot of Xr. at the critical point against L for the case x = 1. 

has only two extrema1 states, all spins up and all spins down (in contrast to the case d = 3, 
where there is a unique stationary state for eveq value of the magnetization [ 141). Along 
the line y = 1, these two states are absorbing states. However, OUT results show that they 
are unstable for x < 1/2. In this range the system is disordered, that is the magnetization 
vanishes. Therefore at x = 1/2 there is a jump in the order parameter and the transition is 
first order. 

We have estimated the quantity X L  = N{(m*) - (ln~/)~], along this line by Monte Carlo. 
The results reveal that X diverges as one approaches n = 1/2, so that the point is, in fact, a 
first-order critical point [23]. For such a critical point one should have y = 2u since = 0 
and d = 2 for the present case. According to finite-size scaling [241, X L ~ X  -xcIL-Y/” is a 
universal function of Ix -x,IL’/”, where x, = 1/2. Figure 7 shows that the data points for 
these two quantities collapse into a single function when y = 1.25 which gives U = 0.625. 
For comparison we have also considered a fit with U = 0.5. 

k t  us consider the linear model defined by b = 0, that is the model along the line 
y = 2x. In the stationary state the pair correlation function (qq) satisfies the equation 

for i # j and the sumation (Es) extending to the nearest neighbours of j .  For r # 0, let 
us define G(r)  = (u,pT). Then 

AG(r)  = €G(T) (9) 

where A is the discrete Laplacian operator in two dimensions, that is 

A G ( r ) = G ( r + ~ ) + G ( ~ - ~ ) + G ( r + ~ ) + G ( r - ~ ) - 4 G ( r )  (10) 

and e = l / a  - 4. For large 1i-l we get 

~ ( r )  =: Ce-I‘I/t (11) 

where the correlation length 5 = E - ’ / ~ .  Therefore, one obtains v = 1/2. From the 
correlation function given by equation (11) we calculate X and obtain the result X = 8 
which gives y = 1. 
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Figure 7. ( U )  Ploi cf XiY1" a&t (U; - a)L'/" dong fhe line y = 1. (b) Plot of Xiy1' 
again% (a, - a)L'IV dong the line y = k. 

6. Conclusion 

We have considered a family of non-equilibrium two-dimensional spin models evolving 
according to single-spin-flip rules and displaying updown symmetry. The Glauber Ising 
and the majority voter model an included in this family and recent numerical studies (201 
indicate. that they belong to the same universality class, the equilibrium Ising class. Our 
Monte Carlo results show that this type of critical behaviour is also common to models 
whose rules have only the requirement of being isotropic, short ranged and preserving 
the up-down symmetry. The voter model displays a distinct characteristic; our simulation 
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results suggest a new universality class (y = 1.25) in disagreement with the exact result 
( y  = 1). We suspect this may be a consequence of the presence of the absorbing states and 
are currently investigating this situation. 

It will be worth examining the role of the anisotropy. since in the majority-vok caSe 
it was found to be irrelevant [25]. In the absence of a general theory for non-equilibrium 
critical behaviour, is often conjectured that the manifestation of equilibrium king behaviour 
in these systems might be explained in terms of the equilibrium critical properties of some 
effective (king-like) Hamiltonian. The question is then to relate the effective coupling 
constants in the Hamiltonian to the transition rates of the model, and apart from a few very 
simple cases 12-51 this is still an open problem. 
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