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We build a rigorous nonequilibrium thermodynamic description for open chemical reaction networks of
elementary reactions. Their dynamics is described by deterministic rate equations with mass action
kinetics. Our most general framework considers open networks driven by time-dependent chemostats.
The energy and entropy balances are established and a nonequilibrium Gibbs free energy is introduced.
The difference between this latter and its equilibrium form represents the minimal work done by the
chemostats to bring the network to its nonequilibrium state. It is minimized in nondriven detailed-balanced
networks (i.e., networks that relax to equilibrium states) and has an interesting information-theoretic
interpretation. We further show that the entropy production of complex-balanced networks (i.e., networks
that relax to special kinds of nonequilibrium steady states) splits into two non-negative contributions: one
characterizing the dissipation of the nonequilibrium steady state and the other the transients due to
relaxation and driving. Our theory lays the path to study time-dependent energy and information
transduction in biochemical networks.
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I. INTRODUCTION

Thermodynamics of chemical reactions has a long
history. The second half of the 19th century witnessed
the dawn of the modern studies on thermodynamics of
chemical mixtures. It is indeed at that time that Gibbs
introduced the concept of chemical potential and used it to
define the thermodynamic potentials of noninteracting
mixtures [1]. Several decades later, this enabled de
Donder to approach the study of chemical reacting mixtures
from a thermodynamic standpoint. He proposed the
concept of affinity to characterize the chemical force
irreversibly driving chemical reactions and related it to
the thermodynamic properties of mixtures established by
Gibbs [2]. Prigogine, who perpetuated the Brussels School
founded by de Donder, introduced the assumption of local
equilibrium to describe irreversible processes in terms of
equilibrium quantities [3,4]. In doing so, he pioneered the
connections between thermodynamics and kinetics of
chemical reacting mixtures [5].
During the second half of the 20th century, part of the

attention moved to systems with small particle numbers
which are ill described by “deterministic” rate equations.
The Brussels School, as well as other groups, produced
various studies on the nonequilibrium thermodynamics of

chemical systems [6–11] using a stochastic description
based on the (chemical) master equation [12,13]. These
studies played an important role during the first decade of
the 21st century for the development of stochastic thermo-
dynamics, a theory that systematically establishes a non-
equilibrium thermodynamic description for systems
obeying stochastic dynamics [14–17], including chemical
reaction networks (CRNs) [18–22].
Another significant part of the attention moved to the

thermodynamic description of biochemical reactions in
terms of deterministic rate equations [23,24]. This is not
so surprising since living systems are the paramount
example of nonequilibrium processes and they are powered
by chemical reactions. The fact that metabolic processes
involve thousands of coupled reactions also emphasized
the importance of a network description [25–27]. While
complex dynamical behaviors such as oscillations were
analyzed in small CRNs [28,29], most studies on large
biochemical networks focused on the steady-state dynamics.
Very few studies considered the thermodynamic properties
of CRNs [30–33]. One of the first nonequilibrium thermo-
dynamic descriptions of open biochemical networks was
proposed in Ref. [34]. However, it did not take advantage of
chemical reaction network theory, which connects the net-
work topology to its dynamical behavior and which was
extensively studied by mathematicians during the 1970s
[35–37] (this theory was also later extended to stochastic
dynamics [38–41]). As far as we know, the first and single
study that related the nonequilibrium thermodynamics of
CRNs to their topology is Ref. [22], still restricting itself to
steady states.
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In this paper, we consider the most general setting for the
study of CRNs, namely, open networks driven by chemo-
statted concentrations that may change over time. To the
best of our knowledge, this was never considered before. In
this way, steady-state properties as well as transient ones
are captured. Hence, in the same way that stochastic
thermodynamics is built on top of stochastic dynamics,
we systematically build a nonequilibrium thermodynamic
description of CRNs on top of deterministic chemical rate
equations. In doing so, we establish the energy and entropy
balance and introduce the nonequilibrium entropy of the
CRN as well as its nonequilibrium Gibbs free energy. We
show the latter to bear an information-theoretical interpre-
tation similar to that of stochastic thermodynamics [42–45]
and to be related to the dynamical potentials derived by
mathematicians. We also show the relation between the
minimal chemical work necessary to manipulate the CRNs
far from equilibrium and the nonequilibrium Gibbs free
energy. Our theory embeds both the Prigoginian approach
to thermodynamics of irreversible processes [5] and the
thermodynamics of biochemical reactions [23]. Making full
use of the mathematical chemical reaction network theory,
we further analyze the thermodynamic behavior of two
important classes of CRNs: detailed-balanced networks
and complex-balanced networks. In the absence of time-
dependent driving, the former converges to thermodynamic
equilibrium by minimizing their nonequilibrium Gibbs free
energy. In contrast, the latter converges to a specific class of
nonequilibrium steady states and always allows for an
adiabatic–nonadiabatic separation of their entropy produc-
tion, which is analogous to that found in stochastic
thermodynamics [46–50]. Recently, a result similar to
the latter was independently found in Ref. [51].

A. Outline and notation

The paper is organized as follows. After introducing
the necessary concepts in chemical kinetics and chemical
reaction network theory, Sec. II, the nonequilibrium
thermodynamic description is established in Sec. III.
As in stochastic thermodynamics, we build it on top
of the dynamics and formulate the entropy and energy
balance, Secs. III D and III E. Chemical work and non-
equilibrium Gibbs free energy are also defined, and the
information-theoretic content of the latter is discussed.
The special properties of detailed-balanced and of com-
plex-balanced networks are considered in Secs. V and IV,
respectively. Conclusions and perspectives are drawn in
Sec. VI, while some technical derivations are detailed in
the appendixes.
We now proceed by fixing the notation. We consider a

system composed of reacting chemical species Xσ , each
of which is identified by an index σ ∈ S, where S is the
set of all indices or species. The species populations
change due to elementary reactions, i.e., all reacting
species and reactions must be resolved (none can be

hidden), and all reactions must be reversible, i.e., each
forward reaction þρ has a corresponding backward
reaction −ρ. Each pair of forward-backward reactions
is a reaction pathway denoted by ρ ∈ R. The orientation
of the set of reaction pathways R is arbitrary. Hence, a
generic CRN is represented as

X
σ

∇σþρXσ ⇌
kþρ

k−ρ

X
σ

∇σ
−ρXσ: ð1Þ

The constants kþρ (k−ρ) are the rate constants of the
forward (backward) reactions. The stoichiometric coef-
ficients −∇σþρ and ∇σ

−ρ identify the number of molecules
of Xσ involved in each forward reaction þρ (the
stoichiometric coefficients of the backward reactions have
opposite signs). Once stacked into two non-negative
matrices, ∇þ ¼ f∇σþρg and ∇− ¼ f∇σ

−ρg, they define
the integer-valued stoichiometric matrix

∇≡∇− −∇þ: ð2Þ

The reason for the choice of the symbol “∇” will become
clear later.
Example 1.—The stoichiometric matrix of the CRN

depicted in Fig. 1 is

∇ ¼

0
BBBBBB@

−1 0

2 0

1 −1
0 −1
0 1

1
CCCCCCA
: ð3Þ

□

FIG. 1. Representation of a closed CRN. The chemical species
are fXa;…; Xeg. The two reaction pathways are labeled by 1 and
2. The nonzero stoichiometric coefficients are −∇a

þ1 ¼ −1,
∇b

−1 ¼ 2, and ∇c
−1 ¼ 1 for the first forward reaction and

−∇c
þ2 ¼ −1, −∇d

þ2 ¼ −1, and ∇e
−2 ¼ 1 for the second one.

Since the network is closed, no chemical species is exchanged
with the environment.
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Physical quantities associated with species and reactions
are represented in upper-lower indices vectorial notation.
Upper and lower indexed quantities have the same physical
values, e.g., Zi ¼ Zi, ∀i. We use the Einstein summation
notation: repeated upper-lower indices implies the summa-
tion over all the allowed values for those indices—e.g.,
σ ∈ S for species and ρ ∈ R for reactions. Given two
arbitrary vectorial quantities a ¼ faig and b ¼ fbig, the
following notation is used:

aibi ≡Y
i

aibi :

Finally, given the matrix C, whose elements are fCi
jg, the

elements of the transposed matrix CT are fCj
ig.

The time derivative of a physical quantity A is denoted
by dtA, its steady state value by an overbar A, and its
equilibrium value by Aeq or Aeq. We reserve the overdot _A
to denote the rate of change of quantities that are not exact
time derivatives.

II. DYNAMICS OF CRNS

In this section, we formulate the mathematical descrip-
tion of CRNs [52,53] in a suitable way for a thermo-
dynamic analysis. We introduce closed and open CRNs
and show how to drive these latter in a time-dependent
way. We then define conservation laws and cycles and
review the dynamical properties of two important classes
of CRNs: detailed-balanced networks and complex-
balanced networks.
We consider a chemical system in which the reacting

species fXσg are part of a homogeneous and ideal dilute
solution: the reactions proceed slowly compared to
diffusion and the solvent is much more abundant than
the reacting species. Temperature T and pressure p are
kept constant. Since the volume of the solution V is
overwhelmingly dominated by the solvent, it is assumed
constant. The species abundances are large enough so
that the molecule’s discreteness can be neglected. Thus,
at any time t, the system state is well described by the
molar concentration distribution fZσ ≡ Nσ=Vg, where Nσ

is the molarity of the species Xσ .
The reaction kinetics is controlled by the reaction

rate functions J�ρðfZσgÞ, which measure the rate of
occurrence of reactions and satisfy the mass action
kinetics [52,54,55]:

J�ρ ≡ J�ρðfZσgÞ ¼ k�ρZσ∇�ρ
σ : ð4Þ

The net concentration current along a reaction pathway ρ
is thus given by

Jρ ≡ Jþρ − J−ρ ¼ kþρZσ∇þρ
σ − k−ρZσ∇−ρ

σ : ð5Þ

Example 2.—For the CRN in Fig. 1 the currents are

J1 ¼ kþ1Za − k−1ðZbÞ2Zc;

J2 ¼ kþ2ZcZd − k−2Ze: ð6Þ

□

A. Closed CRNs

A closed CRN does not exchange any chemical species
with the environment. Hence, the species concentrations
vary solely due to chemical reactions and satisfy the rate
equations

dtZσ ¼ ∇σ
ρJρ; ∀σ ∈ S: ð7Þ

Since rate equations are nonlinear, complex dynamical
behaviors may emerge [29]. The fact that the rate equations
[Eq. (7)] can be thought of as a continuity equation for the
concentration, where the stoichiometric matrix ∇ [Eq. (2)]
acts as a discrete differential operator, explains the choice
of the symbol “∇” for the stoichiometric matrix [56].

B. Driven CRNs

In open CRNs, matter is exchanged with the environ-
ment via reservoirs that control the concentrations of some
specific species, Fig. 2. These externally controlled species
are said to be chemostatted, while the reservoirs controlling
them are called chemostats. The chemostatting procedure
may mimic various types of controls by the environment.
For instance, a direct control could be implemented via
external reactions (not belonging to the CRN) or via
abundant species whose concentrations are negligibly
affected by the CRN reactions within relevant time scales.
An indirect control may be achieved via semipermeable
membranes or by controlled injection of chemicals in
continuous stirred-tank reactors.

FIG. 2. Representation of an open CRN. With respect to the
CRN in Fig. 1, the species Xa and Xe are chemostatted, hence,
represented as Ya and Ye. The green boxes on the sides represent
the reservoirs of chemostatted species.
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Among the chemical species, the chemostatted ones are
denoted by the indices σy ∈ Sy, and the internal ones by
σx ∈ Sx (S ≡ Sx ∪ Sy). Also, the part of the stoichiometric
matrix related to the internal (chemostatted) species is
denoted by ∇X ¼ f∇σx

ρ g (∇Y ¼ f∇σy
ρ g).

Example 3.—When chemostatting the CRN in Fig. 1 as
in Fig. 2 the stoichiometric matrix Eq. (3) splits into

∇X ¼

0
B@

2 0

1 −1
0 −1

1
CA; ∇Y ¼

�−1 0

0 1

�
: ð8Þ

□

In nondriven open CRNs, the chemostatted species
have constant concentrations, i.e., fdtZσy ¼ 0g. In driven
open CRNs, the chemostatted concentrations change over
time according to some time-dependent protocol πðtÞ:
fZσy ≡ Zσy(πðtÞ)g. The changes of the internal species
are solely due to reactions and satisfy the rate equations

dtZσx ¼ ∇σx
ρ Jρ; ∀σx ∈ Sx: ð9Þ

Instead, the changes of chemostatted species fdtZσyg are
not only given by the species formation rates f∇σy

ρ Jρg but
must in addition contain the external currents fIσyg,
which quantify the rate at which chemostatted species
enter into the CRN (negative if chemostatted species
leave the CRN),

dtZσy ¼ ∇σy
ρ Jρ þ Iσy ; ∀σy ∈ Sy: ð10Þ

This latter equation is not a differential equation since the
chemostatted concentrations fZσyg are not dynamical
variables. It shows that the external control of the
chemostatted concentration is not necessarily direct, via
the chemostatted concentrations, but can also be indi-
rectly controlled via the external currents. We note that
Eq. (10) is the dynamical expression of the decomposi-
tion of changes of species populations in internal-external
introduced by de Donder (see Secs. 4.1 and 15.2
of Ref. [57]).
A steady-state distribution fZσxg, if it exists, must satisfy

∇σx
ρ Jρ ¼ 0; ∀σx ∈ Sx; ð11aÞ

∇σy
ρ Jρ þ Iσy ¼ 0; ∀σy ∈ Sy; ð11bÞ

for given chemostatted concentrations fZσyg.

C. Conservation laws

In a closed CRN, a conservation law l ¼ flσg is a left
null eigenvector of the stoichiometric matrix ∇ [23,25]:

lσ∇σ
ρ ¼ 0; ∀ρ ∈ R: ð12Þ

Conservation laws identify conserved quantities L≡ lσZσ,
called components [23,25], which satisfy

dtL ¼ lσdtZσ ¼ 0: ð13Þ

We denote a set of independent conservation laws of the
closed network by flλg and the corresponding components
by fLλ ≡ lλ

σZσg. The choice of this set is not unique, and
different choices have different physical meanings. This set
is never empty since the total mass is always conserved.
Physically, conservation laws are often related to parts of
molecules, called moieties [58], which are exchanged
between different species and/or subject to isomerization
(see Example 4).
In an open CRN, since only fZσxg are dynamical

variables, the conservation laws become the left null
eigenvectors of the stoichiometric matrix of the internal
species ∇X. Stated differently, when starting from the
closed CRN, the chemostatting procedure may break a
subset of the conservation laws of the closed network flλg
[56]. For example, when the first chemostat is introduced
the total mass conservation law is always broken. Within
the set flλg, we label the broken ones by λb and the
unbroken ones by λu. The broken conservation laws are
characterized by

lλb
σx∇σx

ρ|fflfflffl{zfflfflffl}
≠0

þ lλb
σy∇σy

ρ ¼ 0; ∀ρ ∈ R; ð14Þ

where the first term is nonvanishing for at least one ρ ∈ R.
The broken components fLλb ≡ lλb

σ Zσg are no longer
constant over time. On the other hand, the unbroken
conservation laws are characterized by

lλu
σx∇σx

ρ|fflfflffl{zfflfflffl}
¼0

þ lλu
σy∇σy

ρ ¼ 0; ∀ρ ∈ R; ð15Þ

where the first term vanishes for all ρ ∈ R. Therefore, the
unbroken components fLλu ≡ lλu

σ Zσg remain constant over
time. Without loss of generality, we choose the set flλg
such that the entries related to the chemostatted species
vanish, lλu

σy ¼ 0, ∀ λu, σy.
Example 4.—For the CRN in Fig. 1, an independent set

of conservation laws is

l1 ¼ ð 2 1 0 0 0 Þ;
l2 ¼ ð 0 0 0 1 1 Þ;
l3 ¼ ð 0 1

2
−1 1 0 Þ: ð16Þ

When chemostatting as in Fig. 2, the first two conservation
laws break while the last one remains unbroken. We also
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note that this set is chosen so that the unbroken conserva-
tion law satisfies l3

a ¼ l3
e ¼ 0. When considering the

specific implementation in Fig. 3 of the CRN in Fig. 2,
we see that the first two conservation laws in Eq. (16)
represent the conservation of the concentrations of the
moiety H and C, respectively. Instead, the third conserva-
tion law in Eq. (16) does not have a straightforward
interpretation. It is related to the fact that when the species
H or C are produced, also O must be produced and vice
versa. □

D. Detailed-balanced networks

A steady state [Eq. (11)] is said to be an equilibrium state
fZσ

eqg if it satisfies the detailed-balance property [[57],
§ 9.4], i.e., all concentration currents Eq. (5) vanish:

Jρeq ≡ JρðfZσ
eqgÞ ¼ 0; ∀ρ ∈ R: ð17Þ

For open networks, this means that the external currents,
Eq. (11b), must also vanish, fIσyeq ¼ 0g. By virtue of mass
action kinetics, Eq. (4), the detailed-balance property
Eq. (17) can be rewritten as

kþρ

k−ρ
¼ Zσ

eq
∇ρ

σ ; ∀ρ ∈ R: ð18Þ

A CRN is said to be detailed balanced if, for given
kinetics fk�ρg and chemostatting fZσyg, its dynamics
exhibits an equilibrium steady state, Eq. (17). For each
set of unbroken components fLλug—which are given by
the initial condition and constrain the space where the
dynamics dwells—the equilibrium distribution is globally
stable [59]. Equivalently, detailed-balanced networks
always relax to an equilibrium state, which for a given
kinetics and chemostatting is unique and depends on the
unbroken components only; see also Sec. V.
Closed CRNs must be detailed balanced. This statement

can be seen as the zeroth law for CRNs. Consequently,
rather than considering Eq. (18) as a property of the
equilibrium distribution, we impose it as a property that

the rate constants must satisfy and call it a local detailed-
balance property. It is a universal property of elementary
reactions that holds regardless of the network state. Indeed,
while the equilibrium distribution depends on the compo-
nents, the rhs of Eq. (18) does not. This point will become
explicit after introducing the thermodynamic structure,
Eq. (88) in Sec. V. The local detailed-balance property
will be rewritten in a thermodynamic form in Sec. III B,
Eq. (50).
In open nondriven CRNs, the chemostatting procedure

may prevent the system from reaching an equilibrium state.
To express this scenario algebraically, we now introduce
the concepts of emergent cycle and cycle affinity.
A cycle ~c ¼ f~cρg is a right null eigenvector of the

stoichiometric matrix [56], namely,

∇σ
ρ ~cρ ¼ 0; ∀σ ∈ S: ð19Þ

Since ∇ is integer valued, ~c can always be rescaled to
only contain integer coefficients. In this representation,
its entries denote the number of times each reaction
occurs (negative signs identify reactions occurring in
backward direction) along a transformation that overall
leaves the concentration distributions fZσg unchanged; see
Example 5. We denote by f~cαg a set of linearly independent
cycles. An emergent cycle c ¼ fcρg is defined algebrai-
cally as [56]

∇σx
ρ cρ ¼ 0; ∀σx ∈ Sx;

∇σy
ρ cρ ≠ 0; for at least one σy ∈ Sy: ð20Þ

In its integer-valued representation, the entries of c denote
the number of times each reaction occurs along a trans-
formation that overall leaves the concentrations of the
internal species fZσxg unchanged while changing the
concentrations of the chemostatted species by an amount
∇σy

ρ cρ. These latter are, however, immediately restored to
their prior values due to the injection of −∇σy

ρ cρ molecules
of Xσy performed by the chemostats. Emergent cycles are,
thus, pathways transferring chemicals across chemostats
while leaving the internal state of the CRN unchanged. We
denote by fcεg a set of linearly independent emergent
cycles.
When chemostatting an initially closed CRN, for each

species that is chemostatted, either a conservation law
breaks—as mentioned in Sec. II C—or an independent
emergent cycle arises [56]. This follows from the rank
nullity theorem for the stoichiometric matrices ∇ and ∇X,
which ensures that the number of chemostatted species jSyj
equals the number of broken conservation laws jλbj plus
the number of independent emergent cycles jεj: jSyj ¼
jλbj þ jεj. Importantly, the rise of emergent cycles is a
topological feature: it depends on the species that are
chemostatted, but not on the chemostatted concentrations.

FIG. 3. Specific implementation of the CRN in Fig. 2.
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We also note that emergent cycles are modeled as “flux
modes” in the context of metabolic networks [60–62].
Example 5.—To illustrate the concepts of cycles and

emergent cycles, we use the following CRN [56]:

ð21Þ

whose Y1 and Y2 species are chemostatted. The stoichio-
metric matrix decomposes as

∇X ¼

0
B@

−1 1 −1 1

1 −1 0 0

0 0 1 −1

1
CA;

∇Y ¼
�−1 0 0 1

0 1 −1 0

�
: ð22Þ

The set of linearly independent cycles, Eq. (19), consists of
only one cycle, which can be written as

~c ¼ ð 1 1 1 1 ÞT: ð23Þ

As the CRN is chemostatted, one linearly independent
emergent cycle Eq. (20) arises:

c ¼ ð 1 1 −1 −1 ÞT: ð24Þ

We now see that if each reaction occurs a number of times
given by the entry of the cycle Eq. (23), the CRN goes back
to the initial state, no matter which one it is. On the other
hand, when the emergent cycle Eq. (24) is performed, the
state of the internal species does not change, while two
molecules of Y1 are annihilated and two of Y2 are created.
However, since the chemostats restore their initial values,
the overall result of c is to transfer two Y1, transformed in
Y2, from the first to the second chemostat.
The closed version of this CRN has two independent

conservation laws,

l1 ¼ ð 0 1 1 1 1 Þ;
l2 ¼ ð 1 1 1 0 0 Þ; ð25Þ

the first of which, l1, is broken following the chemostatting
of any of the two species Y1 or Y2. The other chemostatted
species, instead, gives rise to the emergent cycle
Eq. (24), so that the relationship jSyj ¼ jλbj þ jεj is
satisfied. □

Any cycle ~cα and emergent cycle cε bears a cycle
affinity [56],

~Aα ¼ ~cραRT ln
Jþρ

J−ρ
; ð26Þ

Aε ¼ cρεRT ln
Jþρ

J−ρ
: ð27Þ

From the definition of cycle, Eq. (19), and current, Eq. (5),
and the local detailed balance, Eq. (18), it follows that the
cycle affinities along the cycles Eq. (19) vanish, f ~Aα ¼ 0g,
and that the cycle affinities along the emergent cycles
depend on only the chemostatted concentrations

Aε ¼ cρεRT ln
kþρ

k−ρ
Z
−∇σy

ρ
σy : ð28Þ

Since emergent cycles are pathways connecting different
chemostats, the emergent affinities quantify the chemical
forces acting along the cycles. This point will become
clearer later, when the thermodynamic expressions of the
emergent cycle affinities fAεg is given, Eq. (49).
A CRN is detailed balanced if and only if all the

emergent cycle affinities fAεg vanish. This condition is
equivalent to the Wegscheider condition [59]. This happens
when the chemostatted concentrations fit an equilibrium
distribution. As a special case, unconditionally detailed-
balanced networks are open CRNs with no emergent cycle.
Therefore, they are detailed balanced for any choice of the
chemostatted concentrations. Consequently, even when a
time-dependent driving acts on such a CRN and prevents it
from reaching an equilibrium state, a well-defined equi-
librium state exists at any time: the equilibrium state to
which the CRN would relax if the time-dependent driving
were stopped.
Example 6.—Any CRN with one chemostatted species

only (jSyj ¼ 1) is unconditionally detailed balanced.
Indeed, as mentioned in Sec. II C, the first chemostatted
species always breaks the mass conservation law jλbj ¼ 1,
and, thus, no emergent cycle arises, jεj ¼ jSyj − jλbj ¼ 0.
The open CRN in Fig. 2 is an example of an

unconditionally detailed-balanced network with two che-
mostatted species, since the chemostatting breaks two
conservation laws; see Example 4. Indeed, a nonequili-
brium steady state would require a continuous injection
of Ya and ejection of Ye (or vice versa). But this would
necessarily result in a continuous production of Xb and
consumption of Xd, which is in contradiction with the
steady-state assumption. □

Finally, a tacit assumption in the above discussion is that
the network involves a finite number of species and
reactions, i.e., the CRN is finite dimensional. Infinite-
dimensional CRNs can exhibit long-time behaviors

RICCARDO RAO and MASSIMILIANO ESPOSITO PHYS. REV. X 6, 041064 (2016)

041064-6



different from equilibrium even in the absence of emergent
cycles [63].

E. Complex-balanced networks

To discuss complex-balanced networks and complex-
balanced distributions, we first introduce the notion of
complex in open CRNs.
A complex is a group of species that combines in a

reaction as products or as reactants. Each side of Eq. (1)
defines a complex, but different reactions might involve the
same complex. We label complexes by γ ∈ C, where C is the
set of complexes.
Example 7.—Let us consider the following CRN [64]

Xa⇌
kþ1

k−1
Xb;

Xa þ Xb ⇌
kþ2

k−2
2Xb⇌

kþ3

k−3
Xc: ð29Þ

The set of complexes is C ¼ fXa; Xb; Xa þ Xb; 2Xb; Xcg,
and the complex 2Xb is involved in both the second and
third reaction. □

The notion of complex allows us to decompose the
stoichiometric matrix ∇ as

∇σ
ρ ¼ Γσ

γ∂γ
ρ: ð30Þ

We call Γ ¼ fΓσ
γg the composition matrix [35,37]. Its

entries Γσ
γ are the stoichiometric number of species Xσ

in the complex γ. The composition matrix encodes the
structure of each complex in terms of species; see Example
8. The matrix ∂ ¼ f∂γ

ρg denotes the incidence matrix of the
CRN, whose entries are given by

∂γ
ρ ¼

8<
:

1 if γ is the product complex of þ ρ

−1 if γ is the reactant complex of þ ρ

0 otherwise:

ð31Þ

The incidence matrix encodes the structure of the network
at the level of complexes, i.e., how complexes are con-
nected by reactions. If we think of complexes as network
nodes, the incidence matrix associates an edge to each
reaction pathway and the resulting topological structure is a
reaction graph, see, e.g., Fig. 1 and Eqs. (21) and (29). The
stoichiometric matrix instead encodes the structure of
the network at the level of species. If we think of species
as the network nodes, the stoichiometric matrix does not
define a graph, since reaction connects more than a pair of
species, in general. The structure originating is rather a
hypergraph [56,65] or, equivalently, a Petri net [66,67].
Example 8.—The composition matrix and the incidence

matrix of the CRN in Eq. (29) are

Γ ¼

0
BB@

1 0 1 0 0

0 1 1 2 0

0 0 0 0 1

1
CA; ∂¼

0
BBBBBB@

−1 0 0

1 0 0

0 −1 0

0 1 −1
0 0 1

1
CCCCCCA
;

ð32Þ

where the complexes are ordered as in Example 7.
The corresponding reaction hypergraph is

ð33Þ

where only the forward reactions are depicted. □

In an open CRN, we regroup all complexes γ ∈ C of the
closed CRN that have the same stoichiometry for the internal
species (i.e., all complexes with the same internal part of the
composition matrix ΓX

γ regardless of the chemostatted part
ΓY
γ ) in sets denoted by Cj, for j ¼ 1; 2;…. Complexes of the

closed network made solely of chemostatted species in the
open CRN are all regrouped in the same complex C0. This
allows one to decompose the internal species stoichiometric
matrix as

∇σx
ρ ¼ Γσx

j ∂j
ρ: ð34Þ

where fΓσx
j ≡ Γσx

γ ; for γ ∈ Cjg are the entries of the com-
position matrix corresponding to the internal species, and
f∂j

ρ ≡P
γ∈Cj∂γ

ρg are the entries of the incidence matrix
describing the network of regrouped complexes. This
regrouping corresponds to the—equivalent—CRN made
of only internal species with the effective rate constant

fk�ρZσy∇�ρ
σy g ruling each reaction.

Example 9.—Let us consider the CRN Eq. (29) where the
species Xa and Xc are chemostatted. The five complexes of
the closed network, see Example 7, are regrouped as
C0 ¼ fXa; Xcg, C1 ¼ fXb; Xb þ Xag, and C2 ¼ f2Xbg. In
terms of these groups of complexes, the composition matrix
and incidence matrix are

ΓX ¼ ð 0 1 2 Þ; ∂C ¼

0
B@

−1 0 1

1 −1 0

0 1 −1

1
CA; ð35Þ

which corresponds to the effective representation
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ð36Þ

□

A steady-state distribution fZσxg (11) is said to be
complex balanced if the net current flowing in each group
of complexes Cj vanishes, i.e., if the currents fJρg satisfy

∂j
ρJρ ≡

X
γ∈Cj

∂γ
ρ Jρ ¼ 0; ∀j: ð37Þ

Complex-balanced steady states are, therefore, a subclass
of steady states Eq. (11a) that include equilibrium ones,
Eq. (17), as a special case:

Γσx
j ∂j

ρ Jρ|{z}
¼0 iff Detailed-Balanced Steady State|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0 iff Complex-Balanced Steady State|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 for generic steady states

: ð38Þ

While for generic steady states only the internal species
formation rates vanish, for complex-balanced ones the
complex formation rates also vanish.
For a fixed kinetics (fk�ρg) and chemostatting (Sy and

fZσyg), a CRN is complex balanced if its dynamics exhibits
a complex-balanced steady state, Eq. (37) [35,36]. The
complex-balanced distribution Eq. (37) depends on the
unbroken components fLλug, which can be inferred from
the initial conditions, and is always globally stable [68].
Hence, complex-balanced networks always relax to a—
complex-balanced—steady state. Detailed-balanced net-
works are a subclass of complex-balanced networks.
Whether or not a CRN is complex balanced depends on

the network topology (∇), the kinetics (fk�ρg), and the
chemostatting (Sy and fZσyg). For any given network
topology and set of chemostatted species Sy, one can

always find a set of effective rate constants fk�ρZσy∇�ρ
σy g

that makes that CRN complex balanced [37]. However, for
some CRNs, this set coincides with the one that makes the
CRN detailed balanced [69]. A characterization of the set of
effective rate constants that make a CRN complex balanced
is reported in Refs. [37,69].
Deficiency-zero CRNs are a class of CRNs that are

complex balanced irrespective of the effective kinetics

fk�ρZσy∇�ρ
σy g [35–37]. The network deficiency is a topo-

logical property of the CRN, which we briefly discuss in
Appendix D; see Refs. [22,52,53] for more details.
Consequently, regardless of the way in which a defi-
ciency-zero CRN is driven in time, it will always remain

complex balanced. Throughout this paper, we refer to these
CRNs as unconditionally complex balanced, as in the
seminal work [35].
Example 10.—The open CRN, Eq. (36), has a single

steady state Zb for any given set of rate constants and
chemostatted concentrations Za and Zc [64], defined by
Eq. (11a):

dtZb ¼ J1 þ J2 − 2J3

¼ kþ1Za − k−1Zb þ kþ2ZaZb − k−2ðZbÞ2
þ 2k−3Zc − 2kþ3ðZbÞ2 ¼ 0: ð39Þ

If the stronger condition Eq. (37) holds,

J3 − J1 ¼ 0 ðgroup C0Þ;
J1 − J2 ¼ 0 ðgroup C1Þ;
J2 − J3 ¼ 0 ðgroup C2Þ; ð40Þ

which is equivalent to

kþ1Za − k−1Zb ¼ kþ2ZaZb − k−2ðZbÞ2
¼ kþ3ðZbÞ2 − k−3Zc; ð41Þ

the steady state is complex balanced. Yet, if the steady-state
currents are all independently vanishing,

J1 ¼ J2 ¼ J3 ¼ 0; ð42Þ

i.e., Eq. (41) is equal to zero, then the steady state is
detailed balanced.
When, for simplicity, all rate constants are taken as 1, the

complex-balanced set of quadratic equations, Eq. (41),
admits a positive solution Zb only if Za ¼ 2 − Zc

(0 < Zc < 2) or Za ¼ ffiffiffiffiffi
Zc

p
. The former case corresponds

to a genuine complex-balanced state, Zb ¼ 1 with currents
J1 ¼ J2 ¼ J3 ¼ 1 − Zc, while the second corresponds to a
detailed-balance state, Zb ¼ ffiffiffiffiffi

Zc
p

with vanishing currents.
When, for example, Za ¼ 1 and Zc ¼ 4, neither of the two
previous conditions holds: the nonequilibrium steady state
is Zb ¼ ffiffiffi

3
p

with currents J1 ¼ 1 −
ffiffiffi
3

p
, J2 ¼ −3þ ffiffiffi

3
p

,
and J3 ¼ −1. □

Example 11.—Let us now consider the following open
CRN [22]:

Ya ⇌
kþ1

k−1
Xb ⇌

kþ2

k−2
Xc þ Xd ⇌

kþ3

k−3
Ye; ð43Þ

where the species Ya and Ye are chemostatted. Out of
the four complexes of the closed network,
fYa; Xb; Xc þ Xd; Yeg, two are grouped into C0 ¼
fYa; Yeg and the other two remain C1 ¼ fXbg and
C2 ¼ fXc þ Xdg. The effective representation of this open
CRN is
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ð44Þ

This network is deficiency zero and, hence, unconditionally
complex balanced [22]. Therefore, given any set of rate
constants k�1, k�2, and k�3, and the chemostatted con-
centrations Za and Ze, the steady state of this CRN is
complex balanced, i.e., the steady state always satisfies a
set of condition like those in Eq. (40). Indeed, contrary to
Example 10, steady-state currents fJ1; J2; J3g different
from each other cannot exist since they would induce a
growth or decrease of some concentrations. □

III. THERMODYNAMICS OF
CHEMICAL NETWORKS

Using local equilibrium, here we build the connection
between the dynamics and the nonequilibrium thermody-
namics for arbitrary CRNs. In the spirit of stochastic
thermodynamics, we derive an energy and entropy balance,
and express the dissipation of the CRN as the difference
between the chemical work done by the reservoirs on the
CRN and its change in nonequilibrium free energy. We,
finally, discuss the information-theoretical content of the
nonequilibrium free energy and its relation to the dynami-
cal potentials used in chemical reaction network theory.

A. Local equilibrium

Since we consider homogeneous reaction mixtures in
ideal dilute solutions, the assumption of local equilibrium
(Ref. [57], Sec. 15.1, and Ref. [70]) means that the
equilibration following any reaction event is much faster
than any reaction time scale. Thus, what is assumed is that
the nonequilibrium nature of the thermodynamic descrip-
tion is solely due to the reaction mechanisms. If all
reactions could be instantaneously shut down, the state
of the whole CRN would immediately become an equili-
brated ideal mixture of species. As a result, all the intensive
thermodynamic variables are well defined and equal every-
where in the system. The temperature T is set by the
solvent, which acts as a thermal bath, while the pressure p
is set by the environment the solution is exposed to. As a
result, each chemical species is characterized by a chemical
potential (Ref. [23], Sec. III. 1),

μσ ¼ μ∘σ þ RT ln
Zσ

Ztot
; ∀σ ∈ S; ð45Þ

where R denotes the gas constant and fμ∘σ ≡ μ∘σðTÞg are the
standard-state chemical potentials, which depend on the
temperature and on the nature of the solvent. The total

concentration of the solution is denoted by Ztot ¼P
σZ

σ þ Z0, where Z0 is the concentration of the solvent.
We assume for simplicity that the solvent does not react
with the solutes. In case it does, our results still hold
provided one treats the solvent as a nondriven chemostatted
species, as discussed in Appendix A. Since the solvent is
much more abundant than the solutes, the total concen-
tration is almost equal to that of the solvent which is a
constant, Ztot ≃ Z0. Without loss of generality, the constant
term −RT lnZtot ≃ −RT lnZ0 in Eq. (45) is absorbed in the
standard-state chemical potentials. Consequently, many
equations appear with nonmatching dimensions. We also
emphasize that standard-state quantities, denoted with “∘”,
are defined as those measured in ideal conditions, at
standard pressure (p∘ ¼ 100 kPa) and molar concentration
(Z∘

σ ¼ 1 mol=dm3), but not at a standard temperature
(Ref. [71], p. 61).
Because of the assumption of local equilibrium and

homogeneous reaction mixture, the densities of all
extensive thermodynamic quantities are well defined
and equal everywhere in the system. With a slight abuse
of notation, we use the same symbol and name for
densities as for their corresponding extensive quantity.
For example, S is the molar entropy divided by the
volume of the solution, but we denote it as entropy. We
apply the same logic to rates of change. For example, we
call entropy production rate the molar entropy production
density rate.

B. Affinities, emergent affinities,
and local detailed balance

The thermodynamic forces driving reactions are given
by differences of chemical potential [Eq. (45)],

ΔrGρ ≡∇σ
ρμσ; ð46Þ

also called Gibbs free energies of reaction (Ref. [23],
Sec. III. 2, and Ref. [57], Sec. IX.3). Since these must all
vanish at equilibrium, ∇σ

ρμ
eq
σ ¼ 0, ∀ρ, we have

ΔrGρ ¼ −RT∇σ
ρ ln

Zσ

Zeq
σ
: ð47Þ

The local detailed balance, Eq. (18)] allows us to express
these thermodynamic forces in terms of reaction affinities,

Aρ ≡ RT ln
Jþρ

J−ρ
¼ −ΔrGρ; ð48Þ

which quantify the kinetic force acting along each reaction
pathway (Ref. [57], Sec. IV.1.3).
The change of Gibbs free energy along emergent cycles,

Aε ¼ −cρεΔrGρ ¼ −cρε∇σy
ρ μσy ; ð49Þ
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gives the external thermodynamic forces the network is
coupled to, as we see in Eq. (61), and thus provides a
thermodynamic meaning to the cycle affinities Eq. (28).
Combining the detailed-balance property Eq. (18)

and the equilibrium condition on the affinities Aeq
ρ ¼ 0

[Eq. (46)], we can relate the Gibbs free energies of reaction
to the rate constants

kþρ

k−ρ
¼ exp

�
−
ΔrG∘

ρ

RT

�
; ð50Þ

where ΔrG∘
ρ ≡∇σ

ρμ
∘
σ . This relation is the thermodynamic

counterpart of the local detailed balance Eq. (18). It plays
the same role as in stochastic thermodynamics, namely,
connecting the thermodynamic description to the stochastic
dynamics. We emphasize that the local detailed-balance
property as well as the local equilibrium assumption by
no mean imply that the CRN operates close to equili-
brium. Their importance is to assign well-defined equilib-
rium potentials to the states of the CRN, which are
then connected by the nonequilibrium mechanisms, i.e.,
reactions.

C. Enthalpies and entropies of reaction

To identify the heat produced by the CRN, we need to
distinguish the enthalpic change produced by each reaction
from the entropic one. We consider the decomposition
of the standard-state chemical potentials (Ref. [23],
Sec. III. 2):

μ∘σ ¼ h∘σ − Ts∘σ: ð51Þ

The standard enthalpies of formation fh∘σg take into
account the enthalpic contributions carried by each species
(Ref. [23], Sec. III. 2, and Ref. [72], Sec. X.4.2). Enthalpy
changes caused by reactions give the enthalpies of reaction
(Ref. [23], Sec. III. 2, and Ref. [57], Sec. II. 4),

ΔrHρ ¼ ∇σ
ρh∘σ; ð52Þ

which at constant pressure measure the heat of reaction.
This is the content of the Hess law (see, e.g., Ref. [72],
Sec. X.4.1). The standard entropies of formation fs∘σg take
into account the internal entropic contribution carried by
each species under standard-state conditions (Ref. [23],
Sec. III. 2). Using Eq. (51), the chemical potentials Eq. (45)
can be rewritten as

μσ ¼ h∘σ − Tðs∘σ − R lnZσÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
≡sσ

: ð53Þ

The entropies of formation fsσ ≡ s∘σ − R lnZσg account for
the entropic contribution of each species in the CRN
(Ref. [23], Sec. III. 2). Entropy changes along reactions
are given by

ΔrSρ ¼ ∇σ
ρsσ; ð54Þ

called entropies of reaction [[23] § 3.2].

D. Entropy balance

1. Entropy production rate

The entropy production rate is a non-negative measure of
the break of detailed balance in each chemical reaction. Its
typical form is given by (Ref. [8] and Ref. [57], Sec. IX.5)

T _Si ≡ RTðJþρ − J−ρÞ ln
Jþρ

J−ρ
≥ 0; ð55Þ

because (1) it is non-negative and vanishes only at
equilibrium, i.e., when the detailed-balance property
Eq. (17) is satisfied, and (2) it vanishes to first order
around equilibrium, thus allowing for quasistatic reversible
transformations. Indeed, defining

Zσ − Zσ
eq

Zσ
eq

¼ ϵσ; jϵσj ≪ 1; ∀σ ∈ S; ð56Þ

we find that

_Si ¼ Eσ
σ0ϵ

σ0ϵσ þ Oðϵ3Þ; ð57Þ

where E≡ fEσ
σ0g is a positive semidefinite symmetric

matrix.
Furthermore, it can be rewritten in a thermodynamically

appealing way using [Eq. (48)]

T _Si ¼ −JρΔrGρ: ð58Þ

It can be further expressed as the sum of two distinct
contributions [56]:

T _Si ¼ −μσxdtZ
σx|fflfflfflfflfflffl{zfflfflfflfflfflffl}

≡T _Sx

−μσyðdtZσy − IσyÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡T _Sy

: ð59Þ

The first term is due to changes in the internal species and
thus vanishes at steady state. The second term is due to the
chemostats. It takes into account both the exchange of
chemostatted species and the time-dependent driving of
their concentration. If the system reaches a nonequilibrium
steady state, the external currents fIσyg do not vanish and
the entropy production reads

T _Si ¼ Iσyμσy : ð60Þ

This expression can be rewritten as a bilinear form of
emergent cycle affinities fAεg Eq. (49) and currents along
the emergent cycle fJ ε ≡ cερJρg [56]
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T _Si ¼ J εAε; ð61Þ

which clearly emphasizes the crucial role of emergent
cycles in steady-state dissipation.

2. Entropy flow rate

The entropy flow rate measures the reversible entropy
changes in the environment due to exchange processes with
the system [57]. Using the expressions for the enthalpy of
reaction Eq. (52) and entropy of formation Eq. (53), we
express the entropy flow rate as

T _Se ≡ JρΔrHρ|fflfflfflffl{zfflfflfflffl}
≡ _Q

þ IσyTsσy : ð62Þ

The first contribution is the heat flow rate (positive if heat is
absorbed by the system). When divided by temperature, it
measures minus the entropy changes in the thermal bath.
The second contribution accounts for minus the entropy
change in the chemostats.

3. System entropy

The entropy of the ideal dilute solution constituting the
CRN is given by (see Appendix A)

S ¼ Zσsσ þ RZS þ S0: ð63Þ

The total concentration term,

ZS ≡X
σ∈S

Zσ; ð64Þ

and the constant S0 together represent the entropic con-
tribution of the solvent. S0 may also account for the entropy
of chemical species not involved in the reactions. We also
prove in Appedix B that the entropy [Eq. (63)] can be
obtained as a large particle limit of the stochastic entropy
of CRNs.
S would be an equilibrium entropy if the reactions could

all be shut down. But in the presence of reactions, it
becomes the nonequilibrium entropy of the CRN. Indeed,
Using eqs. (53), (58), and (62), we find that its change can
be expressed as

dtS ¼ sσdtZσ þ Zσdtsσ þ RdtZS

¼ sσdtZσ

¼ JρΔrSρ þ Iσysσy

¼ _Si þ _Se: ð65Þ

This relation is the nonequilibrium formulation of the
second law of thermodynamics for CRNs. It demonstrates
that the non-negative entropy production Eq. (55) measures

the entropy changes in the system plus those in the
reservoirs (thermal and chemostats) [57].

E. Energy balance

1. First law of thermodynamics

Since the CRN is kept at constant pressure p, its enthalpy

H ¼ Zσh∘σ þH0 ð66Þ

is equal to the CRN internal energy, up to a constant.
Indeed, the enthalpy H is a density which, when written in
terms of the internal energy (density) U, readsH ¼ U þ p.
Using the rate equations (9) and (10), the enthalpy rate of

change can be expressed as the sum of the heat flow rate,
defined in Eq. (62), and the enthalpy of formation exchange
rate:

dtH ¼ h∘σdtZσ ¼ _Qþ Iσyh∘σy : ð67Þ

Equivalently, it can be rewritten in terms of the entropy
flow rate Eq. (62) as (Ref. [57], Sec. IV.1.2)

dtH ¼ T _Se þ Iσyμσy : ð68Þ

The last term on the rhs of Eq. (68) is the free energy
exchanged with the chemostats. It represents the chemical
work rate performed by the chemostats on the CRN
[21,23]:

_Wc ≡ Iσyμσy : ð69Þ

Either Eq. (67) or (68) may be considered as the non-
equilibrium formulation of the first law of thermodynamics
for CRNs. The former has the advantage to solely focus on
energy exchanges. The latter contains entropic contribu-
tions but is appealing because it involves the chemical
work Eq. (69).

2. Nonequilibrium Gibbs free energy

We are now in the position to introduce the thermody-
namic potential regulating CRNs. The Gibbs free energy of
ideal dilute solutions reads

G≡H − TS ¼ Zσμσ − RTZS þ G0: ð70Þ

As for entropy, the total concentration term −RTZS and the
constant G0 represent the contribution of the solvent (see
Appendix A). Furthermore, in the presence of reactions, G
becomes the nonequilibrium Gibbs free energy of CRNs.
We now show that the nonequilibrium Gibbs free

energy of a closed CRN is always greater than or equal
to its corresponding equilibrium form. A generic non-
equilibrium concentration distribution fZσg is character-
ized by the set of components fLλ ¼ lλ

σZσg. Let fZσ
eqg be
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the corresponding equilibrium distribution defined by the
detailed-balance property Eq. (18) and characterized by the
same set of components fLλg [a formal expression for
the equilibrium distribution is given in Eq. (88)]. At
equilibrium, the Gibbs free energy Eq. (70) reads

Geq ¼ Zσ
eqμ

eq
σ − RTZS

eq þ G0: ð71Þ

As we discuss in Sec. III B, the equilibrium chemical
potentials must satisfy ∇σ

ρμ
eq
σ ¼ 0. We deduce that μeqσ must

be a linear combination of the closed system conservation
laws Eq. (12),

μeqσ ¼ fλlλ
σ; ð72Þ

where ffλg are real coefficients. Thus, we can write the
equilibrium Gibbs free energy as

Geq ¼ fλLλ − RTZS
eq þ G0: ð73Þ

In this form, the first term of the Gibbs free energy appears
as a bilinear form of components fLλg and conjugated
generalized forces ffλg (Ref. [23], Sec. III. 3), which can
be thought of as chemical potentials of the components.
From Eq. (72) and the properties of components Eq. (13),
the equality Zσ

eqμ
eq
σ ¼ Zσμeqσ follows. Hence, using the

definition of chemical potential Eq. (45), the nonequili-
brium Gibbs free energy G of the generic distribution fZσg
defined above is related to Geq [Eq. (73)] by

G ¼ Geq þ RTLðfZσgjfZσ
eqgÞ; ð74Þ

where we introduce the relative entropy for non-normalized
concentration distributions, also called the Shear Lyapunov
function or the pseudo-Helmholtz function [35,73,74]:

LðfZσgjfZ0σgÞ≡ Zσ ln
Zσ

Z0
σ
− ðZS − Z0SÞ ≥ 0: ð75Þ

This quantity is a natural generalization of the relative
entropy, or Kullback-Leibler divergence, used to compare
two normalized probability distributions [75]. For sim-
plicity, we still refer to it as relative entropy. It quantifies
the distance between two distributions: it is always
positive and vanishes only if the two distributions are
identical: fZσg ¼ fZ0σg. Hence, Eq. (74) proves that the
nonequilibrium Gibbs free energy of a closed CRN is
always greater than or equal to its corresponding equi-
librium form, G ≥ Geq.
We now proceed to show that the nonequilibrium Gibbs

free energy is minimized by the dynamics in closed CRNs;
viz., G—or, equivalently, LðfZσgjfZσ

eqgÞ [59,76]—acts as
a Lyapunov function in closed CRNs. Indeed, the time
derivative of G Eq. (70) always reads

dtG ¼ μσdtZσ þ Zσdtμσ þ RdtZS

¼ μσdtZσ: ð76Þ

When using the rate equation for closed CRNs Eq. (7), we
find that dtG ¼ −Jρ∇σ

ρμσ. Using Eq. (74) together with
Eqs. (46) and (58), we get

dtG ¼ RTdtLðfZσgjfZeq
σgÞ ¼ −T _Si ≤ 0; ð77Þ

which proves the aforementioned result.

3. Chemical work

In arbitrary CRNs, the rate of change of nonequilibrium
Gibbs free energy, Eq. (76), can be related to the entropy
production rate, Eq. (59), using the rate equations of open
CRN, Eqs. (9) and (10), and the chemical work rate,
Eq. (69):

T _Si ¼ _Wc − dtG ≥ 0: ð78Þ

This important result shows that the positivity of the
entropy production sets an intrinsic limit on the chemical
work that the chemostats must perform on the CRN to
change its concentration distribution. The equality sign is
achieved for quasistatic transformations ( _Si ≃ 0).
If we now integrate Eq. (78) along a transformation

generated by an arbitrary time-dependent protocol πðtÞ,
which drives the CRN from an initial concentration dis-
tribution fZσ

i g to a final one fZσ
f g, we find

TΔiS ¼ Wc − ΔG ≥ 0; ð79Þ

where ΔG ¼ Gf −Gi is the difference of nonequilibrium
Gibbs free energies between the final and the initial state.
Let us also consider the equilibrium state fZσ

eqig (fZσ
eqfg)

obtained from fZσ
i g (fZσ

f g) if one closes the network (i.e.,
interrupts the chemostatting procedure) and lets it relax to
equilibrium, as illustrated in Fig. 4. The Gibbs free energy
difference between these two equilibrium distributions,
ΔGeq ¼ Geqf − Geqi, is related to ΔG via the difference
of relative entropies, Eq. (74):

ΔG ¼ ΔGeq þ RTΔL; ð80Þ

where

ΔL≡ LðfZσ
f gjfZσ

eqfgÞ − LðfZσ
i gjfZσ

eqigÞ: ð81Þ

Thus, the chemical work Eq. (79) can be rewritten as

Wc − ΔGeq ¼ RTΔLþ TΔiS; ð82Þ

which is a key result of our paper. ΔGeq represents the
reversible work needed to reversibly transform the CRN
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from fZσ
eqig to fZσ

eqfg. Implementing such a reversible
transformation may be difficult to achieve in practice.
However, it allows us to interpret the difference Wirr

c ≡
Wc − ΔGeq in Eq. (82) as the chemical work dissipated
during the nonequilibrium transformation, i.e., the irre-
versible chemical work. The positivity of the entropy
production implies that

Wirr
c ≥ RTΔL: ð83Þ

This relation sets limits on the irreversible chemical work
involved in arbitrary far-from-equilibrium transformations.
For transformations connecting two equilibrium distribu-
tions, we get the expected inequality Wirr

c ≥ 0. More
interestingly, Eq. (83) tells us how much chemical work
the chemostat needs to provide to create a nonequilibrium
distribution from an equilibrium one. It also tells us how
much chemical work can be extracted from a CRN relaxing
to equilibrium.
The conceptual analogue of Eq. (82) in stochastic

thermodynamics (where probability distributions replace
non-normalized concentration distributions) is called the
nonequilibrium Landauer principle [42,43] (see also
Refs. [77–79]). It has been shown to play a crucial role
in analyzing the thermodynamic cost of information
processing (e.g., for Maxwell demons, feedback control,
or proofreading). The inequality Eq. (83) is, therefore, a
nonequilibrium Landauer principle for CRN.

IV. THERMODYNAMICS OF COMPLEX-
BALANCED NETWORKS

In this section, we focus on unconditionally complex-
balanced networks. We see that the thermodynamics of
these networks bears remarkable similarities to stochastic
thermodynamics.
Let us first observe that whenever a CRN displays a

well-defined steady-state distribution fZσxg, the entropy
production rate Eq. (55) can be formally decomposed as
the sum of an adiabatic and a nonadiabatic contribution,

T _Si ¼ JρRT ln
Jþρ

J−ρ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
≡T _Sa

−dtZσxRT ln
Zσx

Zσx|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≡T _Sna

; ð84Þ

in analogy with what was done in stochastic thermody-
namics [46–50]. As we discuss in Sec. II E, unconditionally
complex-balanced networks have a unique steady-state
distribution, fZσx ≡ Zσx(πðtÞ)g, Eq. (37), for any value
of the chemostatted concentrations, fZσy ≡ ZσyðπðtÞÞg, and
of the fixed unbroken components fLλug. The decompo-
sition Eq. (84) is thus well defined at any time, for any
protocol πðtÞ. As a central result, we prove in Appendix C
that the adiabatic and nonadiabatic contribution are non-
negative for unconditionally complex-balanced networks
as well as for complex-balanced networks without time-
dependent driving.
The adiabatic entropy production rate encodes the

dissipation of the steady state fZσxg. It can be rewritten
in terms of the steady-state Gibbs free energy of reaction
fΔrGρg Eq. (48) as

T _Sa ¼ −JρΔrGρ ≥ 0: ð85Þ

This inequality highlights the fact that the transient
dynamics—generating the currents fJρg—is constrained
by the thermodynamics of the complex-balanced steady
state, i.e., by fΔrGρg.
The nonadiabatic entropy production rate characterizes

the dissipation of the transient dynamics. It can be
decomposed as

T _Sna ¼ −RTdtLðfZσxgjfZσxgÞ
þ RTdtZSx − Zσxdtμσx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡T _Sd

≥ 0; ð86Þ

where ZSx ¼ P
σx∈Sx

Zσx (see Refs. [46,48] for the analo-
gous decomposition in the stochastic context). The first
term is proportional to the time derivative of the relative
entropy Eq. (75) between the nonequilibrium concentration
distribution at time t and the corresponding complex-
balanced steady-state distribution. Hence, it describes the
dissipation of the relaxation towards the steady state. The

FIG. 4. Pictorial representation of the transformation between
two nonequilibrium concentration distributions. The nonequili-
brium transformation (blue line) is compared with the equilib-
rium one (green line). The equilibrium transformation depends on
the equilibrium states corresponding to the initial and final
concentration distributions. In Sec. III E 3, for an arbitrary
CRN, these equilibrium states are obtained by first closing the
network and then letting it relax to equilibrium. Instead, in Sec. V,
for a detailed balance CRN, the equilibrium states are obtained by
simply stopping the time-dependent driving and letting the
system spontaneously relax to equilibrium.

NONEQUILIBRIUM THERMODYNAMICS OF CHEMICAL … PHYS. REV. X 6, 041064 (2016)

041064-13



second term, T _Sd, is related to the time-dependent driving
performed via the chemostatted species and thus denoted
the driving entropy production rate [46]. It vanishes in
nondriven networks where we obtain

_Sna ¼ −RdtLðfZσxgjfZσxgÞ ≥ 0: ð87Þ

This result shows the role of the relative entropy
LðfZσxgjfZσxgÞ as a Lyapunov function in nondriven
complex-balanced networks with mass action kinetics. It
was known in the mathematical literature [35,80], but we
provide a clear thermodynamic interpretation to this result
by demonstrating that it derives from the nonadiabatic
entropy production rate.
We mention that an alternative derivation of the

adiabatic–nonadiabatic decomposition for nondriven com-
plex-balanced networks with mass action kinetics was very
recently found in Ref. [51].

V. THERMODYNAMICS OF OPEN
DETAILED-BALANCED NETWORKS

We finish our study by considering detailed-balanced
networks. We discuss the equilibrium distribution, intro-
duce a new class of nonequilibrium potentials, and derive a
new work inequality.
Let us also emphasize that open detailed-balanced

CRNs are a special class of open complex-balanced
CRNs for which the adiabatic entropy production rate
vanishes (since the steady state is detailed balanced) and
thus the nonadiabatic entropy production characterizes the
entire dissipation.

A. Equilibrium distribution

As we discuss in Sec. II D, for given kinetics fk�ρg,
chemostatting fZσyg and unbroken components fLλug,
detailed-balanced networks always relax to a unique
equilibrium distribution. Since the equilibrium chemical
potentials can be expressed as a linear combination of
conservation laws, Eq. (72), we can express the equilibrium
distribution as

Zeq
σ ¼ exp

�
−
μ∘σ − fλlλ

σ

RT

�
; ð88Þ

inverting the expression for the chemical potentials
Eq. (45). Since the independent set of unbroken conserva-
tion laws flλug is such that lλu

σy ¼ 0, ∀λu, σy, see Sec. II C,
we have that

μeqσy ¼ fλbl
λb
σy ; ∀σy ∈ Sy: ð89Þ

We thus conclude that the jλbj broken generalized forces
ffλbg depend on only the chemostatted concentrations
fZσyg. Instead, the remaining jλuj unbroken generalized

forces fλu can be determined by inverting the nonlinear set

of equations Lλu ¼ lλu
σxZ

σx
eq. They, therefore, depend on both

fZσyg and fLλug.
One can easily recover the local detailed-balanced

property [Eqs. (50) and (18)] using Eq. (88).

B. Open nondriven networks

As a consequence of the break of conservation laws, the
nonequilibrium Gibbs free energy G Eq. (70) is no longer
minimized at equilibrium in open detailed-balanced
networks. In analogy to equilibrium thermodynamics
[23], the proper thermodynamic potential is obtained from
G by subtracting the energetic contribution of the broken
conservation laws. This transformed nonequilibrium Gibbs
free energy reads

G≡ G − fλbL
λb

¼ Zσðμσ − fλbl
λb
σ Þ − RTZS þG0: ð90Þ

We proceed to show that G is minimized by the dynamics
in nondriven open detailed-balanced networks. Let fZσxg
be a generic concentration distribution in a detailed-
balanced network characterized by fLλug and fZσyg, and
let fZσx

eqg be its corresponding equilibrium. Using the
relation between equilibrium chemical potentials and con-
servation laws Eq. (72), the transformed Gibbs free energy
Eq. (90) at equilibrium reads

Geq ¼ fλuL
λu − RTZS

eq þ G0: ð91Þ

Yet, combining Eq. (72) and the properties of unbroken
components, one can readily show that Zσ

eqðμeqσ − fλbl
λb
σ Þ ¼

Zσðμeqσ − fλbl
λb
σ Þ. The relation between the nonequilibrium

G and the corresponding equilibrium value thus follows

G ¼ Geq þ RTLðfZσxgjfZσx
eqgÞ ð92Þ

(we show in Appendix A the derivation of the latter
in the presence of a reacting solvent). The non-negativity
of the relative entropy for concentration distributions
LðfZσxgjfZeq

σxgÞ ensures that the nonequilibrium trans-
formed Gibbs free energy is always greater than or equal to
its equilibrium value, G ≥ Geq. Since entropy production
and nonadiabatic entropy production coincide, using
Eqs. (87) and (92), we obtain

dtG ¼ RTdtLðfZσxgjfZeq
σxgÞ ¼ −T _Si ≤ 0; ð93Þ

which demonstrates the role of G as a Lyapunov function.
The relative entropy LðfZσxgjfZ0σxgÞ was known to be a
Lyapunov function for detailed-balanced networks [76,81],
but we provide its clear connection to the transformed
nonequilibrium Gibbs free energy. To summarize, instead
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of minimizing the nonequilibrium Gibbs free energy G
Eq. (70) as in closed CRNs, the dynamics minimizes the
transformed nonequilibrium Gibbs free energy G in open
nondriven detailed-balanced CRNs.

C. Open driven networks

We now consider unconditionally detailed-balanced
CRNs. As we discuss in Sec. II D, they are characterized
by a unique equilibrium distribution fZσx

eq ≡ Zσx
eqðπðtÞÞg,

defined by Eq. (18), for any value of the chemostatted
concentrations fZσy ¼ Zσy(πðtÞ)g.
We start by showing that the external fluxes fIσyg can be

expressed as the influx rate of moieties. Since the CRN is
open and unconditionally detailed balanced, each chemo-
statted species breaks a conservation law (no emergent
cycle is created, Sec. II D). Therefore, the matrix whose
entries are flλb

σyg in Eq. (89) is square and also nonsingular
[82]. We can thus invert Eq. (89) to get

fλb ¼ μeqσy l̂
σy
λb
; ð94Þ

where fl̂σy
λb
g denote the entries of the inverse matrix of that

with entries flλb
σyg. Hence, using the definition of a broken

component, fLλb ≡ lλb
σ Zσg, we obtain that

fλbL
λb ¼ μeqσy l̂

σy
λb
lλb
σ Zσ|fflfflfflfflffl{zfflfflfflfflffl}

≡Mσy

: ð95Þ

From the rate equations for the chemostatted concentrations
Eq. (10), we find that

dtMσy ¼ Iσy ; ∀σy ∈ Sy: ð96Þ

We can thus interpret Mσy as the concentration of a moiety
that is exchanged with the environment only through the
chemostatted species Xσy . Equation (95) shows that the
energetic contribution of the broken components can be
expressed as the Gibbs free energy carried by these specific
moieties.
Example 12.—A simple implementation of this scenario

is the thermodynamic description of CRNs at constant pH
(Ref. [23], Chap. 4), where the chemostatted species
becomes the ion Hþ and MHþ

is the total amount of
Hþ ions in the system. The transformed Gibbs potential
thus becomes G0 ¼ G − μHþM

Hþ
and the transformed

chemical potentials can be written in our formalism as
μ0σx ¼ μσx − μHþ l̂

Hþ
b lb

σ, where lb
σ is the conservation law

broken by chemostatting Hþ. □

Example 13.—For the CRN in Fig. 2, whose conserva-
tion laws are given in example 4, the concentrations of the
exchanged moieties are

M1 ¼ Za þ 1

2
Zb;

M2 ¼ Zd þ Ze: ð97Þ

For the specific implementation of that CRN, Fig. 3,
the first term (second term) is the total number of
moiety 2H (C) in the system, which can be exchanged
with the environment only via the chemostatted species
H2O (CO). □

We now turn to the new work relation. From the general
work relation Eq. (78), using Eqs. (90) and (95), we find

T _Si ¼ _Wd − dtG ≥ 0; ð98Þ

where the driving work due to the time-dependent driving
of the chemostatted species is obtained using the chemical
work rate Eq. (69) together with Eqs. (95) and (96):

_Wd ≡ _Wc − dtðfλbLλbÞ
¼ μeqσydtM

σy − dtðμeqσyMσyÞ
¼ −dtμ

eq
σyM

σy : ð99Þ

Equivalently, the driving work rate Eq. (99) can be defined
as the rate of change of the transformed Gibbs free energy
Eq. (90) due to the time-dependent driving only; i.e.,

_Wd ≡ ∂G
∂t ≡ dtμ

eq
σy

∂G
∂μeqσy : ð100Þ

To relate this alternative definition to Eq. (99), all fZσyg
must be expressed in terms of fμeqσyg using the definition of
chemical potential Eq. (45).
The driving work rate _Wd vanishes in nondriven CRNs,

where Eq. (98) reduces to Eq. (93). After demonstrating
that the entropy production rate is always proportional to
the difference between the chemical work rate and the
change of nonequilibrium Gibbs free energy in Eq. (79), we
show that, for unconditionally detailed-balanced CRNs, it
is also proportional to the difference between the driving
work rate and the change in transformed nonequilibrium
Gibbs free energy, Eq. (98).
We end by formulating a nonequilibrium Landauer

principle for the driving work instead of the chemical
work done in Sec. III E 3. We consider a time-dependent
transformation driving the unconditionally detailed-
balanced CRN from fZσ

i g to fZσ
f g. The distribution

fZσ
eqig (fZσ

eqfg) denotes the equilibrium distribution
obtained from fZσ

i g (fZσ
f g) by stopping the time-dependent

driving and letting the system relax towards the equilib-
rium, Fig. 4. Note that this reference equilibrium state is
different from the one obtained by closing the network in
Sec. III E 3. Integrating Eq. (98) over time and using
Eq. (92), we get
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Wd − ΔGeq ¼ RTΔLþ TΔiS; ð101Þ

where

ΔL≡ LðfZσx
f gjfZσx

eqfgÞ − LðfZσx
i gjfZσx

eqigÞ: ð102Þ

ΔGeq represents the reversible driving work, and the
irreversible driving work satisfies the inequality

Wirr
d ≡Wd − ΔGeq ≥ RTΔL: ð103Þ

This central relation sets limits on the irreversible work
spent to manipulate nonequilibrium distributions. It is a
nonequilibrium Landauer principle for the driving work by
the same reasons that inequality Eq. (83) is a nonequili-
brium Landauer principle for the chemical work. The key
difference is that the choice of the reference equilibrium
state is different in the two cases. The above discussed
inequality Eq. (103) holds only for unconditionally
detailed-balanced CRNs, while Eq. (83) is valid for any
CRNs.

VI. CONCLUSIONS AND PERSPECTIVES

Following a strategy reminiscent of stochastic thermo-
dynamics, we systematically build a nonequilibrium
thermodynamic description for open driven CRNs made
of elementary reactions in homogeneous ideal dilute
solutions. The dynamics is described by deterministic rate
equations whose kinetics satisfies mass action law. Our
framework is not restricted to steady states and allows
us to treat transients as well as time-dependent drivings
performed by externally controlled chemostatted concen-
trations. Our theory embeds the nonequilibrium thermo-
dynamic framework of irreversible processes established by
the Brussels School of Thermodynamics.
We now summarize our results. Starting from the

expression for the entropy production rate, we establish
a nonequilibrium formulation of the first and second law of
thermodynamics for CRNs. The resulting expression for
the system entropy is that of an ideal dilute solution. The
clear separation between chemostatted and internal species
allows us to identify the chemical work done by the
chemostats on the CRN and to relate it to the nonequili-
brium Gibbs potential. We are also able to express the
minimal chemical work necessary to change the non-
equilibrium distribution of species in the CRN as a differ-
ence of relative entropies for non-normalized distributions.
The latter measure the distance of the initial and final
concentration distributions from their corresponding equi-
librium ones, obtained by closing the network. This result is
reminiscent of the nonequilibrium Landauer principle
derived in stochastic thermodynamics [43] and which prove
very useful to study the energetic cost of information
processing [45]. We also highlight the deep relationship
between the topology of CRNs, their dynamics, and their

thermodynamics. Closed CRNs (nondriven open detailed-
balanced networks) always relax to a unique equilibrium
by minimizing their nonequilibrium Gibbs free energy
(transformed nonequilibrium Gibbs free energy). This
latter is given, up to a constant, by the relative entropy
between the nonequilibrium and equilibrium concentra-
tion distribution. Nondriven complex-balanced networks
relax to complex-balanced nonequilibrium steady states
by minimizing the relative entropy between the non-
equilibrium and steady-state concentration distribution. In
all these cases, even in the presence of driving, we show
how the rate of change of the relative entropy relates to
the CRN dissipation. For complex-balanced networks, we
also demonstrate that the entropy production rate can be
decomposed, as in stochastic thermodynamics, in its
adiabatic and nonadiabatic contributions quantifying,
respectively, the dissipation of the steady state and of
the transient dynamics.
Our framework could be used to shed new light on a

broad range of problems. We mention only a few.
Stochastic thermodynamics has been successfully used

to study the thermodynamics cost of information process-
ing in various synthetic and biological systems [44,83–87].
However, most of these are modeled as few state systems or
linear networks [8,9]—e.g., quantum dots [88], molecular
motors [89,90], and single enzyme mechanisms [91,92]—
while biochemical networks involve more-complex
descriptions. The present work overcomes this limitation.
It could be used to study biological information-handling
processes, such as kinetic proofreading [93–99] or enzyme-
assisted copolymerization [92,100–105], which have cur-
rently only been studied as single enzyme mechanisms.
Our theory could also be used to study metabolic

networks. However, these require some care, since complex
enzymatic reaction mechanisms are involved [106].
Nevertheless, our framework provides a basis to build
effective coarse-graining procedures for enzymatic reac-
tions [107]. For instance, proofreading mechanisms oper-
ating in metabolic processes could be considered [108]. We
foresee an increasing use of thermodynamics to improve
the modeling of metabolic networks, as recently shown in
Refs. [30,32,33].
Since our framework accounts for time-dependent

drivings and transient dynamics, it could be used to
represent the transmission of signals through CRNs or
their response to external modulations in the environment.
These features become crucial when considering problems
such as signal transduction and biochemical switches
[24,109,110], biochemical oscillations [28,111], growth
and self-organization in evolving biosystems [112,113],
or sensory mechanisms [85,87,114–117]. Also, since
transient signals in CRNs can be used for computation
[118] and have been shown to display Turing universality
[119–122], one should be able to study the thermodynamic
cost of chemical computing [123].
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Finally, one could use our framework to study any
process that can be described as nucleation or reversible
polymerization [124–129] (see also Ref. [130], Chaps. 5 ad
6) since these processes can be described as CRNs [63].
As closing words, we believe that our results constitute

an important contribution to the theoretical study of CRNs.
It does for nonlinear chemical kinetics what stochastic
thermodynamics has done for stochastic dynamics, namely,
build a systematic nonequilibrium thermodynamics on top
of the dynamics. It also opens many new perspectives and
builds bridges between approaches from different com-
munities studying CRNs: mathematicians who study CRNs
as dynamical systems, physicists who study them as
nonequilibrium complex systems, and biochemists as well
as bioengineers who aim for accurate models of metabolic
networks.
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APPENDIX A: THERMODYNAMICS OF IDEAL
DILUTE SOLUTIONS

We show that the nonequilibrium Gibbs free energy
Eq. (70) is the Gibbs free energy of an ideal dilute solution
(Ref. [131], Chap. 7) (see also Ref. [51]). We also show that
in open detailed-balanced networks in which the solvent
reacts with the solutes, the expression of the transformed
Gibbs free energy Eq. (92) is recovered by treating the
solvent as a special chemostatted species.
The Gibbs free energy (density) of an ideal dilute

mixture of chemical compounds kept at constant temper-
ature and pressure reads

G ¼ Zσμσ þ Z0μ0 ðA1Þ

where the labels σ ∈ S refer to the solutes and 0 to the
solvent. The chemical potentials of each species Eq. (45)
read

μσ ¼ μ∘σ þ RT ln
Zσ

Ztot
; ∀σ ∈ S;

μ0 ¼ μ∘0 þ RT ln
Z0

Ztot
: ðA2Þ

Since the solution is dilute, Ztot ¼
P

σ∈SZ
σ þ Z0 ≃ Z0 and

the standard-state chemical potentials fμ∘σg depend on the
nature of the solvent. Hence, the chemical potentials of the
solutes read

μσ ≃ μ∘σ þ RT ln
Zσ

Z0

; ∀σ ∈ S; ðA3Þ

while that of the solvent reads

μ0 ≃ μ°0 − RT
ZS

Z0

; ðA4Þ

where ZS ≡P
σ∈SZ

σ. Therefore, the Gibbs free energy
Eq. (A1) reads

G≃ Zσμσ þ Z0μ°0 − RTZS; ðA5Þ

which is Eq. (70), where G0 is equal to Z0μ°0 plus possibly
the Gibbs free energy of solutes that do not react.
We now consider the case where the solvent reacts with

the solutes. We assume that both the solutes and the solvent
react according to the stoichiometric matrix

∇ ¼

0
B@

∇0

∇X

∇Y

1
CA; ðA6Þ

where the first row refers to the solvent, the second block of
rows to the internal species, and the last one to the
chemostatted species. The solvent is treated as a chemo-
statted species such that dtZ0 ¼ 0.
In order to recover the expression for the transformed

Gibbs free energy Eq. (92) in unconditionally detailed-
balanced networks, we observe that, at equilibrium,

∇σ
ρμ

eq
σ þ∇0

ρμ
eq
0 ¼ 0: ðA7Þ

Therefore, the equilibrium chemical potentials are a linear
combination of the conservation laws of ∇ [Eq. (A6)],

μeqσ ¼ fλlλ
σ;

μeq0 ¼ fλlλ
0: ðA8Þ

As mentioned Sec. II C, the chemostatting procedure
breaks some conservation laws, which are labeled by λb.
The unbroken ones are labeled by λu.
The transformed Gibbs free energy is defined as in

Eq. (90), reported here for convenience,

G≡G − fλbL
λb ; ðA9Þ

where G reads as in Eq. (A1), fLλbg are the broken
components, and ffλbg are here interpreted as the con-
jugated generalized forces. Adding and subtracting the term
Zσμeqσ þ Z0μ

eq
0 from the last equation and using Eq. (A8),

we obtain

G ¼ Geq þ Zσðμσ − μeqσ Þ þ Z0ðμ0 − μeq0 Þ; ðA10Þ

where
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Geq ¼ fλuL
λu : ðA11Þ

From Eqs. (A3) and (A4) and the fact that Zσy ¼ Z
σy
eq and

Z0 ¼ Zeq
0 , we obtain

G≃ Geq þ Zσxðμσx − μeqσxÞ − RTðZSx − ZSx
eq Þ

¼ Geq þ ZσxRT ln
Zσx

Zσx
eq
− RTðZSx − ZSx

eq Þ

≡ Geq þ RTLðfZσxgjfZσx
eqgÞ; ðA12Þ

in agreement with the expression derived in the main
text, Eq. (92).

APPENDIX B: ENTROPY OF CRNs

We show how the nonequilibrium entropy Eq. (63) can
be obtained as a large particle limit of the stochastic
entropy. We point out that very recently similar derivations
for other thermodynamic quantities have been obtained in
Refs. [51,132].
In the stochastic description of CRNs, the state is

characterized by the population vector n ¼ fnσg. The
probability to find the network is in state n at time t is
denoted ptðnÞ. The stochastic entropy of that state reads
[21,107], up to constants,

SðnÞ ¼ −kB lnptðnÞ þ sðnÞ: ðB1Þ

The first term is a Shannon-like contribution, while the
second term is the configurational entropy,

sðnÞ≡ nσ ~s∘σ − kB
X
σ

ln
nσ!
nn

σ

0

: ðB2Þ

~s∘σ is the standard entropy of one single Xσ molecule, and n0
is the very large number of solvent molecules.
We now assume that the probability becomes very

narrow in the large particle limit nσ ≫ 1 and behaves as
a discrete delta function ptðnÞ≃ δ½n − n̂ðtÞ�. The vector
n̂ðtÞ≡ fn̂σg denotes the most probable and macroscopic
amount of chemical species, such that Zσ ¼ n̂σ=ðVNAÞ.
Hence, the average entropy becomes

hSi ¼
X
n

ptðnÞSðnÞ≃ sðn̂Þ: ðB3Þ

When using the Stirling approximation (lnm!≃m lnm−
m for m ≫ 1), we obtain

sðn̂Þ≃ n̂σ ~s∘σ − n̂σkB ln
n̂σ

n0
þ kB

X
σ

n̂σ

¼ n̂σ
�
~s∘σ þ kB ln

n0
VNA

�

þ −n̂σkB ln
n̂σ

VNA
þ kB

X
σ

n̂σ

≡ n̂σð~s∘σ þ kB lnZ0Þ
þ −n̂σkB lnZσ þ kB

X
σ

n̂σ: ðB4Þ

Dividing by V and using the relation R ¼ NAkB, we finally
get the macroscopic entropy density Eq. (63)

hSi=V ≃ Zσs∘σ − ZσR lnZσ þ RZS; ðB5Þ

where the (molar) standard entropies of formation s∘σ reads

s∘σ ¼ NAð~s∘σ þ kB lnZ0Þ: ðB6Þ

Mindful of the information-theoretical interpretation of
the entropy [133], we note that the uncertainty due to the
stochasticity of the state disappears [the first term on
the rhs of Eq. (B1)]. However, the uncertainty due to the
indistinguishability of the molecules of the same species—
quantified by the configurational entropy Eq. (B2)—
remains and contributes to the whole deterministic entropy
function Eq. (63).

APPENDIX C: ADIABATIC-NONADIABATIC
DECOMPOSITION

We prove the positivity of the adiabatic and nonadiabatic
entropy production rates Eq. (84) using the theory of
complex-balanced networks; see Sec. II E.
We first rewrite the mass action kinetics currents

Eq. (5) as [53,81] Jρ ¼ Kρ
γ0ψ

γ0 , where ψγ ≡ ZσΓγ0
σ and K ¼

fKρ
γ ≡ Kþρ

γ − K−ρ
γ g is the rate constants matrix whose

entries are defined by

Kρ
γ ¼

8<
:

kþρ if γ is the reactant complex of þ ρ

−k−ρ if γ is the product complex of þ ρ

0 otherwise:

ðC1Þ

Hence, the definition of a complex-balanced network
Eq. (37) reads

X
γ∈Cj

Wγ
γ0ψ

γ0 ¼ 0; ∀j; ðC2Þ

where W ≡ ∂K ¼ f∂γ
ρK

ρ
γ0 g≡ fWγ

γ0 g is the so-called

kinetic matrix [35], and ψγ ≡ ZσΓγ
σ .
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The kinetic matrix W is a Laplacian matrix [76,81]:
any off-diagonal term is equal to the rate constant of
the reaction having γ0 as a reactant and γ as a product
if the reaction exists, and it is zero otherwise. Also, it
satisfies

X
γ∈C

Wγ
γ0 ¼ 0; ðC3Þ

which is a consequence of the fact that the diagonal
terms are equal to minus the sum of the off-diagonal
terms along the columns. The detailed balanced prop-
erty Eq. (18) implies that

Wγ
γ0ψ

eq
γ0 ¼ Wγ0

γ ψ
eq
γ ; ∀γ; γ0; ðC4Þ

where ψ eq
γ ≡ Zeq

σ
Γσ
γ .

In order to prove the non-negativity of the adiabatic term
Eq. (84), we rewrite it as

_Sa ≡ Jρ ln
Jþρ

J−ρ
¼ Kρ

γ0ψ
γ0 ln

�
Zσ

Zeq
σ

�−∇σ
ρ

¼ −Wγ
γ0ψ

γ0 ln
ψγ

ψ eq
γ
: ðC5Þ

The detailed balance property is used in the first
equality, and the decomposition of the stoichiometric
matrix Eq. (30) in the second one. Also, the constant RT
is taken equal to 1. Using Eq. (C3), Eq. (C5) can be
rewritten as

_Sa ¼ −Wγ
γ0ψ

γ0 ln
ψγψ

γ0
eq

ψ eq
γ ψγ0 : ðC6Þ

From the log inequality − ln x ≥ 1 − x and the detailed
balance property Eq. (C4), we obtain

_Sa ≥ Wγ
γ0ψ

γ0
�
1 −

ψγψ
γ0
eq

ψ eq
γ ψγ0

�

¼ −Wγ
γ0ψ

γ0
eq

ψγψ
γ0

ψ eq
γ ψγ0 ¼ −Wγ0

γ ψγ
ψγ0

ψγ0
¼ 0: ðC7Þ

The last equality follows from the assumption of a
complex-balanced steady state Eq. (C2), the properties
of the groups of complexes fCjg (Sec. II E), and the fact
that fZσy ¼ Zσyg. Indeed,

Wγ0
γ ψγ

ψγ0

ψγ0
¼

X
j

X
r0∈Cj

Wγ0
γ ψγ

�
Zσx

Zσx

�
Γσx
γ0

¼
X
j

�
Zσx

Zσx

�
Γσx
j X
r0∈Cj

Wγ0
γ ψγ ¼ 0: ðC8Þ

Concerning the nonadiabatic term Eq. (84), using the
rate equations (9) and the fact that fZσy ¼ Zσyg, we can
rewrite it as

_Sna ≡ −dtZσ ln
Zσ

Zσ

¼ −Wγ
γ0ψ

γ0 ln
ψγ

ψγ
: ðC9Þ

Because of Eq. (C3), we further get that

_Sna ¼ −Wγ
γ0ψ

γ0 ln
ψγψ

γ0

ψγψ
γ0 : ðC10Þ

From the log inequality − ln x ≥ 1 − x and from Eq. (C4),

_Sna ≥ Wγ
γ0ψ

γ0
�
1 −

ψγψ
γ0

ψγψ
γ0

�
¼ −Wγ

γ0ψ
γ0 ψγ

ψγ
¼ 0: ðC11Þ

The last equality again follows from the assumption of a
complex-balance steady state Eq. (C2) as in Eq. (C8).

APPENDIX D: DEFICIENCY OF CRNs

The deficiency of an open CRN is defined as [22]

δ ¼ dimker∇X − dim ker ∂C ≥ 0; ðD1Þ

where ∂C ¼ f∂j
ρ ≡P

γ∈Cj∂γ
ρg. Other equivalent definitions

can be found in Refs. [52,53]. The kernel of ∇X identifies
the set of cycles, Eqs. (19) and (20), while the kernel of the
incidence matrix ∂̂ identifies the set of cycles of the
reaction graph. Hence, the deficiency measures the differ-
ence between the number of cyclic transformations on
chemical species and how many of them can be represented
as cycles on the reaction graph. Deficiency-zero networks
are defined by δ ¼ 0; i.e., they exhibit a one-to-one
correspondence between the two. This topological property
has many dynamical consequences, the most important of
which is that deficiency-zero networks are unconditionally
complex balanced [36,37]. As shown in Ref. [22], defi-
ciency also has implications on the stochastic thermody-
namic description of networks: the stochastic entropy
production of a deficiency-zero network converges to the
deterministic entropy production in the long-time limit.
Linear networks are the simplest class of deficiency-zero
networks. Since only one internal species appears in each
complex with a stoichiometric coefficient equal to 1,
∇X ≡ ∂C, and thus δ ¼ 0.
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