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Nonequilibrium Statistical Mechanics of Self-propelled Hard Rods
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(Dated: February 19, 2010)

Using tools of nonequilibirum mechanics, we study a model of self-propelled hard rods on a
substrate in two dimensions to quantify the interplay of self-propulsion and excluded-volume effects.
We derive of a Smoluchowski equation for the configurational probability density of self-propelled
rods that contains several modifications as compared to the familiar Smoluchowski equation for
thermal rods. As a side-product of our work, we also present a purely dynamical derivation of the
Onsager form of the mean field excluded volume interaction among thermal hard rods.

I. INTRODUCTION

Self-propelled particles draw energy from internal or external sources and dissipate this energy by moving through
the medium they inhabit. A wide class of systems, including fish schools, bacterial colonies, and monolayers of
vibrated granular rods can be described within this paradigm. These systems exhibit rich collective behavior, such
as nonequilibrium phase transitions between disordered and ordered (possibly moving) states and novel long-range
correlations and have been the subject of extensive theoretical [1–3], numerical [4–6] and experimental investigations
[7–10] in recent years.
Self-propelled particles are elongated in shape and have a self-replenishing momentum along one direction of their

long body axis. They generally experience attractive and repulsive interactions, both of a direct nature and mediated
by the medium. One generic interaction that is relevant to all self-propelled systems is the short-range repulsive
interaction arising from the finite size of the self-propelled units. Our goal here is to understand the interplay of
self-propulsion and short range repulsive interactions in controlling the collective dynamics of the system. To this
end, we consider the simplest implementation of short range steric repulsion, which is the hard particle limit, and
consider a minimal model of self-propelled hard rods moving on a substrate in two dimensions. We will show that
self-propulsion modifies the momentum exchanged by hard rods upon collision and the resulting mean-field excluded
volume interaction as compared to the Onsager result for passive rods [14, 18].
The simplest model of equilibrium nematic liquid crystals is a collection of long, thin hard rods [14]. In the

overdamped regime and at low density, the dynamical properties of the system are described by a Smoluchowski
equation for the configurational probability density, c(r1, û1, t), of finding a rod with center of mass at r1 and long
axis oriented along the unit vector û1 at time t, given by

∂c

∂t
+∇1 · J+R1 · JR = 0 , (1)

where R1 = û1×∂û1
is a rotation operator and J and JR are translational and rotational currents, respectively, given

by

Jα = −Dαβ

[
∂1βc+

1

kBT
(∂1βVex) c

]
, (2a)

JR = −DR

[
R1c+

1

kBT
(R1Vex) c

]
, (2b)

with

Dαβ = D⊥δαβ + (D‖ −D⊥)û1αû1β (3)

a diffusion tensor that incorporates the anisotropy of translational diffusion of elongated objects, with D‖ > D⊥, and
DR the rate of rotational diffusion. The currents given in Eqs. (2a) and (2b) incorporate both diffusion and binary
interactions. The latter are described by a mean field excluded volume potential, Vex, given by

Vex = kBT

∫

û2

∫

s

|û1 × û2| c (r1 + s, û2, t) , (4)

with m the mass of a rod, T the temperature, and s = r2 − r1 the separation between the cnters of mass of the two
rods when they are at contact (Fig. ). If the thickness of the rods is negligible compared to their length, we can

http://arxiv.org/abs/1002.3831v1
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FIG. 1: (color online) Long, thin rods of length ℓ are parametrized by the position ri of their center of mass and a unit vector
ûi denoting the rod’s orientation in the plane. The position along the i-th rod measured from the center of mass is denoted by
si, with −ℓ/2 ≤ si ≤ ℓ/2. The overlap situation shown in the figure requires r1 + û1s1 ≃ r2 + û2s2, so that s = s1û1 − s2û2

The area excluded by rod 2 to rod 1 is the area of the dashed parallelogram spanned by the unit vectors û1 and û2, given by
ℓ2|û1 × û2|.

approximate s ≃ s1û1 − s2û2, where −ℓ/2 ≤ si ≤ ℓ/2 for i = 1, 2, parametrizes the position along the i-th rod of
length ℓ measured from its center of mass. The integral over the vector s spans the area excluded to rod 1 by a second
rod with center of mass at r2, oriented in the direction û2. The excluded volume potential represents the second virial
coefficient of the static structure factor and was first derived by Onsager [18].
In this paper we present the derivation of a modified Smoluchowski equation that describes the low density, over-

damped dynamics of a collection of self-propelled hard rods. We consider long, thin hard rods moving on a substrate
characterized by a friction constant ζ. Self propulsion is modeled by assuming that each rod moves along one direction
of its long axis with a constant speed v0. In addition, the rods experience binary hard-core collisions. This is the sim-
plest model for a “living nematic liquid crystal”, a terminology that has been used to describe the collective behavior
of a variety of intrinsically self-propelled systems, from bacterial suspensions to monolayers of vibrated granular rods.
Since the rods have a purely dynamical self-replenishing momentum, the statistical mechanics needs to be derived
from the underlying trajectory dynamics. The details of the derivation are described in this paper. The outcome is
a modified Smoluchowski equation for the configurational probability density of the form given in Eq. (1), but where
the translational and rotational currents acquire additional contributions due to self propulsion and take the form

Jα = v0û1αc−DSP
αβ ∂1βc−

Dαβ

kBT
(∂1βVex) c−

D‖mv20
2kBTa

ISP
α , (5a)

JR = −DR

[
R1c+

1

kBT
(R1Vex) c

]
− DRmv20

2kBTa
ISP
R , (5b)
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where

DSP
αβ = Dαβ +DS û1αû1β

= D⊥δαβ + (D‖ +DS −D⊥)û1αû1β , (6)

with DS = v20/ζ, is the diffusion tensor. Self-propulsion modifies the familiar Smoluchowski equation for hard rods in
several important ways. The first modification is the convective mass flux at the self-propulsion speed v0 along the
axis of the rod, described by the first term on the right hand side of Eq. (5a). Secondly, self-propulsion enhances the
longitudinal diffusion constant D‖ of the rods, according to D‖ → D‖+DS = D‖(1+mv20/kBTa), as shown in eq. (6)
This enhancement arises because self-propelled particles perform a persistent random walk, as recently pointed out by
other authors [19, 20]. Finally, the momentum exchanged by two rods upon collision is rendered highly anisotropic
by self-propulsion. This yields the additional collisional contributions to the excluded volume interaction described
by the last terms in Eqs. (5a) and (5b). The precise form of these contributions can be found in Section IV.B. The
Smoluchowski equation for self-propelled hard rods is the central result of this work. It has also been shown by us that
the novel terms arising from self-propulsion have important consequences for the long-wavelength, long-time behavior
of the system by introducing new terms in the coarse-grained equations for the dynamics of conserved quantities
and broken symmetry variables. These hydrodynamic signatures have been reported in earlier work [12]. Finally, an
additional result of the work presented here is a purely dynamical derivation of the familiar Onsager excluded volume
potential for equilibrium hard rods, given in Section IV.A.
The layout of this paper is as follows. In Section II we analyze the trajectory of hard rods moving on a substrate in

two dimensions. Using the fact that their trajectories are piece-wise differentiable, with singularities at the time of each
collision, we derive an expression for the collision operator governing the momentum exchanged in a binary collision.
In Section III we derive a formal hierarchy of Fokker-Planck equations governing the noise-averaged dynamics of a
collections of self-propelled hard rods. In section IV we consider the limit of high friction with the substrate that
yields a fast relaxation of the linear and angular momentum degrees of freedom, relative to that of the configurational
degrees of freedom. This approximation, together with a low density closure of the Fokker-Planck hierarchy, allows
us to derive the Smoluchowski equation. We conclude with a brief discussion.

II. BINARY COLLISION OF HARD RODS

Our model is a collection of self-propelled thin hard rods of length ℓ and mass m, confined to two dimensions.
Although we will focus below on the limit of long, thin rods, to describe a binary collision we need to incorporate
their finite thickness of the rods. We model each rod as a capped rectangle of uniform mass density, consisting of a
rectangle of length ℓ and thickness 2R ≪ ℓ, capped at the two short sides by semicircles of radius R, as shown in Fig.
(2). Each rod is described by the position r of its center of mass and a unit vector û = cos θx̂+ sin θŷ directed along
its long axis. The rods have head/tail, i.e., nematic symmetry. This symmetry is broken by self-propulsion that is
implemented by assuming that a force F of constant magnitude and directed along the rod’s long axis acts on the
center of mass of each rod. The direction of the self-propulsion force will be referred to as the ”head” of the rod and
the unit vector û is chosen to point in the direction of the head, so that F = F û.
The rods move on a passive medium that provides frictional damping to their motion. Any other physical or

chemical process that may be present in the system is assumed to occur on a fast time scale, such that it can be
modeled as an additive Markovian white noise. The dynamics of a self propelled rod is then described by Langevin
equations for the center of mass velocity v = ∂tr and the angular velocity ω = ẑω = ẑ∂tθ, where ẑ is normal to the
plane of motion. The equations of motion are given by

m∂tvα = −ζαβvβ + F ûα + ηα (t) , (7a)

∂tω = −ζRω + ηR (t) , (7b)

where ζαβ = ζ‖ûαûβ + ζ⊥ (δαβ − ûαûβ) is a translational friction tensor with ζ‖ < ζ⊥ reflecting the fact that frictional
damping is smaller for motion along the long axis of the rod, ζR is a rotational friction constant, and η and ηR are
white noise terms with zero mean and correlations

〈ηα (t) ηβ (t
′)〉 = ∆αβ(û) δ (t− t′) , (8a)

〈ηR (t) ηR (t′)〉 = ∆R δ (t− t′) . (8b)

For simplicity, we assume that the noise amplitudes ∆αβ and ∆R have the same form as in equilibrium,

∆αβ(û) = 2kBTaζαβ(û)/m , (9a)

∆R = 2kBTaζR/I , (9b)
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FIG. 2: (color online) Each self-propelled particle is modeled as a capped rectangle of uniform mass density, consisting of
a rectangle of length ℓ and thickness 2R capped at the two short sides by semicircles of radius R (the width of the rod is
exaggerated for clarity). Self-propulsion is provided by a force of constant magnitude F directed along the ”head” of the
rod. The vector ξ locates points on the boundary of the rod relative to the center of mass. The unit vector û⊥ is defined as
û⊥ = ẑ× û, where ẑ points out of the plane.

with Ta an active temperature and I the component of the moment of inertia tensor I of the rod along the long axis,

I =
m

2ℓ+ πR

[
2ℓ

3

(
3R2 +

ℓ2

4

)
+ πR

(
R2

2
+

ℓ2

4

)]
∼ mℓ2

12
. (10)

The last approximate equality in Eq. (10) holds in the limits ℓ ≫ 2R of long, thin rods. The active temperature Ta

is generally different from the thermodynamic temperature of the system and is a measure of the noise amplitude.
The rods interact with each other exclusively via hard-core interactions. The collisions are instantaneous and

conserve energy and momentum of the colliding rods. To incorporate these interactions in the Langevin equations for
the particles, we need to construct a collision operator that generates the instantaneous collision. We consider two rods
and denote by t = 0 the origin of time. The two rods travel freely with linear and angular velocities x1 = (v1,ω1) and
x2 = (v2,ω2) until a time τ(Γ1,Γ2) when they come into contact, where Γi = {ri, ûi,vi,ω} is the phase point of each
rod. Denoting by a prime the post-collisional velocities, x′

i = (v′
i,ω

′
i)i=1,2, the time dependence of the observables xi

can be written as

xi (t) = xiΘ(τ (Γ1,Γ2)− t) + x′
iΘ(t− τ (Γ1,Γ2)) . (11)

The equation of motion for xi is then

∂txi = ∆xi δ (t− τ (Γ1,Γ2)) , (12)

with ∆xi = xi − x′
i. The post-collisional velocities are easily calculated by imposing conservation of energy and of

linear and angular momentum, pi = mvi and Li = Iωi, with the result [15, 16]

p′
i = pi − k̂jiA , (13a)

L′
i = Li − ξi × k̂jiA , (13b)

where k̂ji is the unit normal at the point of contact of the two rods and is directed from rod j to rod i, and ξi is the
vector from the center of mass of rod i to the point of contact of the two rods, as shown in Fig. 3. The magnitude of
the momentum transfer A is

A =
mk̂21 ·V12

1 + m
2

(
ξ1 × k̂21

)
· I−1 ·

(
ξ1 × k̂21

)
+m

2

(
ξ2 × k̂21

)
· I−1 ·

(
ξ2 × k̂21

) (14)

with V12 = v12 + ω1 × ξ1 − ω2 × ξ2 the relative velocity of the two rods at the point of contact, and v12 = v1 − v2.
To render Eq. (12) explicit we need an expression for the time τ(Γ1,Γ2). The condition of contact can be written as
the requirement that r1(τ)+ ξ1(τ) = r2(τ) + ξ2(τ) for some value of ξ1 and ξ2 on the surface of the two rods, where
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FIG. 3: (color online) A cap-to-side collision of two self-propelled hard rods (the width of the rod is exaggerated for clarity). k̂
is a unit vector from rod 2 to rod 1 normal to the point of contact. Points on the side of the rods are identified by vectors ξi.

ri (τ) = ri + viτ and ûi (τ) = cos (θi + ωiτ) x̂+ sin (θi + ωiτ) ŷ. It is apparent from Fig. 3 that r12 + ξ1−ξ2 must lie

along k̂21. The condition of contact can then be written as two scalar equations, given by

(r12 + ξ1−ξ2) · k̂21 = |r12 + ξ1−ξ2| = 0 , (15a)

(r12 + ξ1−ξ2) ·
(
ẑ× k̂21

)
= 0 , (15b)

where all variables are evaluated at time τ . Equations (15a) and (15b) are implicit equations for τ(Γ1,Γ2). The first
condition, Eq. (15a), imposes that two rods be in contact at any point along their surface. The second condition,
Eq. (15b), determines the precise point on the surface of each rod. As an illustration we consider the collision shown

in Fig. 3 when the cap of rod 2 comes into contact with a side of rod 1. In this case, k̂12 ≡ û⊥
1 = ẑ × û1 and the

surface of the rod 1 is parametrized by ξ1 = s1û1 −Rû⊥
1 , with û⊥

i = ẑ× ûi. The point of contact on rod 2 is simply
ξ2 = ℓ

2
û2 +Rû⊥

1 . The contact conditions Eqs. (15a) and (15b) become

r12 · û⊥
1 − ℓ

2
û2 · û⊥

1 − 2R = 0 , (16a)

r12 · û1 −
ℓ

2
û2 · û1 + s1 = 0 . (16b)

Eq. (16a) requires the rods to be at contact at any point along the side of rod 1, while Eq. (16b) determines the
position of contact along the side of rod 1.
To obtain an expression that can be used to eliminate τ(Γ1,Γ2) from the equation of motion, Eq. (12) we use the

identity

δ (f (x)− f0) =
δ (x− x0)∣∣∣∂f∂x |x0

∣∣∣
. (17)

Using Eq. (17), together with

∂

∂t
(r12 + ξ1−ξ2) · k̂21|t=τ = V12 (τ) · k̂21 (18)



6

we can rewrite the temporal δ function in the equation of motion, Eq. (12) as

δ (t− τ (Γ1,Γ2)) = δ
(
(r12 + ξ1−ξ2) · k̂21

) ∣∣∣V12 · k̂21

∣∣∣ . (19)

Finally, although Eqs. (15a-15b) determine the contact condition, an actual collision results from the contact only if
the pre-collisional velocities at the point of contact are such that the two particles are moving towards each other,
i.e., V12 · k̂21 < 0. Putting all of these results together, the equation of motion for the observable xi can be written
in the form

∂txi = T (1, 2)xi , (20)

where T (1, 2) is a binary collision operator, given by

T (1, 2) =

∫

ξ1,ξ2

∫

k̂21

Θ
(
−V12 · k̂21

) ∣∣∣V12 · k̂21

∣∣∣ δ
(
(r12 + ξ1−ξ2) · k̂21

)
δ
(
(r12 + ξ1−ξ2) ·

(
ẑ× k̂21

))(
b̂12 − 1

)
,

(21)

with b̂12 a substitution operator such that b̂12xi = x′
i. The integration in Eq. (21) ranges over all physical collision

geometries. In the following, we will focus on the case of rods of large aspect ratio (ℓ ≫ 2R). In this limit, cap-on-cap
collisions are rare relative to to cap-on-side collisions and will be neglected. For cap-on-side collisions, the

∫
ξ1,ξ2

∫
k̂21

can be given an explicit representation of the form

∫

ξ1,ξ2

∫

k̂21

... =

∫

s1,s2

∫

k̂21

...
{[

δ

(
s2 +

ℓ

2

)
+ δ

(
s2 −

ℓ

2

)][
δ
(
k̂21 − û⊥

1

)
+ δ

(
k̂21 + û⊥

1

) ]

+

[
δ

(
s1 +

ℓ

2

)
+ δ

(
s1 −

ℓ

2

)][
δ
(
k̂21 − û⊥

2

)
+ δ

(
k̂21 + û⊥

2

)]}

≡
∫

s1,s2

∫

k̂21

... δ
(
Γcont(s1, s2, k̂21)

)
. (22)

where
∫
s
... =

∫ ℓ/2

−ℓ/2
ds... and the last line simply defines a compact notation for the condition of contact. Equation (21),

with the expression given in Eq. (22) for the range of integration, is the generator of collisional dynamics that will be
used in the rest of this work.
The above considerations are readily generalized to a system of N rods by considering only binary collisions since

collisions among particles with hard core interactions are instantaneous and the probability of three or more particles
being at contact at the same instant is of measure zero. In addition, the dynamics arising from the white noise due
to the interaction with the substrate is described by a continuous generator and does not lead to any additional
singularity. The derivation of the collision trajectory can then be carried out as before. The dynamics of a system of
N self-propelled hard rods moving on a passive substrate in the N -rod phase space Γ = {Γ1,Γ2, ...,ΓN} is controlled
by a set of coupled Langevin equations for the linear velocities ∂tri = vi and angular velocities ωi = ûi × ∂tûi = ẑωi,
given by

m∂tvi = m
∑

j 6=i

T (i, j)vi − ζi · vi + F ûi + ηi (23a)

∂tωi =
∑

j 6=i

T (i, j)ωi − ζRωi + ηRi (23b)

where ζi is a friction tensor with components ζi,αβ = (ζ‖ − ζ⊥)ûiαûiβ + ζ⊥δαβ , ηi and ηRi are Gaussian random forces
with zero mean and correlations as defined in Eqs. (8a-8b). Noise sources associated with different values of the rod
index i are uncorrelated.

III. NON-EQUILIBRIUM STATISTICAL MECHANICS

We are interested in the collective behavior of self-propelled rods in the limit of large friction with the substrate.
In this limit one can consider a description that applies on time scales t ≫ mζ−1

‖ that neglects the fast dynamics of

the linear and angular velocities and only considers the dynamics of the coordinate degrees of freedom, {ri, ûi}Ni=1
.

The derivation of the overdamped dynamics must, however, be carried out carefully when dealing with the singular
limit of hard particles, where the interactions, even though conservative, depend on the velocities of the particles.
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With this goal in mind, we consider an observable of the system Â (Γ), where Γ is an N-rod phase point. Using

Ito calculus [17], the stochastic equation of motion for the observable Â can be derived from the equations of motion,
Eq. (23a) and (23b), for the phase space variables, with the result

∂Â (Γ, t)

∂t
= L̂Â (Γ, t) , (24)

where the operator L̂ is given by

L̂ =

N∑

i=1

{
vi · ∇ri + ωi · Ri +

F

m
ûi ·∇vi

− 1

m
ζiαβviβ∂viα − ζRωi∂ωi

+
1

m
ηi ·∇vi

+ ηRi ∂ωi
− 1

2m
∆iT

αβ∂viα∂viβ − 1

2
∆R∂2

ωi
f
}
+

1

2

∑

i,j 6=i

T (i, j) , (25)

where Ri = ûi × ∂ûi
. The binary substitution operator b̂ij contained in T (i, j) ≡ T (Γi,Γj) replaces the velocities

of the (i, j) pair with their post-collisional values, according to b̂ijÂ (vi,vj ,ωi,ωj) = Â
(
v′
i,v

′
j ,ω

′
i,ω

′
j

)
, leaving the

velocities of all other particles unchanged. Equation (24) describes the stochastic dynamics of any observable Â(Γ)
for given initial conditions in phase space. The quantity of interest here, however, is not the stochastic observable
itself, but rather its ensemble averaged value for a given ensemble of initial conditions, ρ̂N (Γ), i.e.,

〈
Â (t)

〉
ens

=

∫
dΓρ̂N (Γ) Â (Γ, t) . (26)

Equivalently, we can treat the phase space density as the dynamical quantity and write the ensemble average of an
observable as

〈
Â (t)

〉
ens

=

∫
dΓρ̂N (Γ, t) Â (Γ) . (27)

Equation (27) defines the dynamics of the phase space probability density, ρ̂N (Γ, t). Taking the time derivative of

both Eqs. (26) and (27) and defining an adjoint operator L̂,
∫

dΓ ∂tρ̂ (Γ, t)A (Γ) =

∫
dΓ ρ̂N (Γ) ∂tÂ (Γ, t)

=

∫
dΓ ρ̂N (Γ) L̂Â (Γ, t)

= −
∫

dΓ
[
L̂ρ̂N (Γ, t)

]
Â (Γ) , (28)

we obtain a Liouville-like equation describing the time evolution of of the phase space probability density,

(
∂

∂t
+ L̂

)
ρN (Γ, t) = 0 , (29)

where

L̂ =

N∑

i=1

{
vi · ∇ri + ωi · Ri +

F

m
ûi ·∇vi

− 1

m
ζiαβviβ∂viα − ζRωi∂ωi

+
1

m
ηi ·∇vi

+ ηRi ∂ωi
− 1

2m
∆iT

αβ∂viα∂viβ − 1

2
∆R∂2

ωi
f
}
− 1

2

∑

i,j 6=i

T̄ (i, j) . (30)

The single-particle part of L̂ is identified by a simple integration by parts. To determine the binary collision operator
T̄ (i, j) one needs to explicitly construct the restituting collision, with the result

T (1, 2) ρ̂ =

∫

s1s2

∫

k̂

δ
(
Γcont

(
s1, s2, k̂

))(
b̂−1
12 − 1

) ∣∣∣V12 · k̂
∣∣∣Θ

(
−V12 · k̂

)
ρ̂ , (31)
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where b̂−1
ij is the generator of restituting collisions, i.e., b̂−1

ij A
(
x′
i, x

′
j

)
= A (xi, xj), i.e., it replaces the post-collisional

velocities of the pair with their pre-collisional values, and δ
(
Γcont

(
s1, s2, k̂

))
, defined in Eq. (22), enforces the

condition of contact.
Finally, we average over the noise and define ρN = 〈ρ̂〉. The dynamical equation describing the evolution of the

noise-averaged density is
(

∂

∂t
+ L

)
ρN (Γ, t) = 0 , (32)

where L is the Liouville Fokker Planck operator, given by

L =

N∑

i=1

{
vi · ∇ri + ωi ·

(
ûi ×

∂

∂ûi

)
+

F

m
ûi ·∇vi

−
ζiαβ
m

∂viαviβ − ζR∂ωi
ωi

− 1

2m
∆iT

αβ∂viα∂viβ − 1

2
∆R∂2

ωi
f
}
− 1

2

∑

i,j 6=i

T (i, j) . (33)

The formulation just described is exact and can be used, for instance, to evaluate time correlation functions for the
system. To proceed, we will now restrict our attention to a low-density collections of self-propelled rods. In this case
one can make systematic approximations to obtain the effective coarse-grained theory in the form of a Smoluchowski
equation.

IV. LOW DENSITY EFFECTIVE STATISTICAL MECHANICS

In order to carry out systematic approximations in the low density limit, it is convenient to define a hierarchy of
reduced distribution functions as

fm (Γ1, ...,Γm, t) = V m

∫
dΓm+1...dΓN ρN (Γ, t) . (34)

The Liouville Fokker-Planck equation, Eq. (32), can then be rewritten as an infinite hierarchy of equations for the
reduced distribution functions. The m-th equation for fm couples to fm+1. The resulting Fokker-Planck hierarchy is
analogous to the BBGKY hierarchy for Hamiltonian systems and forms the starting point for constructing approximate
theories to describe the system in various regimes of interest.
At low density, we consider the first equation of the hierarchy for the one-particle distribution function f1 (Γ1, t),

given by

∂f1(Γ1, t)

∂t
+Df1(Γ1, t) =

∫
dΓ2 T (1, 2) f2(Γ1,Γ2, t) , (35)

where the one-particle operator D is given by

Df1 = v1 ·∇r1f1+ω1 ·R1f1+
F

m
û1 ·∇v1

f1−
1

m
ζ1αβ∂v1α (v1βf1)−ζR∂ω1

(ω1f1)−
1

2m
∆1T

αβ∂v1α∂v1βf1−
1

2
∆R∂2

ω1
f1 . (36)

Equation (35) is a generalized Fokker-Planck equation that includes binary collisions. We are interested in the limit
of large friction, where linear and angular velocities relax on fast time scales. Our goal is to construct an approximate
closed equation for a local concentration field c (r, û, t), defined as

c (r1, û1, t) =

∫

v1,ω1

f1 (r1,v1, û1,ω1, t) . (37)

Specifically, we seek to derive a kinetic equation for self propelled particles that is analogous to the mean field
Smoluchowski equation for thermal nematics. In the remainder of this section we present a systematic method for
deriving such a closed kinetic equation for c in the limit of low density.
We adopt the simplest phenomenological closure of the Fokker-Planck equation (35) of the form f2 (Γ1,Γ2, t) =

f1 (Γ1, t) f1 (Γ2, t). With this closure, Eq. (35) becomes a Boltzmann-Fokker-Planck equation for the one-particle
distribution function,

∂f1
∂t

+Df1 =

∫
dΓ2 T (1, 2) f1(Γ1, t)f1(Γ2, t) (38)
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To derive the Smoluchowski equation, in addition to the concentration field c (r, û, t) given in Eq. (37), we introduce
translational and rotational currents JT and JR, defined as velocity moments of the one particle distribution function,
with

JT (r1, û1, t) =

∫

v1,ω1

v1 f1 (r1, û1,v1,ω1, t) , (39a)

JR (r1, û1, t) =

∫

v1,ω1

ω1 f1 (r1, û1,v1,ω1, t) . (39b)

The dynamical equations for the concentration c and the translational and rotational currents are obtained by taking
moments of Eq. (38), with the result,

∂c

∂t
+∇r1 · JT +R1 · JR = 0 (40a)

∂JT
α

∂t
+

ζ1αβ
m

JT
β − F

m
û1αc+ ∂1β〈vαvβ〉c+R1β〈ωαvβ〉c = −ITα (40b)

∂JR
α

∂t
+ ζRJR

α + ∂1β〈ωαvβ〉c+R1β〈ωαωβ〉c = −IRα (40c)

where

〈vαvβ〉 =
1

c

∫

v1,ω1

v1αv1β f1(Γ1, t) (41a)

〈ωαvβ〉 =
1

c

∫

v1,ω1

ω1αv1β f1(Γ1, t) (41b)

〈ωαωβ〉 =
1

c

∫

v1,ω1

ω1αω1β f1(Γ1, t) (41c)

are the second moments of f1 with respect to the translational and rotational velocities, and

ITα =

∫
dΓ2 [T (1, 2) v1α] f1(Γ1, t)f1(Γ2, t) (42a)

IRα =

∫
dΓ2 [T (1, 2)ω1α] f1(Γ1, t)f1(Γ2, t) (42b)

are the linear and angular momentum transfers, respectively, due to collisions with the other particles in the system.
The equations for the translational and rotational currents contain frictional damping and relax on time scales of

order m/ζ‖ due to the interaction with the substrate. On time scales t ≫ mζ−1

‖ the fluxes can be approximated as

lim
t>>m/ζ‖

JT
α = −m(ζ1αβ)

−1

[
−F

m
û1βc+ ∂1β〈vαvβ〉c+R1β〈ωαvβ〉c+ ITα

]
, (43a)

lim
t>>ζ−1

JR
α = −ζ−1

R

[
∂1β〈ωαvβ〉c+R1β〈ωαωβ〉c+ IRα

]
. (43b)

In this regime we can fully describe the system’s dynamics in terms of the one-particle configurational probability
c(r, û, t). To obtain a closed equation, we must express the currents as functionals of the configurational probability.

A. Thermal Hard Rods: Derivation of the Onsager Excluded Volume Interaction

Before deriving the Smoluchwski equation for self-propelled hard rods, we show in this section how this method
can be implemented to provide a derivation of the Smoluchowski equation for thermal hard rods, with the well-known
mean field Onsager excluded volume interaction. We set the self-propulsion force F = 0 and assume the noise is
thermal, i.e. Ta = T .
For large friction the relaxation of the linear and angular velocities of the rods is controlled primarily by the

interaction of the rods with the substrate, rather than by interparticle collisions. We can then assume that the for
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times t >> m/ζ‖ the velocity distribution has relaxed to its noninteracting value. In the absence of collisions, the
Fokker-Planck equation, Eq. (35), for the one-particle distribution function takes the form

m

ζ‖
(∂t + v1 · ∇r1 + ω1 · R1) f1 +

[
ζ⊥
ζ‖

δαβ −
(
1− ζ⊥

ζ‖

)
û1αû1β

](
∂v1αv1β +

kBT

m
∂v1α∂v1β

)
f1

+
mζR

ζ‖

(
∂ω1

ω1 +
kBT

I
∂2
ω1

)
f1 = 0 , (44)

where we have used the form of the noise amplitude in Eq. (8a-8b) to eliminate it in favor of the temperature T .
The first term on the left hand side of Eq. (44) can be neglected for t >> m/ζ‖. The solution of the non-interacting
Fokker-Planck equation can then be written in a factorized form as

f1 (r1,v1, û1,ω1, t) = c (r1, û1, t) fM (v1, ω1) , (45)

with

fM (v1, ω1) = A exp
(
−mv21/2kBT

)
exp(−Iω2

1/2kBT ) , (46)

and A a normalization constant. In other words, we assume that on the time scales of interest the linear and angular
velocity distributions have relaxed to their equilibrium forms. Using this expression, the velocity moments defined in
Eqs. (41a-42b) can be immediately calculated with the result,

〈vαvβ〉 =
kBT

m
δαβ , (47a)

〈vαωβ〉 = 0 , (47b)

〈ωαωβ〉 =
kBT

I
δαβ . (47c)

Next, we need to evaluate the collisional transfer contributions, ITα and IRα defined in Eqs. (42a) and (42b). This
requires calculating the mean linear and angular velocity transferred in a collision, 〈T (1, 2) v1α〉M and 〈T (1, 2)ω1α〉M
where

〈X〉M =

∫

v1,ω1

∫

v2,ω2

X fM (v1, ω1) fM (v2, ω2) . (48)

Using the explicit form of the momentum transfer in a binary hard rod collision given in Eq. (14), we find

〈T (1, 2)v1α〉M = −
∫

s1s2k̂

〈(
V12 · k̂

)2

Θ
(
−V12 · k̂

)〉

M

× 1

1 + m
2I

(
ξ1 × k̂

)2

+ m
2I

(
ξ2 × k̂

)2
δ
(
Γcont

(
s1, s2, k̂

))
k̂α . (49)

The Θ function in Eq. (49) selects only those values of the pre-collision velocities that will actually result in a collision.
In the mean field limit of interest here, we assume that on average half the particles in the flux will have initial velocities
that will yield a collision and approximate the velocity average in Eq. (49) as

〈(
V12 · k̂

)2

Θ
(
−V12 · k̂

)〉

M

∼ 1

2

〈(
V12 · k̂

)2
〉

M

=
1

2

[
2kBT

m
+

kBT

I

(
ξ1 × k̂

)2

+
kBT

I

(
ξ2 × k̂

)2
]
. (50)

Substituting Eq. (50) in Eq. (49) we find

〈T (1, 2)v1α〉M ≃ −kBT

m

∫

s1s2

∫

k̂

δ
(
Γcont

(
s1, s2, k̂

))
k̂α . (51)

Similarly, it is easy to show that

〈T (1, 2)ω1α〉M = −kBT

I

∫

s1s2

∫

k̂

δ
(
Γcont

(
s1, s2, k̂

))(
s× k̂

)
α

, (52)
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where s is defined in Fig. 1. In the thin rod limit, i.e., R → 0, the contact delta function in Eqs. (51) and (52) is non
zero on the perimeter of a parallelogram centered at the position r1 rod 1 with sides of length ℓ directed along û1 and
û2 (Fig. 1). The area of such a parallelogram can be written as

A‖gram(r1, û1) = ℓ2
∫

s1,s2

Θ
(
0+ − |r12 + s1û1 − s2û2|

)
. (53)

It is easy to verify that

∇r1A‖gram = −ℓ2
∫

s1,s2

∫

k̂21

δ
(
Γcont

(
s1, s2, k̂21

))
k̂21 , (54a)

R1A‖gram = −ℓ2
∫

s1,s2

∫

k̂21

δ
(
Γcont

(
s1, s2, k̂

))(
s × k̂21

)
. (54b)

Finally, combining all these results we obtain the familiar Smoluchowski equation for hard given in Eqs. (1), (2b) and
(2a) with Dαβ = ζ−1

αβ kBT/m and DR = kBT/(ζRI). The excluded volume interaction can be written in the familiar

Onsager form by noting that the area of the collisional parallelogram is simply given by A‖gram = ℓ2|û1 × û2| as
illustrated in Fig. (1). This gives Eq. (4), where the integral over s spans the area of the parallelogram shown in
Fig. (1) for fixed orientation of rod 2, while the integral over û2 averages over all possible orientations of the second
rod. The Onsager excluded volume interaction has a purely entropic interpretation as the free energy cost for a rod
to occupy the area excluded by another rod. Here the same result has been derived from dynamical considerations
and has the alternate interpretation of mean-field momentum transfer in a binary collision of two rods, each carrying
an average momentum of magnitude

√
mkBT . The orientational correlations arise then from the anisotropy of the

collision frequency due to the fact that head to head collisions are of measure zero with respect to head to side
collisions.
In summary, we have shown in this subsection that for thermal (non self-propelled) hard rods the method described

in this paper can be used to derive the familiar Smoluchowski equation with the Onsager expression for the excluded
volume interaction. In the next section we apply the same procedure to self-propelled hard rods and show that
self-propulsion modifies the Smoluchowski equation in several ways.

B. Self-propelled hard rods

As for the case of thermal hard rods, the derivation of the Smoluchowski equation for self propelled rods consists
of two steps: (i) we identify a stationary normal solution of the noninteracting Boltzmann-Fokker Plank equation,
and (ii) we use this functional form to close the equations for the translational and rotational fluxes in a quasi-static
approximation.
In the absence of interactions, the Fokker-Planck equation for self-propelled rods is given by

m

ζ‖
(∂t + v1 · ∇r1 + ω1 · R1) f1 + v0û1·∇v1

+

[
ζ⊥
ζ‖

δαβ −
(
1− ζ⊥

ζ‖

)
û1αû1β

](
∂v1αv1β +

kBT

m
∂v1α∂v1β

)
f1

+
mζR

ζ‖

(
∂ω1

ω1 +
kBT

I
∂2
ω1

)
f1 = 0 (55)

with v0 = F
ζ‖

the self propulsion velocity. On time scales large compared to m/ζ‖, we neglect the first term on the

left hand side of Eq. (55). The stationary normal solution then has the form

f1 (r1, û1,v1,ω1, t) = c (r1, û1, t) fS (v1,ω1|û1) , (56)

with

fS = A exp

(
− 1

2kBT
m (v1 − v0û1)

2 − 1

2kBT
Iω2

1

)
, (57)

and A a normalization constant. Inserting this stationary normal solution in Eqs. (43), we obtain

JT
α = v0û1αc−DS û1αû1·∇r1c−Dαβ∂r1β c−mζ−1

αβ

(∫
dr2dû2 〈T (1, 2)v1β〉S c (r2, û2, t)

)
c (r1, û1, t) , (58a)

JR = −DRR1c−
1

ζR

(∫
dr2dû2 〈T (1, 2)ω1〉S c (r2, û2, t)

)
c (r1, û1, t) , (58b)
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where the angular brackets 〈...〉S denote the average over the linear and angular velocities with weigh fS . The diffusion

coefficients Dαβ and DR are as given in the previous subsection, but with T = Ta, and DS =
v2

0

ζ‖
.

The next step is the evaluation of the average linear and angular momentum transfer in a collision,

〈T (1, 2)v1〉S =

∫

v1,ω1

∫

v2,ω2

T (1, 2)v1 fS(v1,ω1|û1)fS(v2,ω2|û2) , (59a)

〈T (1, 2)ω1〉S =

∫

v1,ω1

∫

v2,ω2

T (1, 2)ω1 fS(v1,ω1|û1)fS(v2,ω2|û2) . (59b)

When deriving the Onsager excluded volume interaction in the previous subsection, we neglected dynamical velocity

correlations by approximating
〈
(V12 · k̂)2Θ(−V12 · k̂)

〉
∼ 1

2

〈
(V12 · k̂)2

〉
. This approximation is not valid for self-

propelled rods as the dynamical velocity correlations induced by the self propulsion velocity, which is directed along û,
are also orientational correlations. On the other hand, an approximation is required to make the problem tractable.
The Smoluchowski equation is a mean field model and only describes the average momentum transfer in a collision.

We then assume

〈T (1, 2)v1〉S ≃ 〈T (1, 2)v1〉Ma
+ 〈T (1, 2)v1〉SP , (60a)

〈T (1, 2)ω1〉S ≃ 〈T (1, 2)ω1〉Ma
+ 〈T (1, 2)ω1〉SP , (60b)

where 〈X〉Ma
denotes velocity averages with the Maxwellian distribution given in Eq. (46) at temperature T = Ta and

〈X〉SP denotes velocity averages in a regime where all particles are moving at velocity v0û and the one-rod velocity
distribution is given by fSP ∼ δ (v − v0û) δ (ω). The first terms on the right hand side of Eqs. (60) are then evaluated
as in the previous section by neglecting the dynamical velocity correlations and yield again the Onsager excluded
volume potential given in Eq. (4). The second terms on the right hand side of Eqs. (60) are evaluated by neglecting

static orientational correlations arising from the term
[
1 + (m/2I)(ξ1 × k̂)2+(m/2I)(ξ2 × k̂)2

]−1

in Eq. (14) as these

correlations are already incorporated in the noise. It can be shown that this approximation becomes exact if we
replace the rod by a string of beads in contact with each other and calculate the momentum transfer between the two
specific beads that participate in the collision. With these approximations, the average momentum transfer is given
by

(∫

2

〈T (1, 2)v1β〉S c (2)

)
c (1) ≃ 1

m
(∇r1αVex) c+ v20I

SP
α (61a)

(∫

2

〈T (1, 2)ω1〉S c (2)

)
c (1) ≃ 1

I
R1Vexc+

v20
2I

ISP
R , (61b)

with

ISP =

∫

s

∫

û2

sin2 (θ1 − θ2) [Θ (sin (θ1 − θ2))−Θ(− sin (θ1 − θ2))]

×
[
û⊥
1 c

(
r1 + sû1 −

ℓ

2
û2, û2, t

)
+ û⊥

2 c

(
r1 + sû2 −

ℓ

2
û1, û2, t

)]
, (62)

ISP
R = ẑ

∫

s

∫

û2

sin2 (θ1 − θ2) [Θ (sin (θ1 − θ2))−Θ(− sin (θ1 − θ2))]

×
[
s c

(
r1 + sû1 −

ℓ

2
û2, û2, t

)
+

ℓ

2
cos (θ1 − θ2) c

(
r1 + sû2 −

ℓ

2
û1, û2, t

)]
. (63)

Finally, when these results are substituted into Eq. (58a) and (58b), we obtain the modified Smoluchowski equation
given in Eq. (5).
There are three important modifications of the Smoluchowski equation for self-propelled particles when compared

to its equilibrium counterpart for thermal particles.

1. The translational current JT in Eq. (5a) contains a convective term v0û1c that arises because self-propelled
particles move in the direction of their long axis. This is a signature of the polar nature of the microdynamics
of the system.
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2. Self propulsion yields an additional longitudinal diffusion current DS û1αû1β∂1βc, with DS ∼ v20 . This can be
understood as follows. A Brownian particle subject to a frictional damping ζ takes Brownian steps of mean
length ∆ ∼

√
mkBT/ζ, with

√
kBT/m the thermal speed of the particle and m/ζ the frictional time scale over

which the velocity relaxes to zero. This yields the simple estimate D ∼ ∆2/(m/ζ) ∼ kBT/ζ for the diffusion
coefficient. A Brownian rod experiences anisotropic friction ζ‖ and ζ⊥, yielding mean steps ∆‖ ∼

√
mkBT/ζ‖

and ∆⊥ ∼
√
mkBT/ζ⊥ in the directions longitudinal and transverse to its long axis, respectively. This gives

anisotropic diffusion constants D‖ ∼ kBTζ‖ and D⊥ ∼ kBT/ζ⊥. When the rod is self propelled it performs a
persistent random walk along its long axis controlled by the competition between ballistic motion at speed v0 and
rotational diffusion at rate DR ∼ D‖/ℓ

2. As a result, the mean square velocity is approximately 〈v2〉 ∼ kBT
m +v20 .

For small values of v0 this gives 〈v2〉1/2 ∼ kBT
m

[
1 +

mv2

0

2kBT

]
. This yields an additional contribution of order v20

to the longitudinal diffusion, corresponding to the second term of Eq. (6).

3. Both the translational and rotational fluxes in Eq. (5) contain additional active contributions arising from
the momentum transfer associated with self propulsion. Collisions among particle induce dynamical velocity
correlations. These are negligible for a mean-field description of overdamped thermal hard rods that only seeks
to capture the dynamics of the translational and orientational degrees of freedom. When the rods are self-
propelled with a physical velocity directed along their long axis, collisions induce both velocity and orientational
correlations since the two are intimately coupled. These additional collision-induced orientational correlations
have been shown to affect the physics of the system even on hydrodynamic scales [12].

Our work demonstrates that orientational fluctuations have a profound effect on mass transport in self-propelled
particle systems. Furthermore this observation is not limited to the specific hard rod model considered here, but holds
generically for all collections of self-propelled units. Our result relies solely on the presence of short-range excluded
volume interactions that are present in all physical systems, but not on the specific implementation of such interaction
in the hard particle limit.

V. DISCUSSION

In this paper we have analyzed the microscopic dynamics and statistical mechanics of a collection of self-propelled
particles modeled as long thin polar rods that move along one direction of their long axis. The formalism developed
here is general and of wide applicability. It can be used to study fluctuations and response functions in fluids of self-
propelled particles by building on techniques developed for traditional fluids. In addition, the formalism can readily
be generalized to particles of arbitrary shape and to higher dimensions, making it also relevant for applications to
granular fluids.
As a particular application of the general formalism, we have derived the Smoluchowski equation that governs the

dynamics of the one particle configuration probability density in the overdamped regime, for both thermal and self
propelled particles. For thermal rods, this provides a purely dynamical derivation of the familiar Onsager excluded
volume interaction and is useful for identifying the limitations of this widely used effective interaction in capturing the
physics of out-of-equilibrium systems. For self propelled hard rods, the modified Smoluchowski equation presented
here is the first tractable theory of the dynamics of self-propelled particles that captures the physics of contact
interactions and their modifications due to the presence of self propulsion. In a separate work we have used this
Smoluchowski equation as the starting point for deriving a coarse grained (hydrodynamic) description of the system
in terms of conserved quantities and broken symmetry variables [12, 13]. Self propulsion has profound effects on the
system on hydrodynamic scales, including enhanced orientational order arising from the orientational correlations
induced dynamically via collisions, instabilities of the ordered phases, and the existence of propagating sound-like
density waves in this otherwise overdamped system.
Having derived the Smoluchowski equation from first principles, we can also identify its scope and limitations. Our

theory captures the fluctuations in velocity induced by orientational fluctuations and the associated modifications
to the mass flux that characterize this inherently nonequilibrium system. These effects yield the convective and
diffusive terms in Eq. (5). The theory also captures some of the orientational correlations induced by collisional
interactions through the additional momentum transfer contributions to the fluxes. These correlations are important
as evidenced by the enhanced ordering identified in [12] and observed in numerical simulations of motility assays
[6]. The derivation is, however, based on a low-density kinetic theory that neglects two-particle velocity correlations.
While this is a reasonable approximation for overdamped thermal particles that have an underlying equilibrium state,
in the case of self propelled particles, these correlations will generate additional orientational correlations that are
neglected in the present approximation. The Fokker-Planck hierarchy derived here can serve as the starting point for
analyzing the effect of these two-particle correlations. This is left for future work.
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In summary, we have constructed the non-equilibrium statistical mechanics of a system of self propelled particles
and derived a modified Smoluchowski equation for the system. We have discussed the content of the resulting theory
and identified its scope, limitations and potential for future applications.
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