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We perform a systematic analysis of the influence of phonon driving on the superconducting Holstein model

coupled to heat baths by studying both the transient dynamics and the nonequilibrium steady state (NESS) in

the weak and strong electron-phonon coupling regimes. Our study is based on the nonequilibrium dynamical

mean-field theory, and for the NESS we present a Floquet formulation adapted to electron-phonon systems. The

analysis of the phonon propagator suggests that the effective attractive interaction can be strongly enhanced in

a parametric resonant regime because of the Floquet side bands of phonons. While this may be expected to

enhance the superconductivity (SC), our fully self-consistent calculations, which include the effects of heating

and nonthermal distributions, show that the parametric phonon driving generically results in a suppression or

complete melting of the SC order. In the strong coupling regime, the NESS always shows a suppression of the

SC gap, the SC order parameter, and the superfluid density as a result of the driving, and this tendency is most

prominent at the parametric resonance. Using the real-time nonequilibrium DMFT formalism, we also study the

dynamics towards the NESS, which shows that the heating effect dominates the transient dynamics, and SC is

weakened by the external driving, in particular at the parametric resonance. In the weak coupling regime, we find

that the SC fluctuations above the transition temperature are generally weakened under the driving. The strongest

suppression occurs again around the parametric resonances because of the efficient energy absorption.
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I. INTRODUCTION

The prospect of nonequilibrium exploration and control

of material properties has caught the interest and attention

of broad segments of the condensed matter community [1].

In particular, the resonant excitation of mid-infrared phonon

modes has opened a new pathway for manipulating properties

such as metallicity [2], magnetism [3], and superconductivity

(SC) [4–9] and for modifying lattice structures in ways

which may not be achievable in equilibrium. Especially, the

light-induced SC-like behavior in the optical conductivity for

high Tc cuprates and doped fullerides [4–9] has stimulated

several theoretical investigations [10–19]. So far, two possible

scenarios for the enhancement of SC have been discussed

in the literature, based on the enhanced pairing interaction

out of equilibrium: (i) Under time-periodic driving, the

time-averaged Hamiltonian can be modified in such a way

that SC is favored [10,14,18], and (ii) the interaction can

be effectively enhanced in the driven state by dynamical

effects [11–13,16]. Both effects can be induced by the res-

onant excitation of mid-infrared phonon modes, and previous

theoretical investigations have tried to clarify their influence

on SC.

Concerning the effect of time-periodic driving on the

time-averaged Hamiltonian, it has been pointed out that the

resonantly excited mid-infrared phonon can lead to favorable

parameter changes [10,14,18], such as an orbital imbalance of

the Coulomb interaction. As for the effects of the dynamical

part of the Hamiltonian, it has been argued that the parametric

driving of the Raman modes through nonlinear couplings

with the mid-infrared phonon modes [11,12] or the excited

mid-infrared phonon through a nonlinear electron-phonon

coupling [13,16] effectively pushes the system into the

stronger-coupling regime, leading to an enhancement of the

SC. Still, many important questions remain to be answered.

In particular, when the enhancement of the SC is attributed

to a change of the time-averaged Hamiltonian or the effective

interaction, it is often assumed that the system remains in

thermal equilibrium. However, in general, a periodically driven

and interacting many-body system is expected to heat up

(either by resonant excitations, or on a longer timescale by

multiphoton absorption processes) and eventually reach an

infinite temperature state [20,21]. This would imply a melting

of long-range order after a long time, even if the pairing

interactions are enhanced by the driving. In a real system, this

detrimental heating effect may potentially be circumvented in

two ways: either the heating processes are slow enough so

that an enhancement of a long-range order can be observed

at least transiently, or the heating is eventually balanced by

energy dissipation to the environment, thus leading to the

so-called nonequilibrium steady state (NESS). The transient

dynamics has been studied by looking at the SC instabilities

of the normal phase, in the form of negative eigenvalues of the

transient pairing susceptibility [11,17]. While such negative

susceptibilities can occur for short times, it is an open question

on which time scale the long-range order could evolve in such

a situation and whether a potential increase can be fast enough

to overcome the heating. Even less is known about the nature

of the NESSs, where excitation and dissipation are balanced.

For an understanding of the light-enhanced SC, it is therefore

essential to go beyond the study of effective interactions

and Hamiltonians, and to consider a formalism that can take

account of the transient or steady-state modifications of the

electron and phonon distribution functions, and of the SC order

or fluctuations, in the nonequilibrium state.
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In this paper, we focus on the dynamical aspect of a phonon-

driven system and discuss the influence of the parametric

phonon driving and the resulting heating and nonthermal

distribution on the SC. Specifically, we study the time-periodic

nonequilibrium steady state (NESS) and the nonequilibrium

transient dynamics of the Holstein model, a prototypical model

of electron-phonon systems, using the nonequilibrium dynam-

ical mean-field theory (DMFT) combined with the Migdal

approximation [22–25]. To investigate the time-periodic NESS

of the electron-phonon (el-ph) system with externally driven

phonons, we extend the Floquet DMFT formalism, which

has been previously only applied to purely electronic systems

[26–31], to the Holstein case.

The Floquet DMFT is based on the Floquet Green’s

function formalism, which can take into account the effect

of many-body interactions, periodic driving by external fields,

and a dissipative coupling to the environment on equal footing.

The Floquet DMFT for el-ph systems developed here is

therefore not limited to the SC order and should be useful to

study a wide range of nonequilibrium situations that involve

phonon excitations triggered by “nonlinear phononics” [32].

Our systematic analysis, which covers the weak and strong

coupling regimes, reveals that the parametric phonon driving

generally suppresses the SC (see Figs. 8 and 15), even though

in some parameter regimes the retarded attractive interaction

is increased and an enhancement of the SC is naively expected

[see Figs. 4(a) and 4(d)]. In particular in the parametrically

resonant regime, where the system absorbs energy most

efficiently independent of the coupling strength, the SC order

and fluctuations are strongly suppressed.

The paper is organized as follows. Section II describes the

setup for the Holstein model under external phonon driving

and attached to thermal baths. The framework used to study

the problem is explained in Sec. III and the nonequilibrium

Green’s functions are introduced in Sec. III A. In Sec. III B,

we discuss the heat bath directly coupled to the phonon degrees

of freedom, and in Sec. III C we introduce the Floquet Green’s

function and derive its expression for the case of parametric

phonon driving. In Sec. III D, we explain the Floquet DMFT

for the Holstein model and provide expressions for relevant

physical quantities. Important remarks about the usage and

limitations of the Floquet DMFT for the parametric phonon

driving problem can be found in Sec. III E. The results of

our systematic analysis are shown in Sec. IV. In Sec. IV A,

we focus on the modification of the phonon propagator in

the driven state in the weak coupling limit and show that an

enhancement of the phonon-mediated effective attractive in-

teraction is realized in some parameter regimes, which naively

suggests an enhancement of SC. Sections IV B and IV C are

dedicated to the strong coupling regime. In Sec. IV B, we

study the NESS under the parametric phonon driving using

the Floquet DMFT and in Sec. IV C we discuss the transient

dynamics toward the NESS. In Sec. IV D, we focus on the weak

coupling regime and study how the SC fluctuations above Tc

react to the phonon modulation. Summary and conclusions are

provided in Sec. V.

II. MODEL

In this paper, we consider the case where the system coupled

to heat baths is periodically driven by an external field. Such

System

Bath (in equilibrium)Bath (in equilibrium)

Hsys

Hmix

Hbath

Keldysh contour

(a)

(b)
C1

C2

Ω
W (t)

I(t)

FIG. 1. (a) Schematic picture of the setup we consider in the

paper. � is the frequency of the external field, W (t) is the energy

injected from the field, while I (t) is the energy flow from the system

to the bath. (b) The Keldysh contour.

a situation is expressed by the Hamiltonian

Htot(t) = Hsys(t) + Hmix + Hbath, (1)

see Fig. 1(a). Here Hsys(t) is the Hamiltonian for the system,

which includes terms representing periodic excitations. Hbath

is the Hamiltonian for heat baths, while Hmix represents the

coupling between the system and the baths. When the system

is continuously excited by periodic fields, it is expected that

it finally reaches a time-periodic nonequilibrium steady state

(NESS) in which the energy injection from the field and the en-

ergy flow into the baths are balanced. This situation is different

from isolated systems under periodic driving [20,21,33,34].

The system Hamiltonian Hsys(t) consists of the unperturbed

part Hsys,0 and the external periodic field Hext(t). Here, we

focus on a simple but relevant example of an electron-phonon

coupled system, the Holstein model, with the Hamiltonian

Hsys,0 = −v
∑

〈i,j〉,σ

(c
†
i,σ cj,σ + H.c.) − μ

∑

i

ni

+ω0

∑

i

a
†
i ai + g

∑

i

(a
†
i + ai)(ni − 1), (2)

where c
†
i is the creation operator for an electron with spin σ

at site i, v is the electron hopping, μ is the electron chemical

potential, ni = c
†
i,↑ci,↑ + c

†
i,↓ci,↓, ω0 is the bare phonon fre-

quency, a
†
i is the creation operator for the Einstein phonon,

and g is the el-ph coupling. The retarded attractive interaction

between electrons is mediated by the phonons, which leads to

an s-wave superconducting state at low enough temperatures.

The SC order parameter is defined as φ = 1
N

∑

i〈ci↓ci↑〉 which

is assumed to be real without loss of generality. The strength of

the phonon-mediated attractive interaction is characterized by

the dimensionless el-ph coupling, λ = −ρ0(0)g2DR(ω = 0),

where ρ0(ω) is the density of states for the free electrons, and

D is the retarded phonon propagator [35].

Recent developments in THz or mid-infrared laser tech-

niques make it possible to selectively and strongly excite

a certain phonon mode. The infrared active phonons can

couple to the electron sector through further excitation of
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another phonon mode (Raman mode) that is linearly coupled

to the electron sector [11,36] or through a nonlinear-coupling

mechanism [8,13,37]. Our present interest is in the former

case. Considering the mid-infrared phonon oscillations as

an external driving force to the Raman mode through the

nonlinear coupling, we study the following type of excitations

for the phonon sector:

Hph(t) = ω0P (t)
∑

i

P 2
i

4
+ ω0X(t)

∑

i

X2
i

4
. (3)

Here Hph(t) consists of the time-dependent part [Hext(t)] and

the time-independent part (ω0

∑

i a
†
i ai in Hsys,0). ω0P (t) and

ω0X(t) are periodic in time with a period T ≡ 2π
�

, Xi =
ai + a

†
i , and Pi = (ai − a

†
i )/i. This type of modulation of the

phonon degrees of freedom has been discussed as a potential

origin of the enhancement of superconductivity [11,12,17].

To be more specific, we focus on two types of periodic

phonon excitations,

Type 1: Hph(t) = ω0

∑

i

P 2
i

4
+ ω0X(t)

∑

i

X2
i

4

with ω0X(t) = ω0 + 	ω0 cos(�t), (4)

and

Type 2: Hph(t) = ω0(t)
∑

i

(

P 2
i

4
+

X2
i

4

)

with ω0(t) = ω0 + 	ω0 cos(�t). (5)

The first type, Eq. (4), is included in excitations through some

of the nonlinear couplings between the mid-infrared mode and

the Raman mode. Its potential effect on superconductivity has

been discussed in Ref. [11]. Potential effects of the second

type of excitations, Eq. (5), have been discussed in Ref. [12].

As we will show below, it turns out that the type 1 and type 2

excitations give qualitatively the same results concerning the

enhancement of the attractive interaction and the suppression

of SC in the NESS and the transient dynamics. Besides these

two types of excitations, one may also want to consider the

case where 1
T

∫

T

0
ω0X(t)dt �= ω0 as in Ref. [11], where the

time-averaged Hamiltonian is modified. If 1
T

∫

T

0
ω0X(t)dt <

ω0, the system goes to the stronger-coupling regime and the

SC should be enhanced. However, since this effect is rather

trivial we do not discuss it in this paper. As for the bath, we

use free electron and free phonon baths, which are introduced

in detail in the following section.

III. FORMALISM

A. Nonequilibrium Green’s functions

The transient time evolution toward the NESS can be

described in the nonequilibrium Green’s function method

formulated on the Kadanoff-Baym (KB) contour CKB [22],

where we define the contour-ordered Green’s functions,

G(t,t ′) ≡ −i〈TCKB
c(t)c†(t ′)〉, (6a)

D(t,t ′) ≡ −i〈TCKB
X(t)X(t ′)〉, (6b)

for the electrons and phonons, respectively. Here c† is the

creation operator for an electron in the system, X represents

the phonon displacement, and TCKB
is the contour-ordering

operator on the KB contour. All the operators are in the

Heisenberg picture, and 〈· · · 〉 indicates the average with

respect to the initial ensemble. In this formalism, the system

is in equilibrium at the initial time t0 and is then driven

by the periodic external field. In Secs. IV C and IV D we

use this formalism to study the transient dynamics. The

DMFT formalism for the real-time dynamics, both in electron

and electron-phonon-coupled systems, has been discussed in

previous works [22–24,38] and will not be presented in detail

here.

The KB formalism can be inefficient for studying the NESS,

which the system reaches in the long-time limit. Since the

initial correlations are wiped out through the coupling to the

thermal bath, they should be irrelevant to the NESS [22].

Hence, we can simplify the problem by assuming t0 = −∞
and neglecting the left-mixing, right-mixing, and Matsubara

components in the KB formalism (which reduces to the

Keldysh formalism) and focusing directly on the NESS.1 In

the Keldysh formalism, we focus on the contour CK = C1 ∪ C2

[see Fig. 1(b)] and hence only need to consider

Ǧ(t,t ′) ≡
[

G11(t,t ′) G12(t,t ′)

G21(t,t ′) G22(t,t ′)

]

. (7)

Here Gij (t,t ′) indicates t ∈ Ci and t ′ ∈ Cj .

The physical representation for the Green’s function is

defined as

G ≡
[

GR GK

0 GA

]

= Ľσ̌3ǦĽ† with Ľ =
1

√
2

[

1 −1

1 1

]

,

(8)

where σ̌3 is the third Pauli matrix. R, A and K stand for the

retarded, advanced and Keldysh parts, respectively. This is the

so-called Larkin-Ovchinnikov form. We can apply the same

transformation to the phonon Green’s function D.

If there is no interaction or coupling to external baths, one

can evaluate the bare electron Green’s function G0 (the bare

phonon Green’s function D0), even in the presence of an

external field. The correlations coming from the interaction

and baths can be taken into account through the electron self-

energy 
 (phonon self-energy �). Since the initial correlations

can be neglected, the Dyson equation in the Keldysh formalism

becomes simple:

∫ ∞

−∞
dt1

[

G−1
0 (t,t1) − 
(t,t1)

]

· G(t1,t
′) = Iδ(t − t ′), (9a)

∫ ∞

−∞
dt1

[

D−1
0 (t,t1) − �(t,t1)

]

· D(t1,t
′) = Iδ(t − t ′). (9b)

Here · indicates the matrix product, I is the 2 × 2 identity

matrix, and
∫

dt1G
−1
0 (t,t1) · G0(t1,t

′) = Iδ(t − t ′) (the same

holds for D−1
0 ). Precisely speaking, Eq. (9b) is true as long as

1We assume that at t0 = −∞ the system is free and decoupled from

the baths and that the interactions and the coupling to the baths are

adiabatically turned on.
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the average phonon distortion 〈X(t)〉 remains zero, which is the

case considered in this paper. When 〈X(t)〉 is finite, the phonon

propagator has an additional contribution −i〈X(t)〉〈X(t ′)〉.

B. Thermal baths

In this paper, we consider two types of thermal baths. One

is attached to the electron degrees of freedom and the other is

attached to the phonon degrees of freedom.

For the bath attached to the electrons we employ the

so-called Büttiker model, which consists of multiple sets of

free electrons in equilibrium connected to each site of the

system. The model has been used in the previous Floquet

DMFT studies of electron systems [22,29,31]. Here we briefly

review the model. Due to the noninteracting nature of the bath,

it can be traced out exactly to yield the self-energy correction


bath, which is characterized by

Ŵ(ω) ≡ −Im
R
bath(ω). (10)

When Ŵ(ω) is fixed, all of the physical components of 
bath

can be obtained through the fluctuation-dissipation theorem

for 
bath(ω) [22]. The total self-energy is the sum of the

contributions from the bath and the interactions in Hsys,


tot = 
bath + 
int. (11)

In the following, we use a heat bath with a finite bandwidth,

Ŵ(ω) = γel

√

1 −
(

ω

Webath

)2

, (12)

to avoid the divergence of the bath self-energy in the time

representation at t = t ′. We note that this bath tends to suppress

the SC order, since it reduces the lifetime of quasiparticles.

As for the heat bath attached to the phonon degrees of

freedom, we consider a free-boson bath as in the Caldeira-

Leggett model [39], which is expressed as

Hmix,ph =
∑

i,p

Vp(a
†
i + ai)(b

†
i,p + bi,p), (13a)

Hbath,ph =
∑

i,p

ωpb
†
i,pbi,p. (13b)

Here b
†
i,p is the creation operator for a bath phonon labeled

by an index p, which is attached to the system phonon at

site i. We can trace out the bath phonons in the path-integral

formalism, which yields an additional self-energy correction

to the phonon Green’s function in the system,

�i,bath(t,t ′) =
∑

p

V2
pD0,p(t,t ′), (14)

D0,p(t,t ′) = −i[θc(t,t ′) + fb(ωp)]e−i(t−t ′)ωp

− i[θc(t ′,t) + fb(ωp)]e−i(t ′−t)ωp , (15)

where D0,p is the bare bath phonon propagator in equilibrium,

fb is the boson distribution function with the bath temperature

T , and θc(t,t ′) is the Heaviside step function along the Keldysh

contour. We note that the total phonon self-energy includes the

contribution from the bath and that from the interaction in Hsys

�tot = �bath + �int. (16)

Since �bath(t,t ′) is time-translation invariant, we can

consider its Fourier components. The retarded part is

�R
bath(ω) =

∑

p

V2
p

2ωp

(ω + i0+)2 − ω2
p

, (17)

and the bath information is contained in its spectrum

Bbath(ω) = −Im�R
bath(ω)

= π
∑

p

V2
p[δ(ω − ωp) − δ(ω + ωp)]. (18)

When Bbath(ω) is given, the self-energy from the bath can be

expressed as

�R
bath(ω) =

1

π

∫

Bbath(ω′)

ω − ω′ + i0+ dω′, (19a)

�A
bath(ω) = �R

bath(ω)∗, (19b)

�K
bath(ω) = coth

(βω

2

)

[

�R
bath(ω) − �A

bath(ω)
]

= −2i coth
(βω

2

)

Bbath(ω). (19c)

In the following, we consider a bath spectrum of the form

Bbath(ω) = V2

{

γ

(ω − ωD)2 + γ 2
−

γ

(ω + ωD)2 + γ 2

}

.

(20)

Here we assume γ = ωD , which yields an almost linear

structure in Bbath(ω) in the frequency interval ω ∈ [−ωD,ωD].

This can be regarded as an Ohmic bath with a soft cutoff.

Because of the nonvanishing real part of the bath self-energy,

the bath coupling softens the phonon frequency, leading to

a stronger attractive interaction. We put γph = V2/ωD in the

following.

C. Floquet Green’s functions

We apply the Keldysh formalism introduced in Sec. III A to

a time-periodic NESS realized under an external periodic field,

where we assume that relevant physical observables become

periodic in time. We can take advantage of this to simplify

the Keldysh formalism. For example, the Green’s functions

become periodic with respect to the average time tav,

GR,A,K(tr; tav) = GR,A,K(tr; tav + T ),
(21)

DR,A,K(tr; tav) = DR,A,K(tr; tav + T ),

where tr = t − t ′ and tav = t+t ′

2
. The self-energies have the

same property in the NESS. Hence, the full tav dependence of

GR,A,K(tr; tav) and DR,A,K(tr; tav) contains redundant informa-

tion. We can eliminate this redundancy by considering the

Floquet representation of these functions in the following

manner. Let us assume that a function F (tr; tav) has the

periodicity of Eq. (21). The Floquet representation (the Floquet

matrix form) of this function is defined as [22]

Fmn(ω) ≡
1

T

∫

T

0

dtav

∫ ∞

−∞
dtre

i(ω+ m+n
2

�)trei(m−n)�tavF (tr; tav).

(22)
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This representation has some important properties. At each ω,

Fmn(ω) can be regarded as a matrix whose indices are m and n

(the Floquet matrix). In this representation, the convolution of

two functions satisfying Eq. (21) in the two-time representation

becomes the product of the Floquet matrices at each ω [22].

This simplifies the Dyson equation, Eq. (9), to

[

G−1
0 (ω) − 
(ω)

]

· G(ω) = I, (23a)
[

D−1
0 (ω) − �(ω)

]

· D(ω) = I. (23b)

Here G(ω) indicates the Larkin-Ovchinnikov form with each

physical component expressed in the Floquet representation,

and · is the matrix product with respect to the Floquet

representation and the Larkin-Ovchinnikov form. Hence the

Dyson equation, which has been originally a Volterra equation

in the two-time representation, becomes a matrix inversion

problem in the Floquet representation. In addition, from the

definition it follows that Fm,n(ω) = Fm+l,n+l(ω − l�). We deal

with this redundancy by using the reduced Brillouin-zone

scheme restricting the frequency to ω ∈ [−�
2
,�

2
).

When an external periodic field is applied to the electrons,

we can incorporate this effect into the bare electron propagator,

which acquires a time-periodic structure as in Eq. (21). The

corresponding expressions have been discussed in the previous

works for the single-band [28] and multiband [31] systems, so

we do not repeat this here. Instead, we focus on the direct

phonon modulation originating from a THz or mid-infrared

laser pump, Eq. (3). In this case, we need to first derive the

expression for the bare phonon propagator in the presence of

such a modulation, in order to understand its effects and to

construct the perturbation theory on top of it.

The free phonon system under the periodic driving is

described by the Hamiltonian

Hph(t) = ω0P (t)
P 2

4
+ ω0X(t)

X2

4
. (24)

The operator X in the Heisenberg representation satisfies the

equation

[

−∂2
t +

∂tω0P (t)

ω0P (t)
∂t − ω0P (t)ω0X(t)

]

X(t) = 0. (25)

From this, we find that

D−1
0 (t,t ′) ≡

−∂2
t + ∂tω0P (t)

ω0P (t)
∂t − ω0P (t)ω0X(t)

2ω0P (t)
δ(t − t ′) (26)

satisfies

∫

dt̄D−1
0 (t,t̄)DR

0 (t̄ ,t ′) = δ(t − t ′), (27a)

∫

dt̄D−1
0 (t,t̄)DK

0 (t̄ ,t ′) = 0, (27b)

∫

dt̄D−1
0 (t,t̄)DA

0 (t̄ ,t ′) = δ(t − t ′). (27c)

Hence, in the Dyson equation for the full phonon Green’s

function, Eq. (9b), we can use D−1
0 (t,t ′) = ID−1

0 (t,t ′). In the

Floquet representation, D−1
0 (t,t ′) becomes

[D0]−1
mn(ω) =

(ω + n�)(ω + m�)
[

ω
inv
0P

]

mn
− [ω0X]mn

2
, (28)

where

[ω0X]mn =
1

T

∫

T

0

dtave
i(m−n)�tavω0X(tav), (29a)

[

ω
inv
0P

]

mn
=

1

T

∫

T

0

dtav

ei(m−n)�tav

ω0P (tav)
. (29b)

We note that the inverse of the Floquet matrix of the retarded

part, [DR
0 (ω)]−1, is equal to [D0(ω + i0+)]−1. In the numerical

implementation, we solve the Dyson equation for the phonon

Green’s function using Eq. (28) and Eq. (23b).

Now we focus on more specific situations described by the

driving protocols of type 1 [Eq. (4)] and type 2 [Eq. (5)]. For

the excitation of type 1, the inverse of the bare phonon Green’s

function is obtained by substituting

[ω0X]mn = ω0δm,n +
	ω0

2
(δm,n+1 + δm,n−1), (30a)

[

ω
inv
0P

]

mn
=

1

ω0

δm,n, (30b)

into Eq. (28). Since the equation of DR
0 (t,t ′) turns out to be the

Mathieu’s differential equation (see also Sec. III E), we can

express it as a linear combination of its two Floquet solutions.

For the excitation of type 2, the inverse of the bare phonon

Green’s function is obtained from

[ω0X]mn = ω0δm,n +
	ω0

2
(δm,n+1 + δm,n−1), (31)

[

ω
inv
0P

]

mn
=

1

ω0

∞
∑

l=0

(2l + r)!

(l + r)!l!

(

−	ω0

2ω0

)2l+r

=
1

ω0

(

−	ω0

2ω0

)r

2F1

(

1 + r

2
,
2 + r

2
; 1 + r;

	ω2
0

ω2
0

)

,

(32)

where we put r = m − n and 2F1(α,β; γ ; z) is the hypergeo-

metric function. One can also easily express DR
0 in the time

domain as

DR
0 (t,t ′) = θ (t − t ′)i[ei(S(t)−S(t ′)) − e−i(S(t)−S(t ′))], (33)

where S(t) ≡ tω0 + 	ω0

�
sin(�t).

D. Dynamical mean-field theory

In order to evaluate the full Green’s functions, we employ

the dynamical mean-field theory (DMFT) [22,40–42], which

becomes exact in the limit of infinite spatial dimensions [42].

The idea of DMFT is to map the lattice problem to an effective

impurity problem. In the present case of the Holstein model

with thermal baths, the form of the effective impurity model
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in the Grassmann path integral formalism is2

Simp = i

∫

CK

dtdt ′�†(t)(Ĝ−1
0 (t,t ′) − 
̂bath(t,t ′))�(t ′)

+ i

∫

CK

dtdt ′X(t)
D−1

0 (t,t ′) − �bath(t,t ′)

2
X(t ′)

− ig

∫

CK

dtX(t)�†(t)σ̂3�(t), (34)

where

Ĝ−1
0 (t,t ′) = [i∂t Î + μσ̂3]δCK

(t,t ′) − 	̂(t,t ′), (35)

∫

CK
denotes an integral on the Keldysh contour, �†(t) ≡

[c
†
↑(t),c↓(t)] a Nambu spinor, and a hat symbol a 2 × 2

matrix in the Nambu form. In this expression, the thermal

baths and P (phonon momentum) in the impurity problem

have been integrated out [24]. The hybridization function

	̂ is determined such that the impurity Green’s function,

Ĝimp(t,t ′) = −i〈TCK
�(t)�†(t ′)〉, and the impurity self-energy


̂imp,int (which does not include the bath contribution) are

identical to the local lattice Green’s function for the electrons,

Ĝloc(t,t ′) = −i〈TCK
�i(t)�

†
i (t ′)〉, and the local lattice self-

energy, 
̂loc, respectively.

Since we are considering a time-periodic NESS, the

effective impurity model also has the same time periodicity,

where the hybridization function 	̂ is assumed to show the

periodic behavior of Eq. (21). Hence the Dyson equation

involved in the solution of the effective impurity model can

be dealt with as an inverse problem of the Floquet matrix.

Precisely speaking, the matrix to invert involves three indices,

i.e., those of the Floquet, Larkin-Ovchinnikov, and Nambu

forms.

1. Migdal approximation

In order to solve the effective impurity model, we employ

the self-consistent Migdal approximation [23–25,35,43–47],

which is justified when the phonon frequency ω0 is small

enough compared to the electron bandwidth [35,43–45]. Here,

the electron self-energy (
̂) and phonon self-energy (�) are

given by


̂imp,int(t,t
′) = ig2Dimp(t,t ′)σ̂3Ĝimp(t,t ′)σ̂3,

�imp,int(t,t
′) = −ig2Tr[σ̂3Ĝimp(t,t ′)σ̂3Ĝimp(t ′,t)], (36)

where we do not explicitly write the Hartree term. Remember

that in DMFT 
̂imp,int(t,t
′) is identified with the lattice self-

energy of the electrons at each momentum. The Hartree term

is proportional to 〈X(t)〉, and, in the half-filled case, which

we focus on in this paper, it is exactly zero. Away from half

filling, 〈X(t)〉 can be finite and time dependent. Still, since

we are considering homogeneous excitations, this term can

be regarded as a time-dependent chemical potential and does

not affect the dynamics of relevant physical quantities without

couplings to the Büttiker-type bath. The self-consistent Migdal

2For simplicity, here we also denote the Grassmann fields by �†

and � and the scalar field as X.

approximation is a conserving approximation, which allows

one to trace the energy flow from the system to the thermal

baths.

2. Observables

We summarize the physical observables that are used to

discuss the results in the paper. Let us denote the Heisenberg

representation as O(t) = Utot(t0,t)OUtot(t,t0), where Utot(t,t0)

is the unitary evolution operator from time t0 to t .

The change of the system energy can be expressed as

dEsys(t)

dt
= 〈∂tHsys(t)〉 + i〈[Hmix(t),Hsys(t)]〉. (37)

The partial derivative in the first term means the derivative

with respect to the time-dependence of Hsys in the Schrödinger

representation and it represents the work done by the external

field, which we express as W (t). The second term represents

the energy dissipation from the system to the bath, which we

express as −I (t). If the system is in a time-periodic NESS,

the average energy injected from the field and dissipated to the

baths should be the same,

W = Ī , (38)

where the overline indicates the time average over one period,
1
T

∫

T

0
dt . We also note that the energy dissipated from the

system should be equal to the energy injected into the bath.

This leads to

Ī = i〈[Hmix(t),Hbath(t)]〉, (39)

see also Appendix A for more details.

In the following, we give the explicit expression for each

term in Eq. (37) using the self-energies and Green’s functions.

(1) The work done by the field is

W (t) =

{

−	ω0� sin(�t)

4

∑

i

〈

X2
i (t)

〉

(Type 1),

−	ω0� sin(�t)

4

∑

i

(〈

P 2
i (t)

〉

+
〈

X2
i (t)

)〉

(Type 2),

(40)

where 〈X2
i (t)〉 can be obtained from the lesser part of the

phonon Green’s function Di(t,t
′).

(2) The dissipated energy is

I (t) = Iph(t) + Iel(t)

= −i〈[Hph mix(t),Hsys(t)]〉 − i〈[Hel mix(t),Hsys(t)]〉,
(41)

where

Iph(t) = i
∑

i

∂t [Di ∗ �i,ph bath]<(t,t ′)|t ′=t (42)

and

Iel(t) =
∑

i

Tr[
̂el bath ⊛ 	̂i ⊛ Ĝii]
<(t,t) + H.c.

− μ
∑

i

Tr[σ̂3 · 
̂el bath ⊛ Ĝii]
<(t,t) + H.c.

−
∑

i

Tr[
̂int,i ⊛ Ĝii ⊛ 
̂el bath]<(t,t) + H.c.. (43)
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Here the symbol ∗ indicates the convolution along the Keldysh

contour CK and the symbol ⊛ represents a multiplication

of the 2 × 2 Nambu matrices and the convolution i.e.,

[Â ⊛ B̂]α,α′ (t,t ′) =
∑

γ

∫

C
dt̄Aα,γ (t,t̄)Bγ,α′ (t̄ ,t ′). Tr refers to

the trace of the Nambu matrices.

The system observables (involving Hsys) can be expressed

in the following manner, in analogy to the Kadanoff-Baym

formalism [23].

(1) Kinetic energy

Ekin(t) =
1

N

∑

i,j,σ

−vi,j 〈c†i,σ (t)cj,σ (t)〉

= −iTr[	̂ ⊛ Ĝloc]<(t,t). (44)

(2) Interaction energy

EnX(t) =
g

N

∑

i

〈Xi(t)�̂
†
i σ̂3�̂i(t)〉

= −iTr[
̂int ⊛ Ĝloc]<(t,t). (45)

(3) Phonon energy

Eph(t) =
ω0X(t)

4N

∑

i

(iD<
i (t,t)) +

ω0P (t)

4N

∑

i

(iD<
PP,i(t,t)).

(46)

Here DPP(t,t ′) = −i〈TcP (t)P (t ′)〉. This can be obtained by

taking derivatives of D(t,t ′) [23]. The Larkin-Ovchinnikov

form of this function becomes

DPP (t,t ′) =
1

ω0P (t)ω0P (t ′)
∂t∂t ′D(t,t ′) −

2δ(t − t ′)

ω0P (t)
I . (47)

We note that the derivative in the two-time representation

becomes a multiplication of some factors depending on ω,m,

and n in the Floquet representation, which can be used for the

numerical implementation.

Another important quantity is the optical conductivity, i.e.,

σαα(t,t ′) ≡ δ〈jα(t)〉/δEα(t ′), where 〈jα(t)〉 is the current in

the direction α, Eα(t ′) is the probe field, and δ indicates the

functional derivative [22]. This can be expressed in terms of

the susceptibility χαα(t,t ′) ≡ δ〈jα(t)〉/δAα(t ′) as

σαα(t,t ′) = −
∫ t

t ′
χαα(t,t̄)dt̄ . (48)

Here Aα(t) represents the vector potential and Eα(t) =
−∂tAα(t). χαα(t,t ′) consists of the diamagnetic term χdia

αα (t,t ′)
and the paramagnetic term χ

para
αα (t,t ′) [22]. In principle, the

paramagnetic term includes the vertex correction, but in the

present case, since the phonon driving does not break the parity

symmetry (k ↔ −k), its contribution vanishes. In the end, we

obtain the following expression in the Nambu form,

χdia(t,t ′) = iδ(t − t ′)

∫

dǫ
d�(ǫ)

dǫ
Tr[σ̂3Ĝ

<
ǫ (t,t)], (49a)

χpara(t,t ′) = i

∫

dǫ�(ǫ)
{

Tr
[

ĜR
ǫ (t,t ′)Ĝ<

ǫ (t ′,t)
]

+ Tr
[

Ĝ<
ǫ (t,t ′)ĜA

ǫ (t ′,t)
]}

, (49b)

where ǫ denotes the energy of noninteracting electrons, �(ǫ) =
1

�vol

∑

k,σ ( ∂ǫk

∂kα
)
2
δ(ǫ − ǫk), d�(ǫ)

dǫ
= 1

�vol

∑

k
∂2ǫk

∂k2
α
δ(ǫ − ǫk), and

�vol is the volume of the system. In particular, for the Bethe

lattice, �(ǫ) = (N/3d)[(W/2)2 − ǫ2]ρ0(ǫ) is used, where N

is the system size and 2d the coordination number [48]. W

is the bare electron band width and ρ0(ω) is the semielliptic

density of states.

In the NESS, σ (t,t ′) and χ (t,t ′) become time periodic, and

their Floquet expressions are connected through

σmn(ω) =
χmn(ω)

i(ω + n�)
. (50)

To obtain an intuitive picture, let us imagine that Eα(t) =
δE0e

−iνt is applied as a probe field. The induced current is

δjα(t) = δE0

∑

m

e−i(ν+m�)t
σm0(ν). (51)

We note that in this expression we unfold the restricted

zone scheme for σ
ij

m0(ν) by using σm0(ν) = σm+l,l(ν − l�).

Equation (51) means that the response includes e−i(ν+m�)t

components in addition to e−iνt . Previous studies [29,31] have

mainly focused on the diagonal component (m = 0), while

in the present work, we will also discuss the off-diagonal

components.

E. Breakdown of the Floquet Green’s function method

It is important to remark that there are instabilities in

the system under the excitation Eq. (4). Without the heat

bath and the el-ph coupling, the equation for the phonon

Green’s function [Eq. (27) combined with Eq. (4)] becomes

the so-called Mathieu’s differential equation. It is known

that the solution of this equation is unstable around n
2
� =

ω0, with n a natural number. In this unstable regime, the

amplitude of the oscillations in the solution of the equation

monotonically increases, and there is no well-defined Floquet

form of the Green’s function since we cannot define the Fourier

components.

The heat bath and the el-ph coupling introduce a damping

effect through the self-energy corrections. Even though the

damping effect can reduce the unstable regime [49,50], the

Green’s function still exhibits an instability when the strength

of the external field is large enough. In such cases the Floquet

Green’s function cannot be defined and the Floquet formalism

becomes inapplicable. Physically, this means that the NESS,

if any, is unstable against infinitesimally small perturbations

to the phonon part.

In Fig. 2, we demonstrate that even with the phonon bath the

behavior of the retarded part of the phonon Green’s function

changes qualitatively as a function of driving amplitude. The

correct results are obtained by solving the Dyson equation

in the time domain (differential-integral Volterra equation),

Eq. (9b), which produces either a stable or unstable solution

depending on the excitation parameter. For comparison, we

solve the Dyson equation in the Floquet form, Eq. (23b),

and carry out an inverse transformation to the two-time

representation. These two ways of solving the Dyson equation

give the same solution, when the solution is stable. However,

we have found an unphysical solution for the unstable regime

in the Floquet form that is different from the transient solution

of the Volterra equation in the time domain. In particular, the
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FIG. 2. Comparison between solutions of the Dyson equation

obtained from the Volterra equation, Eq. (9b), and the Floquet

representation, Eq. (23b). D̄R(tr) is DR(tr; tav) averaged over tav. Only

the self-energy correction from the phonon bath is considered.

unphysical solution violates the initial condition (the sum rule

in the ω space) ∂tD
R
0 (t,t ′)|t ′=t = −2ω0, see also Sec. IV A.

Therefore, when using the Floquet form of the Green’s

function, one has to be careful about the unstable regime,

where the system cannot reach a physically stable NESS.

The excitation Eq. (4) at the parametric resonance �
2

= ω0

is potentially in such a regime. However, there is no such

problem in the calculation of the transient time evolution on

the Kadanoff-Baym contour.

IV. RESULTS

In this paper, we investigate the effect of parametric phonon

driving on superconductivity (SC) both in the weak coupling

(λ ≪ 1, the red region in Fig. 3) and strong coupling (λ ∼ 1,

the blue region in Fig. 3) regimes. We use the semielliptic

density of states, ρ0(ω) = 1
2πv2

∗

√

4v2
∗ − ǫ2, i.e., the Bethe

lattice. We set v∗ = 1, i.e., the electron bandwidth W is 4, and

we focus on the half-filled case. We choose the bare phonon

frequency ω0 = 0.4, which is much smaller than the electron

bandwidth. If we take the bandwidth as 0.4 eV, the bare phonon

frequency is 40 meV, corresponding to a period of about 100 fs.

The gap size of the SC spectrum around λ ∼ 1 is approximately

10 meV, i.e., this period is about 400 fs. Our unit temperature

corresponds to 0.1 eV or 1160 K.

λ λ = 1

T

FIG. 3. Schematic picture of the parameter regimes discussed in

this paper. The dashed line represents λ = 1.

A. Effective attractive interaction in the weak coupling limit:

Bare phonon propagator

In this section, we discuss how the effective attractive inter-

action mediated by phonons, which is responsible for the SC,

is modulated under the phonon driving in the weak coupling

limit. Our discussion is based on the Migdal-Eliashberg theory,

where the retarded attractive interaction mediated by the

phonons is represented by the phonon propagator, g2DR(ω),

and g2DR(0) is conventionally taken as a measure for the

strength of the attractive interaction. In the weak coupling

limit, the renormalization of the phonon (the self-energy

correction) is small and g2DR
0 (ω) serves as a measure of

the effective attractive interaction. With this idea in mind,

the time-averaged D̄R
0 (0) = 1

T

∫

T

0
dtav

∫ ∞
−∞ dtrD

R
0 (tr; tav) has

been analyzed for the type 2 excitation in Ref. [12].

The effect of the type 1 excitation, on the other hand, has

been discussed in Ref. [11] using the polaron picture and

the Lang-Firsov transformation. The polaron approximation

works well when the phonon timescale is comparable or faster

than the electronic timescale [51]. Within this framework,

the hopping of polarons is renormalized from the bare

electron hopping parameter by the Frank-Condon factor,

exp(−g2/ω2
0), and the effective attractive interaction is −λ0 =

− 2g2

ω0
. However, in many materials the phonon frequencies

are much smaller than the bandwidth, in which case the

Migdal-Eliashberg theory is applicable. We note that these two

different theories can lead to different predictions concerning

the behavior of the SC order. The isotope effect serves as an

example. By the substitution of isotopes, usually ω0 decreases

as ∝ 1√
M

(M is the mass of the atom), while λ0 does not

change. In the polaron picture, the system moves to the stronger

coupling regime, since the Frank-Condon factor decreases.

The convex shape of the superconducting phase boundary in

the weak-coupling regime (see Fig. 3) thus implies an increase

of the transition temperature. On the other hand, the BCS

theory, to which the Migdal-Eliashberg theory reduces in the

weak coupling regime, predicts the opposite behavior. Here,

the transition temperature is proportional to ω0 exp(− 1
λ0ρ0(0)

),

which decreases if ω0 is reduced by the substitution of

isotopes. Hence for realistic phonon frequencies we should

discuss the effects of parametric phonon excitations within the

Migdal-Eliashberg theory.

In Fig. 4, we show the numerical results for

the time-averaged phonon propagator, D̄R
0 (ω) =

1
T

∫

T

0
dtav

∫ ∞
−∞ dtrD

R
0 (tr; tav)eiωtr , which corresponds to

the diagonal components in the Floquet representation, for

both types of excitations. In the evaluation, we formally invert

the Floquet matrix of DR−1
0 . Therefore, the results also include

unphysical ones as we explained in Sec. III E, but we can detect

the unstable regime from Mathieu’s equation. In Figs. 4(a)

and 4(d), we plot the change in the effective attractive interac-

tion expressed as (ReD̄R
0 (0) − ReD0,eq(0))/ReD0,eq(0) in the

plane of 	ω0 and �. It turns out that both excitations result in

a similar behavior. There is a strong enhancement of the attrac-

tive interaction D̄R
0 (0) at � � ω0. On the other hand, for � �

ω0, the attractive interaction is strongly suppressed and it can

even become repulsive as is analytically shown in Ref. [12].

This behavior is related to the position of the Floquet

sidebands of the phonons in the phonon spectrum, B̄0(ω) ≡
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FIG. 4. Properties of D̄R
0 (ω) for the type 1 excitation (a)–(c) and the type 2 excitation (d)–(f). Here we choose ω0 = 0.4. (a),(d) show the

change of the effective attractive interaction expressed as (ReD̄R
0 (0) − ReD0,eq(0))/ReD0,eq(0). The yellow and green dotted lines in (a) indicate

the boundaries of the unstable regimes of the Mathieu equation around � = 2ω0 and � = ω0. (b), (c), (e), (f) show the excitation-frequency

dependence of D̄R
0 (ω) along the black dashed line in (a), (d). (b), (e) show ReD̄R

0 (ω) and (c),(f) show B̄0(ω) ≡ − 1

π
ImD̄R

0 (ω). The dotted color

lines (� = 0.75) in (b), (c) correspond to an unphysical solution. The spectra are broadened by adding a damping term −γ ∂tδ(t − t ′) with

γ = 0.005 in Eq. (26).

− 1
π

ImD̄R
0 (ω). At � � ω0, the first replica peak (∼ω0 − �)

is just above ω = 0. At � � ω0, the first side peak moves to

ω < 0 and there emerges a negative peak in the spectrum at

ω > 0, which is the first sideband of the phonon peak at −ω0,

in the time-averaged spectrum B̄0(ω), see Figs. 4(c) and 4(f).

Since D̄R
0 (ω) =

∫

dω′ B̄0(ω′)
ω−ω′+i0+ , in the former case (� � ω0)

the sideband acts as an additional phonon coupled to electrons

with a positive frequency, which leads to an additional

attractive interaction. In the latter case, the sideband resembles

a negative frequency phonon attached to electrons, which

yields an effective repulsive interaction. There are analogous

singularities around � = ω/n related to the zero crossing of

the nth Floquet sideband of the phonons. Since the spectral

weight of such high-order sidebands is small, a substantial

effect only appears when the excitation strength 	ω0 is large

enough. Even though the strong enhancement of the attractive

interaction is restricted to some energy window smaller than

ω0, see Figs. 4(b) and 4(e), at least in the weak coupling limit,

the effect of the energy window is smaller than that of the

strength of the attractive interaction as can be seen from the

BCS expression for the transition temperature. The former is a

prefactor, while the latter is in the exponent. Hence it is natural

to expect that this may lead to an enhancement of SC assuming

that the electron distribution is the same as in equilibrium.

Here we note that the unstable regimes in the case of the

type 1 excitation are located around � = 2ω0

m
. The boundaries

of the unstable regimes are depicted by colored dotted lines

in Fig. 4(a). Therefore, when m = 2n, the unstable regime

overlaps with the � regime in which D̄R
0 (0) exhibits drastic

changes. On the other hand, when m = 2n − 1 the existence of

the unstable regime does not leave any trace in D̄R
0 (0). It turns

out, instead, that the effect of the instability emerges in the

finite frequency part of D̄R
0 (ω). As can be seen in the result for

� = 0.7 and � = 0.75 in Figs. 4(b) and 4(c), there is a large

change in D̄R
0 (ω) around ω ∼ ω0. The results for � = 0.75

are unphysical as discussed in Sec. III E, and the spectrum

shows dominant negative weight at ω > 0, which leads to the

violation of the sum rule, 2ω0 =
∫ ∞
−∞ ωB̄(ω)dω. Based on the

behavior of D̄R
0 (0), we thus do not expect any enhancement

of SC around the parametric resonant regime at m = 2n − 1

for the type 1 excitation, and the analysis of D̄R
0 (0) results in a

picture which differs from the enhancement of SC at the para-

metric resonance (m = 1) discussed in Ref. [11]. For the type 2

excitation, there is no unstable solution, and we do not observe

any large change in D̄R
0 (ω) near ω = ω0, see Figs. 4(e) and 4(f).

Even though the increased attractive interaction g2D̄R
0 (0)

seems a plausible scenario for the enhancement of SC,

this naive expectation ignores the following issues: (i) The

system gains energy from the external field, which results in

heating and nonthermal distribution functions. (ii) When the

electron-phonon coupling is not small, the phonon spectrum is

renormalized and broadened, and the behavior of D might be

different from D0. (iii) D̄R
0 (0) is an average of DR

0 (tr; tav), and

hence includes information of infinite past and infinite future

times. Therefore, it is not clear to what extent D̄R
0 (0) is relevant

to the transient dynamics of the superconducting order.

In the following sections, using the nonequilibrium DMFT

and the Holstein model, we provide a comprehensive study of

the effects of the parametric phonon driving on SC which takes

the above issues into account. We also note that it turns out

that the type 1 and type 2 excitations give the same results on

a qualitative level. Therefore, in the main text, we only show

the results for the type 1 excitation and present the results for

the type 2 excitation in Appendix B.

B. Nonequilibrium steady states under phonon driving

In this section, we study the effects of the phonon driving on

SC in the strong electron-phonon coupling regime by studying

the nonequilibrium steady states. In the following we use,
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FIG. 5. Real part of the retarded and time-averaged full

phonon propagator, ReD̄R(ω), for g = 0.41, ω0 = 0.4, β = 120

and the bath parameters γph = 0.02, ωD = 0.6, γel = 0.005, Webath =
2.0. The equilibrium phonon propagator in the normal phase at

β = 50 is also shown in (a) for comparison. (a) is for � = 0.125

and (b) is for � = 0.4.

as a representative set of parameters for the strong coupling

regime, g = 0.41, ω0 = 0.4, β = 120 and the bath parameters

γph = 0.02, ωD = 0.6, γel = 0.005,Webath = 2.0. This gives

λ = 1.08, the renormalized phonon frequency ωr ∼ 0.2, and

the inverse transition temperature βc = 55. γel is chosen to

be much smaller than the SC gap in order not to break the

SC order, while γph is chosen so that the damping of the

phonons (the phonon peak width in the spectrum) mainly

originates from the electron-phonon interaction. We have also

considered stronger g, different temperatures and both stronger

and weaker γph and γel, and confirmed that the behavior

discussed below does not change qualitatively.

First, in Fig. 5, we show ReD̄R(ω), which includes the

effects of � and 	ω0 as well as the renormalization through

the electron-phonon coupling. In equilibrium, because of the

strong el-ph coupling, the sign change in ReD̄R(ω) around the

renormalized phonon frequency ωr is smeared out, see β = 50

(above Tc) in Fig. 5(a). Below Tc [β = 120 in Fig. 5(a)],

even though |D̄R(0)| remains almost unchanged, a strong

renormalization occurs for ω �= 0. This is caused by the

opening of the SC gap, within which the scattering between

electrons and phonons is suppressed. The peak in |ReD̄R(ω)|
around ω = 0.08 corresponds to this energy scale. This effect

is known as the phonon anomaly in strongly coupled el-ph

superconductors [24,52–54], see also Fig. 6(c). In the NESS,

as in the case of the bare phonon propagator, the sign of

the change in the effective attractive interaction g2D̄R(0)

depends on the excitation frequency �, despite the strong

renormalization and the absence of sharp structures. Namely,

for � � ωr, the strength |g2D̄R(0)| increases [see Fig. 5(a)],

while for � � ωr, it decreases [see Fig. 5(b)]. However, this

enhancement of D turns out not to lead to an enhancement of

the superconductivity.

FIG. 6. Time-averaged spectrum and distribution functions

for g = 0.41, ω0 = 0.4, β = 120 and the bath parameters γph =
0.02, ωD = 0.6, γel = 0.005, Webath = 2.0 and the excitation fre-

quency � = 0.125. (a) Time-averaged electron spectrum. (b) Time-

averaged electron distribution function. (c) Time-averaged phonon

spectrum. The inset shows the time-averaged phonon distribution

function.

Figure 6 illustrates how the (time-averaged) nonequilib-

rium spectrum and the distribution functions for the elec-

trons and phonons change as we increase the amplitude

of the excitation. Here we choose � = 0.125 for which

an enhancement of the effective attractive interaction has

been observed [Fig. 5(a)]. The nonequilibrium spectrum is

defined as Ā(ω) ≡ − 1
π

ImḠR(ω) and the distribution func-

tion is f̄el(ω) ≡ N̄ (ω)/Ā(ω) with N̄ (ω) = 1
2π

ImḠ<(ω). Here

ḠR(<)(ω) = 1
T

∫

T

0
dtav

∫ ∞
−∞ dtrG

R(<)(tr; tav)eiωtr . As we in-

crease the excitation amplitude 	ω0, the size of the SC gap

decreases and eventually closes completely, see Fig. 6(a). At

the same time, the slope of the nonthermal distribution function

for the electrons decreases around ω = 0 and high energy

states become more occupied, which roughly resembles the

results for equilibrium states with higher temperatures, see

Fig. 6(b).

One interesting feature in the nonequilibrium SC before

melting is that there emerges a dip in Ā(ω) and a hump in

f̄el(ω) at ω = �/2. These features are only pronounced in the

NESS with SC and disappear in the normal state. They can be

explained as a consequence of the two-band structure in the

SC phase. The hump in f̄el(ω) results from excitations from
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FIG. 7. Time-averaged distribution functions (solid lines) for g =
0.41,ω0 = 0.4,β = 120 and the bath parameters γph = 0.02,ωD =
0.6,γel = 0.005,Webath = 2.0 and 	ω0 = 0.04. Dot-dashed lines

show the corresponding equilibrium distribution functions with the

effective temperatures estimated from the slope ∂ωf̄el(ω)|ω=0.

the lower band of the Bogoliubov quasiparticles (−Ek) to the

upper band (Ek), which become efficient at Ek = �
2

, where

Ek is the energy of the quasiparticles. Although Bogoliubov

excitations can recombine or relax within the bands due to the

scattering with phonons and the coupling to the environment,

the continuous creation of particles at the particular energy

Ek = �
2

can lead to an enhanced distribution in the steady

state at the corresponding energy. The dip in the spectral

function can be explained as a hybridization effect between

the first Floquet sideband of the upper (lower) Bogoliubov

band with the lower (upper) Bogoliubov band, which occurs

at Ek = �
2

. The hybridization opens a gap at the crossing point,

which is not fully developed in our case because of the finite

correlations, resulting in a dip in the spectrum.

The phonon spectra, which are defined in the same manner

as the electron spectra using D, show a hardening of the

renormalized mode as we increase the field strength [Fig. 6(c)],

again consistent with the behavior seen in equilibrium with

increased temperature [23]. At the same time, the phonon

distribution function defined as f̄ph(ω) ≡ − 1
2π

ImD̄<(ω)/B̄(ω)

shows an enhancement of the phonon occupation [see the inset

in Fig. 6(c)]. When we further increase the excitation strength,

the Floquet sidebands of the phonons become more prominent

[see 	ω = 0.08 data in Fig. 6(c)], in which case the spectrum

does not resemble that at elevated temperatures.

Next, let us discuss how the nonthermal distribution is

different from a thermal one. In Fig. 7, we show the com-

parison between the nonthermal distribution and the thermal

distribution with an effective temperature derived from βeff =
−4∂ωf̄el(ω)|ω=0. We can see that this thermal distribution

always underestimates the nonequilibrium distribution for

ω > 0. Therefore, it is expected that superconductivity will be

weaker than what is expected from this effective temperature,

which is indeed the case, as shown below.

In Fig. 8, we summarize our representative Floquet DMFT

results in the strong el-ph coupling regime for quantities

time-averaged over one period. The SC order parameter is

generally reduced from the equilibrium value (in fact, despite

an extensive search, we could not find any parameter set

where the SC order is enhanced in the strong-coupling regime,

λ ∼ 1). In particular, around � = 0.4, which is almost twice

the renormalized phonon frequency, the superconducting order

FIG. 8. Time-averaged results for g = 0.41, ω0 = 0.4, β = 120

and the bath parameters γph = 0.02, ωD = 0.6, γel = 0.005, Webath =
2.0. (a) Dependence of the SC order parameter φsc,av on � for some

	ω0. The open symbols show the results estimated from the effective

temperature. In the pink (blue) background region, |D̄R(0)| increases

(decreases) when 	ω0 changes from 0 to 0.02. (b) The dependence

of Etot,av on � for some 	ω0. The inset is the effective temperature

estimated from the slope ∂ωf̄el(ω)|ω=0. The vertical lines indicate the

positions of the parametric resonances in the weakly driven limit

(� = ωr,2ωr).

vanishes even for phonon modulations with small amplitude

	ω0. This is consistent with the amount of energy injected by

the excitation, and the effective temperature estimated from the

nonthermal distribution function ∂ωf̄el(ω)|ω=0 [see Fig. 8(b)].

We note that the peak position in Fig. 8(b) slightly shifts to

higher energy as we increase the excitation strength. This is

because the injected energy changes the renormalization of the

phonons, which affects the value of the parametric resonance

(∼2ωr). We also note that the SC order parameter is always

lower than the equilibrium value at Teff [see Fig. 8(a)]. This

is consistent with the fact that the equilibrium distribution

function at Teff underestimates the occupancy of the states at

ω > 0.

Let us briefly comment on the effect of stronger couplings

to heat baths, since one expects in this case more efficient

energy absorption. We have checked that stronger couplings

to the phonon bath lead to a broader phonon peak in the

spectrum, which results in a stronger suppression of SC and

higher effective temperatures at � � ωr . Stronger couplings

to the electron bath generally lead to a lower effective

temperature and a less dramatic suppression of SC. However,
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FIG. 9. Trajectories of Ekin(t) and Eint(t) = EnX(t) + Eph(t) in

the NESS for g = 0.41, ω0 = 0.4, β = 120 and the bath parameters

γph = 0.02, ωD = 0.6, γel = 0.005,Webath = 2.0. Solid loops indicate

that the NESS is in the SC state, while dashed loops are for the

normal state. In addition, we show the time-averaged values Ēkin

and Ēint of the NESS for different excitation strength (violet curves)

and the equilibrium Ekin and Eint for different temperatures (black

lines). Black open circles indicate the values at t = π

2�
, 3π

2�
, where the

Hamiltonian temporarily becomes the same as the nonperturbed one

for 	ω = 0.04.

the equilibrium value of the SC order becomes smaller, and in

any case we only find a suppression of SC as far as we have

investigated.

So far we have focused on the time-averaged values,

whereas in the NESS all the quantities are oscillating around

the averaged value during one period. In Fig. 9, we plot the

trajectories of Ekin(t) and Eint(t) = EnX(t) + Eph(t) for the

NESS over one period and compare them to the averaged Ēkin

and Ēint of the NESS (violet lines) and the equilibrium Ekin

and Eint for different temperatures (black lines). First, we can

see that the results for the time averaged values of Ekin and

Eint are in general not on top of the equilibrium curve and that

the deviation strongly depends on the excitation frequency.

This again indicates that it is difficult to fully describe the

properties of NESSs through an analogy to equilibrium states

with elevated temperatures. We also notice that the oscillations

around the averaged values are large and that they become

largest at the parametric resonance, � = 0.4 ≃ 2ωr . Even

at the times where the Hamiltonian becomes temporarily

identical to the unperturbed one (t = π
2�

, 3π
2�

) the energies can

strongly deviate from the thermal line. This indicates that the

dynamics which occurs during one period cannot be captured

using an adiabatic picture either in these cases.

In Fig. 10, we show the optical conductivity in the NESS.

In equilibrium, for T < Tc, the real part shows a reduction of

the spectral weight below the SC gap and the imaginary part

exhibits a 1/ω dependence, whose coefficient corresponds to

the superfluid density. In the NESS, the optical conductivity

σ (t,t ′), like any correlation function, can be written in the

Floquet matrix form Eq. (22), see the discussion around

Eq. (51). In the diagonal component in the NESSs, the weight

of the real part inside the SC gap increases with increasing

field strength and becomes close to the result at elevated

FIG. 10. Optical conductivity [σm0(ω)] for g = 0.41,ω0 =
0.4,β = 120 and the bath parameters γph = 0.02,ωD = 0.6,γel =
0.005,Webath = 2.0 and the excitation � = 0.125. 	ω0 = 0.03,0.04

and the equilibrium state at β = 120 are in SC, and the rests are in

the normal phase. (a), (b) The diagonal component of the optical

conductivity, σ00(ω). (c), (d) The off-diagonal component of the

optical conductivity, σ10(ω). The dashed and dot-dashed lines show

the equilibrium σ00(ω) with indicated temperatures for comparison.

The red arrows in (c) point to the 1/ω divergence for 	ω0 = 0.03. At

ω = 0 in the SC states, a delta function contribution exists for each

m, which is not shown here.

temperatures [see Fig. 10(a)]. Meanwhile, the 1/ω component

in the imaginary part is suppressed, which indicates the

suppression of the superfluid density and is consistent with the

closure of the gap and the decrease of the SC order parameter

[see Fig. 10(b)]. In the off-diagonal component, one can also

observe a 1/ω behavior around ω = 0 both in the real and

imaginary parts in the SC phase [see Figs. 10(c) and 10(d)].

[We note that σm,n(ω)∗ = σ−m,−n(−ω).] This is caused by the

imperfect cancellation between χpara and χdia and corresponds

to the following asymptotic form for |t − t ′| → ∞ of the

conductivity,

σS(t,t ′) ≡ θ (t − t ′)
∑

m

nS,me−im�t . (52)

We note that nS,m can be a complex number and n∗
S,m = nS,−m.

This indicates that if a delta-function electric-field pulse is

applied to the system, the induced current continues to flow

forever (supercurrent) oscillating with a period of 2π/�, and

the phase of nS,m determines the phase of the oscillations in

the supercurrent. The 1/ω component in σm0(ω) corresponds

to nS,m. For example, without the phonon driving nS,0 ≈ 1.18,

while for 	ω0 = 0.03 nS,0 ≈ 0.62 and nS,1 ≈ 0.05 − i0.01.

C. Transient dynamics towards the NESS

In order to study the transient dynamics towards the NESS,

we consider a situation where the system at time t = 0 is in

equilibrium (attached to the bath) and at t > 0 is exposed to a

phonon driving of type 1 with

ω0X(t) = ω0 + 	ω0 sin(�t). (53)
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FIG. 11. Time evolution of the SC order parameter under the

periodic driving of type 1 for various frequencies and amplitudes

for g = 0.41, ω0 = 0.4, β = 120 and the bath parameters γph =
0.02, ωD = 0.6, γel = 0.005, Webath = 2.0. Horizontal black dotted

lines indicate the equilibrium value, while the blue and red vertical

lines show t = π/� and t = 2π/�, respectively. The arrow in panel

(c) indicates the value in the NESS.

In order to follow the transient dynamics, we use the

nonequilibrium DMFT formulated on the Kadanoff-Baym

contour [22–24]. For this, we first need to evaluate the bare

phonon propagator subject to the periodic driving by solving

Eq. (27). Apart from that, the calculation is identical to the

scheme explained in Refs. [23,24].

In Fig. 11, we show the transient dynamics of the SC order

parameter, φSC(t), for various excitation conditions. First we

note that when ω0X becomes small with g and T (< Tc) fixed,

φSC becomes larger because the system moves to the stronger

coupling regime. This leads to the expectation that in the

adiabatic regime, φSC becomes larger with decreasing ω0X. In

FIG. 12. Time evolution of the energies for the type 1 excitation

with � = 0.4 and |	ω0| = 0.04 for g = 0.41,ω0 = 0.4,β = 120 and

the bath parameters γph = 0.02,ωD = 0.6,γel = 0.005,Webath = 2.0.

The sign of 	ω0 is indicated in the figures. Horizontal black dotted

lines indicate the equilibrium value, while the blue and red vertical

lines show t = π/� and t = 2π/�, respectively.

FIG. 13. χB0,X2 (t) for g = 0.41, ω0 = 0.4, β = 120 and the bath

parameters γph = 0.02, ωD = 0.6, γel = 0.005, Webath = 2.0.

other words, for 	ω0 > 0 (solid lines in Fig. 11) φSC should

initially decrease, while for 	ω0 < 0 (dashed lines) it should

increase. However, in the initial dynamics for nonadiabatic

excitations, the solid (dashed) lines show a positive (negative)

hump, which is opposite to the above expectation. The

hump becomes smaller with decreasing �, and the dynamics

becomes more consistent with the expectations from the

adiabatic picture. We also note that, during the first period,

one can see a significant transient enhancement of the order

parameter in some cases, see Fig. 11. There the time-averaged

φSC(t) for one period can become larger than the equilibrium

value if we carefully choose the phase of the excitation, i.e.,

the sign of 	ω0.

As time evolves further, φSC(t) is however strongly sup-

pressed from the initial value. One can see that the fastest

suppression occurs around � = 0.4 ∼ 2ωr, which is at the

parametric resonance. This is consistent with the analysis of

the NESS with the Floquet DMFT, where we have observed

the strongest energy injection and the strongest increase of

the effective temperature in this driving regime. The results in

Fig. 11 show that even in the transient dynamics, the parametric

resonance is associated with a rapid destruction of the SC order.

In Fig. 12, we show how the energies approach the NESS

described by the Floquet DMFT. These results demonstrate

that it takes several cycles for the system to reach the NESS.

To gain more insights into the dynamics of the order

parameter, we compare it with the linear-response result. In

the linear-response regime, the variation of the order parameter

can be expressed as

	B0(t) =
∫

dt̄χB0,X2 (t − t̄)F (t̄), (54)

with χB0,X2 (t) ≡ −iθ (t)〈[B0(t),X2(0)]〉, B0 =
∑

i c
†
i↑c

†
i↓ +

H.c., and F (t) = 	ω0 sin(�t). The linear-response function

can be numerically evaluated by considering, instead of the

periodic driving, Hex(t) = df δ(t)
∑

i X
2
i and taking df small

enough. The resulting response function is shown in Fig. 13.

The oscillation frequency in χB0,X2 (t) is ω ∼ 0.4 ∼ 2ωr.
3

In Fig. 14, we compare the full dynamics (solid lines)

and the linear-response component (dashed lines), which is

3With the phonon bath it turns out that the phonon renormalization

and the effective phonon-phonon interaction discussed in Ref. [24]

become weaker than without. Hence the oscillation frequency in

χB0,X2 remains close to 2ωr in the present case.
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FIG. 14. Comparison between the full dynamics of the SC order

parameter (solid lines) and the prediction from the linear-response

theory (dashed lines) for g = 0.41, ω0 = 0.4, β = 120 with the bath

γph = 0.02, ωD = 0.6, γel = 0.005, Webath = 2.0. The sign of 	ω0

is indicated in the figures. Horizontal black dotted lines indicate

the equilibrium values, while the blue and red vertical lines show

t = π/� and t = 2π/�, respectively. Dash-dotted curves show

the results of the adiabatic approximation for the time-dependent

Hamiltonian at β = 120.

obtained by taking the convolution, Eq. (54). The difference

corresponds to the contributions from the nonlinear compo-

nents. The linear-response theory captures the initial behavior

of the order parameter including the temporal enhancement

or suppression. The initial hump whose direction is opposite

to the adiabatic expectation is also captured. This hump

originates from the positive value of χB0,X2 (t) just after t = 0.

Since the first derivative of χB0,X2 (t) at t = 0 is zero, as

can be analytically shown, this corresponds to the positive

value of ∂2
t χB0,X2 (t)|t=0 = 8igω0

∑

i〈(−c
†
i↑c

†
i↓ + ci↓ci↑)Xi〉.

If we decrease � with 	ω0 fixed (as we approach the adiabatic

regime), the contribution from the initial positive hump in

χB0,X2 (t) decreases, and the hump in φSC becomes smaller. At

longer times, φSC(t) starts to deviate from the linear-response

result, which generally overestimates φSC(t).

This indicates that the general effect of the nonlinear

component is to reduce the superconducting order. It is also

illustrative to compare the results to the expectation in the

adiabatic limit, in which the temperature is fixed to the bath

temperature and the phonon potential is changed [see the

dash-dotted curves in Fig. 14]. (Note that in an isolated system,

the adiabatic limit would be defined by constant entropy

instead of constant temperature.) The comparison confirms

that the dynamics approaches the adiabatic expectation as we

decrease the excitation frequency.

D. Superconducting fluctuations above Tc under phonon driving

So far we have focused on the superconducting phase in

the strong-coupling regime and have shown that the phonon

driving generally weakens the superconductivity and that

this tendency is particularly pronounced in the parametric

resonance regime (� ∼ 2ωr ). Now we move on to the weak-

coupling regime (λ ≪ 1), where the BCS theory has usually

FIG. 15. Transient dynamics of the SC fluctuations above Tc

under the periodic driving of type 1, χpair(t,0). The parameters are

g = 0.3, ω0 = 0.4, β = 320 and no heat bath is attached. Panels (a),

(c) are for driving frequencies around � = ωr, while (b),(d) are for

frequencies around � = 2ωr. The data at the resonance are shown

by bold lines. (e),(f) show the results for � = 0.16 and various 	ω0.

Dotted lines are the linear component (in 	ω0) estimated from the

	ω0 = ±0.02 data. The dash-dotted black line in each panel is the

equilibrium result.

been applied. In this regime the transition temperature becomes

very small and a direct investigation of the superconducting

state is numerically difficult. Hence we study the time evolu-

tion of the superconducting fluctuations in the normal state,

in systems with and without phonon driving. Specifically, we

evaluate the dynamical pair susceptibility under the excitation

described by Eq. (53). For this, as in the equilibrium case [24],

we add H ′
ex(t) = Fex(t)B0 on top of the phonon modulation,

where B0 =
∑

i(c
†
i↑c

†
i↓ + ci↓ci↑) and Fex(t) = dfδ(t). We take

df small enough and compute the time evolution of B0 to obtain

the dynamical pair susceptibility,

χR
pair(t,t

′) = −iθ (t − t ′)
1

N
〈[B0(t),B0(t ′)]〉. (55)

In the normal state in equilibrium, this susceptibility decays as

t − t ′ increases. The decay time increases as we approach

the boundary to the superconducting state and diverges at

the boundary. The interesting question thus is how this decay

depends on the phonon driving in the weak-coupling regime.

In Fig. 15, we show the results for g = 0.3,ω0 = 0.4,β =
320 without heat baths. This condition corresponds to λ ∼
0.23 and ωr = 0.32, and the inverse transition temperature is

βc ∼ 1000. By changing the temperature (down to β = 640),

g, and the couplings to the heat baths, we have confirmed

that the behavior described below is the generic one in the
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FIG. 16. Time evolution of the total energy of the system under

the periodic driving of type 1. The parameters are g = 0.3,ω0 =
0.4,β = 320 and no heat bath is attached. Different colors indicate

different �. Panel (a) shows the results around � = ωr, while panel

(b) is for the driving frequencies around � = 2ωr. The data at the

resonance are shown by bold lines.

weak-coupling regime. In Figs. 15(a) and 15(c), we show the

results around the parametric resonance at � = ωr. We remind

the reader that from the analysis of D0 in Sec. IV A, a strong

enhancement of DR(0) is expected for � � ωr. However,

what we observe is that generally in the presence of periodic

phonon modulations the lifetime of the fluctuations becomes

shorter than without phonon modulations and that at � = ωr

the lifetime is particularly strongly reduced. This tendency

becomes clearer with increasing 	ω0. In Fig. 16(a), we show

the evolution of the energy absorption around the parametric

resonance, � = ωr. It turns out that at the parametric resonance

the energy absorption is also very efficient. These results

suggest that even though there might be some enhancement of

the attractive interaction, the energy absorption and resulting

disturbance of long-range correlations is the dominant effect

in a wide parameter range. In particular, at the parametric

resonance, the maximized energy absorption rate leads to

a particularly rapid heating of the system and efficient

destruction of the SC fluctuations. We also note that the decay

of the fluctuations accelerates as t increases, as is evidenced

by the concave form of χR
pair(t,0) in the log scale. This can also

be interpreted as a heating effect. The more energy the system

gains as t increases, the faster the decay of the fluctuation

becomes.

This dominant heating effect and quick destruction of

the SC fluctuation is also prominent in another resonant

regime � ∼ 2ωr, where in the polaron picture an enhancement

of the superconductivity is expected [11], see Figs. 15(b)

and 15(d). Here, � = 0.65 ∼ 2ωr shows the faster decay than

the neighboring driving frequencies. The efficient absorption

of energy resulting from this parametric phonon driving is

shown in Fig. 16(b).

Now we point out that there is a regime where the phonon

driving slightly enhances the SC fluctuations, though there is

no clear increase of its decay time. In Figs. 15(e) and 15(f), we

show the SC fluctuations for a smaller excitation frequency

than those above, where less heating is expected, and for

various excitation strengths. In many cases, χR
pair(t,0) stays

around the equilibrium curve but exhibits a shift above or

below the equilibrium value depending on the sign of 	ω0.

For small amplitudes, the change of χR
pair(t,0) with respect

to the equilibrium value χR
pair,eq(t) is linear in 	ω0. In order

to identify the component linear in 	ω0, we rescale the

difference of χR
pair(t,0) − χR

pair,eq(t) at the smallest amplitude

	ω0 = 0.02 to larger amplitudes and depict the results with

dashed lines in Fig. 15(e). The linear components consistently

explain the general behavior. The enhancement of the SC

fluctuations for 	ω0 < 0 can be explained as follows. At

t ∈ [0,π/�] ∼ [0,20], the phonon frequency is temporarily

reduced and the system is temporarily in a stronger coupling

regime compared to equilibrium (this is not the effect of the

Floquet sidebands). Hence the decay of the SC fluctuations

is slower in this time interval. During t ∈ [π/�,2π/�] the

situation is opposite and we observe a faster decay. However,

because of the enhancement during t ∈ [0,π/�], χR
pair(t,0)

stays above the equilibrium curve. The opposite is the case

when 	ω0 is positive.

The nonlinear component can result in a slight but

systematic increase of the SC fluctuations, in particular at

	ω0 = ±0.06, see the difference between the solid and dotted

lines in Fig. 15(e). We note that both the heating and the

creation of the Floquet sidebands of the phonons, which

leads to the enhancement of the attractive interaction, start

from the second order in the field strength. Therefore, this

observation may indicate that the enhancement of the attractive

interaction slightly dominates the heating effect. However this

enhancement is very subtle, and as we further increase the

field strength this enhancement becomes weak and eventually

the SC fluctuations decay faster than in the equilibrium

case, see Fig. 15(f). Finally we note that even though we

have also studied a parameter set for ω0 > W in the weak

coupling regime with various excitation conditions, we could

not observe any enhancement of the SC fluctuation.4

V. CONCLUSIONS

We have systematically investigated the effects of the

parametric phonon driving on the superconductivity (SC)

using the simple Holstein model and the nonequilibrium

dynamical mean-field theory (DMFT). In order to study the

time-periodic nonequilibrium steady states, we extended the

Floquet DMFT formalism, which has previously been applied

to purely electronic systems, to this electron-phonon model.

We have also studied the transient dynamics under the periodic

phonon driving with the nonequilibrium DMFT formulated

on the Kadanoff-Baym contour. This simulation method,

which does not involve a gradient approximation, can describe

dynamics on arbitrarily fast timescales.

In the strong electron-phonon coupling regime, we have

studied both the nonequilibrium steady states and the tran-

sient dynamics towards these states. Even when the phonon

propagator is renormalized by electron-phonon coupling, the

effective attractive interaction characterized by D̄R(ω = 0)

shows an enhancement in some parameter regime. However,

taking into account heating and the nonthermal nature of the

driven state, the ultimate effect of the driving turns out to be

a suppression of the SC gap, the SC order parameter, and the

superfluid density both in the time-periodic steady states and

the transient dynamics. The strongest suppression of SC is

observed in the parametric resonant regime at �∼ 2ωr .

4As far as the system is in the weak-coupling regime the Migdal

approximation may still work.
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In the weak-coupling regime, we have studied the SC

fluctuations above Tc. We have found that, generally, they

are suppressed by the phonon driving, in the sense that the

pairing susceptibility decays more rapidly in the driven state.

The decay becomes particularly fast close to the parametric

resonances (� ∼ 2ωr and � ∼ ωr ), which can be attributed to

an efficient energy absorption in this regime.

From these analyses, we conclude that the previously

predicted enhancement of the SC in the parametric resonant

regime is not a general result. In the simple Holstein model

with a phonon energy scale smaller than that of electrons,

such effects, if any, are overwhelmed by the absorption of

energy in a wide parameter range, and particularly strongly

so near the parametric resonances. Even though our analysis

focuses on a specific model, it demonstrates the importance

of a careful treatment of heating effects and/or nonthermal

distributions when discussing the potential effects of phonon

driving. We note that in addition to the coupling of light to

phonons, one could also take into account the direct coupling

of light to electrons, by means of a Peierls substitution. This

can be expected to lead to further heating effects.

As for the relation to the K3C60 experiment mentioned in

the introduction [8], from our analysis it seems likely that

the apparent enhancement of the SC originates from the static

change of the Hamiltonian [14,18] or some other dynamical

effects [13,16,55], which are not captured in the present simple

model. Since alkali doped fullerides are multiorbital systems

and an effective negative Hund’s coupling from the Jahn-Teller

screening plays an important role [56–59], we need to go

beyond the Holstein model to fully understand the mechanism.

Finally, we remark that the diagrammatic method for steady

states and the transient dynamics used here can be easily

extended to other scenarios for the enhancement of SC,

such as nonlinear couplings to electrons [13,16]. Also the

investigation of nonequilibrium states with an unconventional

pairing such as the d-wave superconductivity in cuprates is

an interesting direction for future work. In particular it is

important to understand whether or not a particular mechanism

for the enhancement of SC survives even if heating effects are

seriously taken into account.
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APPENDIX A: THE EXPRESSION FOR THE ENERGY

DISSIPATION IN THE TIME-PERIODIC NESS

The explicit expression for Eq. (39) is

I = Īel + Īph

= i〈[Hph mix(t),Hph bath(t)]〉 + i〈[Hel mix(t),Hel bath(t)]〉.
(A1)

Using the fluctuation-dissipation relation of baths, we obtain

Īel = −i
∑

i,σ

∫ �/2

−�/2

dω

2π

∑

n

(ω + n�)Ŵ(ω + n�)

×
{

GK
i,σ,nn(ω)−Ff (ω + n�)

(

GR
i,σ,nn(ω)−GA

i,σ,nn(ω)
)}

,

(A2)

with Ff (ω) = tanh(
βω

2
) and

Īph =
i

2

∑

i

∫ �/2

−�/2

dω

2π

∑

n

(ω + n�)Bbath(ω + n�)

×
{

DK
i,nn(ω) − Fb(ω + n�)

(

DR
i,nn(ω) − DA

i,nn(ω)
)}

,

(A3)

with Fb(ω) = coth(
βω

2
).

These expressions imply that the energy dissipation Ī is

related to the violation of the fluctuation-dissipation relation

of the system in the time-periodic NESS. This is the Floquet

generalization of the so-called Harada-Sasa relation [60]. We

have confirmed that this expression is indeed satisfied within

the Floquet DMFT implemented with the self-consistent

Migdal approximation.

APPENDIX B: RESULTS FOR THE TYPE 2 EXCITATION

In this section, we show the results for the type 2 excitation

[Eq. (5)], whose effect has been discussed in Ref. [12]. It turns

out that the general behavior is very similar to the results for

the type 1 excitation [Eq. (4)] shown in the main text. The

ultimate effect of the type 2 excitation is to generally suppress

the superconductivity both in the strong- and weak-coupling

regimes. This tendency becomes strong at � ≃ 2ωr and/or at

� ≃ ωr as in the case of the type 1 excitation.

FIG. 17. Time-averaged spectra and distribution functions for

the type 2 excitation for g = 0.41, ω0 = 0.4, β = 120 and the

bath parameters γph = 0.02, ωD = 0.6, γel = 0.005, Webath = 2.0 and

the excitation � = 0.125. (a) Time-averaged electron spectrum.

(b) Time-averaged electron distribution function. (c) Time-averaged

phonon spectrum. (d) Time-averaged phonon distribution function.
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1. Nonequilibrium steady states

Here we show the results for the nonequilibrium steady

states for the type 2 excitation in the strong electron-phonon

coupling regime as in Sec. IV B. Even in this regime, the type

2 excitation shows an increase of the effective attractive inter-

action characterized by |g2D̄R(0)| at � � ωr and a decrease

at � � ωr. In Fig. 17, we show the time-averaged spectra

and distribution functions for the electrons and phonons for

� = 0.125, where we observed an increase of the attractive

interaction. The general features are the same as in the case of

the type 1 excitation (Fig. 6). The SC gap is suppressed with

increasing driving amplitude and is completely wiped out at

	ω0 � 0.05, see Fig. 17(a). The slope of the electron distri-

bution functions [Fig. 17(b)] at ω = 0 decreases compared to

the equilibrium case, which resembles the effect of heating.

Precisely speaking, the equilibrium distribution functions at

the effective temperature underestimate the number of the

occupied states above the Fermi level. The characteristic

features in the NESS with SC are the kink in Ā(ω) and the hump

in f̄ (ω) at ω = �/2. The renormalized phonon frequency

FIG. 18. Time-averaged results for the type 2 excitation for g =
0.41, ω0 = 0.4, β = 120 and the bath parameters γph = 0.02, ωD =
0.6, γel = 0.005, Webath = 2.0. (a) Dependence of φsc,av on � for some

	ω0. The open symbols show the results estimated from the effective

temperature. In the red (blue) background region, |D̄R(0)| increases

(decreases) when 	ω0 changes from 0 to 0.02. (b) Dependence of

Etot,av on � for some 	ω0. The inset is the effective temperature

estimated from the slope ∂ωf̄el(ω)|ω=0. The vertical lines indicate the

positions of the parametric resonances in the weakly driven limit

(� = ωr,2ωr).

FIG. 19. Time evolution of the SC order parameter under

the periodic driving of type 2 for various conditions for g =
0.41, ω0 = 0.4, β = 120 with the bath γph = 0.02, ωD = 0.6, γel =
0.005, Webath = 2.0. Horizontal black dotted lines indicate the equi-

librium value, while the blue and red vertical lines show t = π/�

and t = 2π/�.

increases as we increase the strength of the excitation, which

is naturally expected from the equilibrium state with elevated

temperatures, see Fig. 17(c). When we further increase the

excitation strength, the Floquet sidebands of the phonons

FIG. 20. χpair(t,0) above Tc under the periodic driving of type 2.

The parameters are g = 0.3, ω0 = 0.4, β = 320 without heat baths.

Lines with different colors indicate different �. (a), (c) are for the

cases around � = ωr, while (b), (d) are for the cases around � = 2ωr.

(e), (f) show the results for � = 0.16 and various 	ω0. Dotted lines

are the linear component (in 	ω0) estimated from the 	ω0 = ±0.02

data. The dash-dotted black line in each panel is the equilibrium

result.
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become more prominent [see 	ω = 0.08 data in Fig. 17(c)],

in which case the spectrum does not resemble that of the

equilibrium state with elevated temperatures.

The summary of the results for the type 2 excitation is shown

in Fig. 18. Generally, in the presence of the phonon driving

the SC order is weakened, and this tendency becomes strong

around � = 2ωr as in the type 1 case, see Fig. 18(a). Again

the order parameter evaluated from the effective temperature

overestimates its size in the NESS, but its general behavior can

be qualitatively reproduced. The (time-averaged) total energy

and the effective temperature shows a peak around � = 2ωr ,

see Fig. 18(b). The peak position is shifted to higher frequency

as the excitation strength is increased, which is attributed to the

hardening of the renormalized phonon frequency as in the type

1 excitation. Quantitatively, under the type 2 excitation the SC

order is more robust than under the type 1 excitation, which

is consistent with the lower energy and the lower effective

temperatures (compare Figs. 8 and 18).

2. Transient dynamics towards the NESS

In Fig. 19, we show the transient dynamics towards

the NESS under the type 2 parametric phonon driving. It

corresponds to Fig. 11 in the main part. One again finds that

(i) the decease of the order parameter is fastest around � =
0.4 ≃ 2ωr , (ii) the initial hump goes in the opposite direction

from the adiabatic excitation and becomes less prominent as

we approach the adiabatic limit, and (iii) depending on the

phase of the excitation, there can be an enhancement of the SC

order parameter during the first cycle. Quantitatively speaking,

the speed of the melting of SC is slightly slower than in the type

1 case for the same parameter set. This is consistent with the

results for the NESS, where the order parameter is more robust

compared to the type 1 case and the effective temperature is

lower than in the type 1 case.

3. Superconducting fluctuations above Tc

Here we show the SC fluctuations above Tc in the weak

coupling regime and under the type 2 driving. Figure 20 shows

the results corresponding to Fig. 15 in the main text. First we

can again see that generally the decay of the fluctuations in

the driven system is faster than in the absence of phonon

driving, which indicates that the driving does not enhance

the superconductivity, see Figs. 20(a)–20(d). As in the type 1

case, around � = ωr , the decay becomes particularly fast at

� = ωr , even though at 	� = −0.06 the tendency is not so

clear. Near � = 2ωr , there is again a point where the decay

becomes particularly fast. We also note the concave form of

the χpair(t,0) curve in the log scale, which is explained by the

continuous heating of the system.

In Figs. 20(e) and 20(f), we show the results for an excitation

frequency, which is small compared to ωr and those shown

above. For weak to moderate excitation strength, depending

on the phase of 	ω0, χpair(t,0) is shifted above or below the

equilibrium curve, which is consistently explained by the linear

component in 	ω0 (the dashed lines). The nonlinear com-

ponent slightly but systematically shifts the SC fluctuations

above the linear component, which indicates that there is more

than the heating effect. However, this slight enhancement is

washed out when we further increase the excitation strength.

These features are the same as in the type 1 case.
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