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We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations.
Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and faradaic charge-transfer kinetics
to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed
in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the
local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections.
The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending
on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and
phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model predicts narrow reaction fronts, mosaic
instabilities and voltage fluctuations at low current, consistent with recent experiments, which could not be described by existing
porous electrode models.
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Modeling is a key component of any design process. An accurate
model allows one to interpret experimental data, identify rate limiting
steps and predict system behavior, while providing a deeper under-
standing of the underlying physical processes. In systems engineering,
empirical models with fitted parameters are often used for design and
control, but it is preferable, whenever possible, to employ models
based on microscopic physical or geometrical parameters, which can
be more easily interpreted and optimized.

In the case of electrochemical energy storage devices, such as
batteries, fuel cells, and supercapacitors, the systems approach is
illustrated by equivalent circuit models, which are widely used in
conjunction with impedance spectroscopy to fit and predict cell per-
formance and degradation. This approach is limited, however, by the
difficulty in unambiguously interpreting fitted circuit elements and
in making predictions for the nonlinear response to large operating
currents. There is growing interest, therefore, in developing physics-
based porous electrode models and applying them for battery opti-
mization and control.1 Quantum mechanical computational methods
have demonstrated the possibility of predicting bulk material prop-
erties, such as open circuit potential and solid diffusivity, from first
principles,2 but coarse-grained continuum models are needed to de-
scribe the many length and time scales of interfacial reactions and
multiphase, multicomponent transport phenomena.

Mathematical models could play a crucial role in guiding the de-
velopment of new intercalation materials, electrode microstructures,
and battery architectures, in order to meet the competing demands
in power density and energy density for different envisioned appli-
cations, such as electric vehicles or renewable (e.g. solar, wind) en-
ergy storage. Porous electrode theory, pioneered by J. Newman and
collaborators, provides the standard modeling framework for battery
simulations today.3 As reviewed in the next section, this approach has
been developed for over half a century and applied successfully to
many battery systems. The treatment of the active material, however,
remains rather simple, and numerous parameters are often needed to
fit experimental data.

In porous electrode theory for Li-ion batteries, transport is mod-
eled via volume averaged conservation equations.4 The solid active
particles are modeled as spheres, where intercalated lithium undergoes
isotropic linear diffusion.5,6 For phase separating materials, such as
Lix FePO4 (LFP), each particle is assumed to have a spherical phase
boundary that moves as a “shrinking core”, as one phase displaces
the other.7–9 In these models, the local Nernst equilibrium potential is
fitted to the global open circuit voltage of the cell, but this neglects non-
uniform composition, which makes the voltage plateau an emergent
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property of the porous electrode.10–13 For thermodynamic consistency,
all of these phenomena should derive from common thermodynamic
principles and cannot be independently fitted to experimental data. The
open circuit voltage reflects the activity of intercalated ions, which in
turn affects ion transport in the solid phase and faradaic reactions
involving ions in the electrolyte phase.14,15

In this paper, we extend porous electrode theory to non-ideal ac-
tive materials, including those capable of phase transformations. Our
starting point is a general phase-field theory of ion intercalation ki-
netics developed by our group over the past five years,12,15–19 which
has recently led to a quantitative understanding of phase separation
dynamics in LFP nanoparticles.13 The ionic fluxes in all phases are re-
lated to electrochemical potential gradients,18,20 consistent with non-
equilibrium thermodynamics.21,22 For thermodynamic consistency,
the faradaic reaction rate is also related to electrochemical poten-
tial differences between the oxidized, reduced, and transition states,
leading to a generalized Butler-Volmer equation15 suitable for phase-
separating materials. These elements are integrated in a general porous
electrode theory, where the active material is described by a Cahn-
Hilliard phase-field model,22,23 as in nanoscale simulations of Li-ion
battery materials.12,13,16,17,19,24–27 This allows us to describe the non-
equilibrium thermodynamics of porous battery electrodes in terms of
well established physical principles for ion intercalation in nanopar-
ticles.

Background

Mathematical modeling of porous electrodes.— We begin by
briefly reviewing volume-averaged porous electrode theory, which has
been the standard approach in battery modeling for the past 50 years,
in order to highlight similarities and differences with our approach.
The earliest attempts to formulate porous electrode models28,29 related
current density distributions to macroscopic properties such as poros-
ity, average surface area per volume, and effective conductivity, and
capacitive charging was added in transmission line models.30 Sixty
years ago, the seminal work of Newman and Tobias31 first described
the effects of concentration variations on kinetics and introduced the
well-known mass conservation equations for porous electrodes, which
form the basis for modern battery modeling. Extensive literature sur-
veys are available by Newman and coauthors3,32 for work up to the
1990s.

Here, we only draw attention to some specific papers and recent
developments that set the stage for our theoretical approach. Perhaps
the earliest use of concepts from non-equilibrium thermodynamics
in porous electrode theory was by Ksenzhek, who incorporated con-
centrated solution theory in the transport equations inside a porous
electrode, and referred to gradients in electrochemical potential as
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the driving force for transport.33 This is the fundamental postulate of
linear irreversible thermodynamics in chemical physics21 and materi-
als science,22 and it has also recently been applied to electrochemical
systems20,34–42 and electrokinetic phenomena.18,43–45 Although con-
centrated solution theory is widely applied to batteries,3 the thermo-
dynamic driving force for transport has only recently been connected
to the battery voltage20,36,37 and faradaic reaction kinetics.12,13,15

Porous electrode theories make a number of underlying assump-
tions regarding properties of the cell that can be critical to perfor-
mance. For example, an early paper of Grens46 showed that the as-
sumption of constant conductivity for the electron conducting phase
is usually valid, while the assumption of constant electrolyte concen-
tration, often used for mathematical convenience, is only valid over
a narrow range of operating conditions. These concepts are extended
here to volume averaging over solid reaction products undergoing
phase transformations (which further narrows the range of validity
of porous electrode models to exclude mosaic instabilities among
discrete particles in a representative continuum volume element).

Our work also focuses on the nonlinear dynamics of porous elec-
trodes, which could only be addressed as computer power improved.
Early work focused on steady state,31,47 mostly at small (linearized
Butler-Volmer) or large (Tafel regime) overpotentials,48 or transient
response for small sinusoidal perturbations (impedance)49 or fast
kinetics.50 Similar to our motivation below, Atlung et al.51 investi-
gated the dynamics of solid solution (i.e. intercalation) electrodes for
different time scales with respect to the limiting current, although
without considering configurational entropy and chemical potentials
as in this work.

As computers and numerical methods advanced, so did simula-
tions of porous electrodes, taking into account various nonlinearities
in transport and reaction kinetics. West et al. first demonstrated the
use of numerical methods to simulate discharge of a porous TiS2 elec-
trode (without the separator) in the typical case of electrolyte transport
limitation.52 Doyle, Fuller and Newman first simulated Li-ion batter-
ies under constant current discharge with full Butler-Volmer kinetics
for two porous electrodes and a porous separator.5,6,53 These papers
are of great importance in the field, as they developed the first com-
plete simulations of lithium-ion batteries and solidified the role of
porous electrode theory in modeling these systems. The same theo-
retical framework has been applied to many other types of cells, such
as lithium-sulfur54 and LFP7,8 batteries, with particular success for
lithium polymer batteries at high discharge rates.

Battery models invariably assume electroneutrality, but diffuse
charge in porous electrodes has received increasing attention over
the past decade, driven by applications in energy storage and desali-
nation. The effects of double-layer capacitance in a porous electrode
were originally considered using only linearized low-voltage mod-
els,55,56 which are equivalent to transmission line circuits.30,57 Re-
cently, the full nonlinear dynamics of capacitive charging and salt
depletion have been analyzed and simulated in both flat41,58 and
porous59 electrodes. The combined effects of electrostatic capacitance
and pseudo-capacitance due to faradaic reactions have also been incor-
porated in porous electrode theory,60,61 using Frumkin-Butler-Volmer
kinetics.62 These models have been successfully used to predict the
nonlinear dynamics of capacitive desalination by porous carbon elec-
trodes.63,64 Although we do not consider double layers in our examples
below (as is typical for battery discharge), it would be straightforward
to integrate these recent models into our theoretical framework based
on non-equilibrium thermodynamics.15,42

Computational and experimental advances have also been made
to study porous electrodes at the microstructural level and thus test
the formal volume-averaging, which underlies macroscopic contin-
uum models. Garcia et al. performed finite-element simulations of
ion transport in typical porous microstructures for Li-ion batteries,25

and Garcia and Chang simulated hypothetical inter-penetrating 3D
battery architectures at the particle level.65 Recently, Smith, Garcia
and Horn analyzed the effects of microstructure on battery perfor-
mance for various sizes and shapes of particles in a Li1−x C6/Lix CoO2

cell.66 The study used 3D image reconstruction of a real battery mi-

crostructure by focused ion beam milling, which has led to detailed
studies of microstructural effects in porous electrodes.67–69 In this
paper, we will discuss mathematical bounds on effective diffusivities
in porous media, which could be compared to results for actual bat-
tery microstructures. Recently, it has also become possible to observe
lithium ion transport at the scale of individual particles in porous Li-
ion battery electrodes,70,71 which could be invaluable in testing the
dynamical predictions of new mathematical models.

Lithium iron phosphate.— The discovery of LFP as a cathode
material by the Goodenough group in 1997 has had a large and un-
expected impact on the battery field, which provides the motivation
for our work. LFP was first thought to be a low-power material, and
it demonstrated poor capacity at room temperature.72 The capacity
has since been improved via conductive coatings and the formation
of nanoparticles,73,74 and the rate capability has been improved in
similar ways.75,76 With high carbon loading to circumvent electronic
conductivity limitations, LFP nanoparticles can now be discharged in
10 seconds.27 Off-stoichiometric phosphate glass coatings contribute
to this high rate, not only in LFP, but also in LiCoO2.77

It has been known since its discovery that LFP is a phase sep-
arating material, as evidenced by a flat voltage plateau in the open
circuit voltage.72,78 There are a wide variety of battery materials with
multiple stable phases at different states of charge,79 but Lix FePO4

has a particularly strong tendency for phase separation, with a misci-
bility gap (voltage plateau) spanning across most of the range from
x = 0 to x = 1 at room temperature. Padhi et al. first depicted phase
separation inside LFP particles schematically as a “shrinking core”
of one phase being replaced by an outer shell of the other phase dur-
ing charge/discharge cycles.72 Srinivasan and Newman encoded this
concept in a porous electrode theory of the LFP cathode with spher-
ical active particles, containing spherical shrinking cores.7 Recently,
Dargaville and Farrell have expanded this approach to predict active
material utilization in LFP electrodes.8 Thorat et al. have also used
the model to gain insight into rate-limiting mechanisms inside LFP
cathodes.9

To date, the shrinking-core porous electrode model is the only
model to successfully fit the galvanostatic discharge of an LFP elec-
trode, but the results are not fully satisfactory. Besides neglecting
the microscopic physics of phase separation, the model relies on fit-
ting a concentration-dependent solid diffusivity, whose inferred val-
ues are orders of magnitude smaller than ab initio simulations76,80

or impedance measurements.81 More consistent values of the solid
diffusivity have since been obtained by different models attempting
to account for anisotropic phase separation with elastic coherency
strain.82 Most troubling for the shrinking core picture, however, is
the direct observation of phase boundaries with very different ori-
entations. In 2006, Chen, Song, and Richardson published images
showing the orientation of the phase interface aligned with iron phos-
phate planes and reaching the active facet of the particle.83 This
observation was supported by experiments of Delmas et al., who
suggested a “domino-cascade model” for the intercalation process
inside LFP.84 With further experimental evidence for anisotropic
phase morphologies,71,85 it has become clear that a new approach
is needed to capture the non-equilibrium thermodynamics of this
material.

Phase-field models.— Phase-field models are widely used to de-
scribe phase transformations and microstructural evolution in mate-
rials science,22,86 but they are relatively new to electrochemistry. In
2004, Guyer, Boettinger, Warren and McFadden87,88 first modeled
the sharp electrode/electrolyte interface with a continuous phase field
varying between stable values 0 and 1, representing the liquid elec-
trolyte and solid metal phases. As in phase-field models of dendritic
solidification,89–92 they used a simple quartic function to model a
double-welled homogeneous free energy. They described the kinetics
of electrodeposition88 (converting ions in the electrolyte to solid metal)
by Allen-Cahn-type kinetics,86,93 linear in the thermodynamic driving
force, but did not make connections with the Butler-Volmer equation.
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Several groups have used this approach to model dendritic electrode-
position and related processes.94–96 Also in 2004, Han, Van der Ven
and Ceder24 first applied the Cahn-Hilliard equation22,86,97–100 to the
diffusion of intercalated lithium ions in LFP, albeit without modeling
reaction kinetics.

Building on these advances, Bazant developed a general theory
of charge-transfer and faradaic reaction kinetics in concentrated so-
lutions and solids based on non-equilibrium thermodynamics,14,15,101

suitable for use with phase-field models. The exponential Tafel de-
pendence of the current on the overpotential, defined in terms of
the variational chemical potentials, was first reported in 2007 by
Singh, Ceder and Bazant,16 but with spurious pre-factor, corrected
by Burch.19,102 The model was used to predict “intercalation waves”
in small, reaction-limited LFP nanoparticles in 1D,16 2D,17 and 3D,26

thus providing a mathematical description of the domino cascade phe-
nomenon.84 The complete electrochemical phase-field theory, com-
bining the Cahn-Hilliard with Butler-Volmer kinetics and the cell
voltage, appeared in 2009 lectures notes14,101 and was applied to LFP
nanoparticles.12,13

The new theory has led to a quantitative understanding of in-
tercalation dynamics in single nanoparticles of LFP. Bai, Cogswell
and Bazant12 generalized the Butler-Volmer equation using varia-
tional chemical potentials (as derived in the supporting information)
and used it to develop a mathematical theory of the suppression of
phase separation in LFP nanoparticles with increasing current. This
phenomenon, which helps to explain the remarkable performance of
nano-LFP, was also suggested by Malik and Ceder based on bulk free
energy calculations,103 but the theory shows that it is entirely con-
trolled by faradaic reactions at the particle surface.12,13 Cogswell and
Bazant13 have shown that including elastic coherency strain in the
model leads to a quantitative theory of phase morphology and lithium
solubility. Experimental data for different particles sizes and tempera-
tures can be fitted with only two parameters (the gradient penalty and
regular solution parameter, defined below).

The goal of the present work is to combine the phase-field the-
ory of ion intercalation in nanoparticles with classical porous elec-
trode theory to arrive at a general mathematical framework for non-
equilibrium thermodynamics of porous electrodes. Our work was first
presented at the Fall Meeting of the Materials Research Society in
2010 and again at the Electrochemical Society Meetings in Montreal
and Boston in 2011. Around the same time, Lai and Ciucci were think-
ing along similar lines36,37 and published an important reformulation
of Newman’s porous electrode theory based non-equilibrium ther-
modynamics,20 but they did not make any connections with phase-
field models or phase transformations at the macroscopic electrode
scale. Their treatment of reactions also differs from Bazant’s theory
of generalized Butler-Volmer or Marcus kinetics,14,15,101 with a ther-
modynamically consistent description of the transition state in charge
transfer.

In this paper, we develop a variational thermodynamic description
of electrolyte transport, electron transport, electrochemical kinetics,
and phase separation, and we apply to Li-ion batteries in what ap-
pears to be the first mathematical theory and computer simulations
of macroscopic phase transformations in porous electrodes. Sim-
ulations of discharge into a cathode consisting of multiple phase-
separating particles interacting via an electrolyte reservoir at con-
stant chemical potential were reported by Burch,102 who observed
“mosaic instabilities”, where particles transform one-by-one at low
current. This phenomenon was elegantly described by Dreyer et al.
in terms of a (theoretical and experimental) balloon model, which
helps to explain the noisy voltage plateau and zero-current voltage
gap in slow charge/discharge cycles of porous LFP electrodes.10,11

These studies, however, did not account for electrolyte transport
and associated macroscopic gradients in porous electrodes under-
going phase transformations, which are the subject of this work.
To do this, we must reformulate faradaic reaction kinetics for con-
centrated solutions, consistent with the Cahn-Hilliard equation for
ion intercalation and Newman’s porous electrode theory for the
electrolyte.

General Theory of Reactions and Transport in Concentrated
Solutions

In this section, we begin with a general theory of reaction rates
based on non-equilibrium thermodynamics and transition state theory.
We then expand the model to treat transport in concentrated solutions
(i.e. solids). Finally, we show that this concentrated solution model
collapses to Fickian diffusion in the dilute limit. For more details and
examples, see Refs. 14 and 15.

General theory of reaction rates.— The theory begins with the
diffusional chemical potential of species i ,

µi = kB T ln ci + µex
i = kB T ln ai [1]

where ci is the concentration, ai is the absolute chemical activ-
ity, µex

i = kB T ln γi is the excess chemical potential in a concen-
trated solution, and γi is the activity coefficient (ai = γi ci ). In lin-
ear irreversible thermodynamics (LIT),21,22,104 the flux of species
i is proportional to its chemical potential gradient, as discussed
below.

In a thermodynamically consistent formulation of reaction kinet-
ics,14,105 therefore, the reaction complex explores a landscape of ex-
cess chemical potential µex (x) between local minima µex

1 and µex
2 with

transitions over an activation barrier µex
‡ , as shown in Figure 1. For

long-lived states with rare transitions (µex
‡ − µex

i ≫kB T ), the net
reaction rate is given by

R = R1→2 − R2→1

= ν
[

e
−(µex

‡
−µ1)/kB T − e

−(µex
‡

−µ2)/kB T
]

=
ν(a1 − a2)

γ‡

[2]

which automatically satisfies the De Donder relation,105

µ1 − µ2 = kB T ln

(

R1→2

R2→1

)

. [3]

The frequency prefactor ν depends on generalized force constants at
the saddle point and in one minimum (e.g. state 1, with a suitable shift
of µex

‡ ) as in Kramers’ escape formula106,107 and classical transition

state theory.108,109

For the general reaction,

S1 =
∑

i

si Mi →
∑

j

s j M j = S2, [4]

the activities, a1 =
∏

i a
si

i and a2 =
∏

j a
s j

j , are equal in equilib-
rium, and the forward and backward reactions are in detailed balance
(R = 0). The equilibrium constant is thus the ratio of the reactant to

µ
1

µ
2

µ
TS

Figure 1. Typical reaction energy landscape. The set of atoms involved in
the reaction travels through a transition state as it passes from one state to the
other in a landscape of total excess chemical potential as a function of the
atomic coordinates.
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µ
TS

EX

µEX

Figure 2. Typical diffusion energy landscape. The same principles for re-
actions can also be applied to solid diffusion, where the diffusing molecule
explores a landscape of excess chemical potential, hopping by thermal activa-
tion between nearly equivalent local minima.

product activity coefficients:

K =
c2

c1

=
∏

j c
s j

j
∏

i c
si

i

=
∏

i γ
si

i
∏

j γ
s j

j

=
γ1

γ2

= e(µex
1 −µex

2 )/kB T = e−�Gex /kB T [5]

where �Gex is the excess free energy change per reaction. In order
to describe reaction kinetics, however, we also need a model for the
transition state activity coefficient γ‡, in (2).

The subtle difference between total and excess chemical potential
is often overlooked in chemical kinetics. Lai and Ciucci,20,36,37 who
also recently applied non-equilibrium thermodynamics to batteries,
postulate a faradaic reaction rate based on a barrier of total (not ex-
cess) chemical potential. The equilibrium condition (Nernst equation)
is the same, but the rate (exchange current) is different and does not
consistently treat the transition state. We illustrate this point by deriv-
ing solid diffusion and Butler-Volmer kinetics from the same reaction
formalism.

General theory of transport in solids and concentrated solutions.—
In solids, atoms (or more generally, molecules) fluctuate in long-lived
states near local free energy minima and occasionally move through
a transition state to a neighboring well of similar free energy. In a
crystal, the wells correspond to lattice sites, but similar concepts also
apply to amorphous solids. Figure 2 demonstrates this picture of dif-
fusion and shows an energy (or excess chemical potential) landscape
for an atom moving through a medium. Tracer diffusion of individ-
ual atoms consists of thermally activated jumps over some distance
between sites with an average “first passage time”107 between these
transitions, τ, which is the inverse of the mean transition rate per
reaction event above. Using the general thermodynamic theory of re-
action rates above for the activated diffusion process, the time between
transitions scales as

τ = τo exp

(

µex
‡ − µex

kB T

)

. [6]

The tracer diffusivity, D, is then the mean square distance divided by
the mean transition time,

D =
(�x)2

2τ
=

(�x)2

2τo

(

γ

γ‡

)

= Do

(

γ

γ‡

)

, [7]

where Do is the tracer diffusivity in the dilute-solution limit.

Diffusivity of an ideal solid solution.—To model an ideal solid solu-
tion, we consider a lattice gas model for the configurational entropy,
which accounts for finite volume effects in the medium, and neglect
any direct atom-atom interactions which contribute to the enthalpy.
Figure 3 illustrates this model. The chemical potential for an atom in
an ideal solid solution is

µ = kB T ln

(

c̃

1 − c̃

)

+ µo, [8]

Figure 3. Lattice gas model for diffusion. The atoms are assigned a constant
excluded volume by occupying sites on a grid. Atoms can only jump to an open
space, and the transition state (red dashed circle) requires two empty spaces.

where µo is the chemical potential of the reference state and
c̃ = c/cmax is the dimensionless concentration. The excluded volume
of an atom is one lattice site. However, the transition state requires two
available sites, effectively doubling the excluded volume contribution
to the chemical potential. Using the definition of the activity coeffi-
cient, µ = kB T ln a = kB T ln (cγ), we obtain the activity coefficients
of the atom in the site, and in the activated state,

γ =
(

1 −
c

cmax

)−1

exp

(

−
µmin

kB T

)

, [9]

γ‡ =
(

1 −
c

cmax

)−2

exp

(

−
µ‡

kB T

)

. [10]

Inserting these two activity coefficients into Equation 7, the diffusivity,
D, is

D = Do

(

1 −
c

cmax

)

. [11]

This diffusivity is for an ideal solid solution with a finite number of
lattice sites available for atoms.23 As the lattice sites fill, the diffusivity
of an atom goes to zero, since the atom is unable to move as it is
blocked by other atoms on the lattice.

Concentrated Solution Theory Derivation.—Here we will derive the
general form of concentrated solution theory, which postulates that
the flux can be modeled as

F = −Mc∇µ, [12]

where M is the mobility. Let us consider the scenario in Figure 3,
where an atom is sitting in an energy well. This atom’s energy fluctu-
ates on the order of kB T until it has enough energy to overcome some
energy barrier that exists between the two states. Figure 4 demon-
strates this in one dimension. The flux, F, is

Fi =
R

A
ei , [13]

where ei is a coordinate vector in the i direction and Fi is the flux in
the i direction.

We see that the atom’s chemical potential is a function of location,
as concentrations and therefore chemical potentials, will vary with

Δx/2

A
cell

Figure 4. Diffusion through a solid. The flux is given by the reaction rate
across the area of the cell, Acell . In this lattice model, atoms move between
available sites.
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position. Let’s define the right side of the page as the positive x-
direction. Using our previously defined form of the reaction rate in
Equation (2), we can substitute this into Equation (13). However, we
need an expression for the barrier-less reaction rate. This comes from
the barrier-less diffusion time in Equation (6). The barrier-less reaction
rate should be equivalent to the inverse of two times the barrier-less
diffusion time,

Ro =
1

2τo

. [14]

The one half comes from the probability the atom travels in the positive
x direction. Plugging this into Equation (13) along with Equation (2),
and considering the fact that our chemical potential is a function of
position, we obtain

Fx =
1

2τo Acellγ‡

[

exp

(

µ̃(x) −
�x

2

∂µ̃(x)

∂x

)

− exp

(

µ̃(x) +
�x

2

∂µ̃(x)

∂x

)]

, [15]

where µ̃(x) denotes the chemical potential scaled by the thermal
voltage, kB T . Next, we assume that the atom is close to equilibrium.
That is, the difference in chemical potential between the states is small.
This allows us to linearize Equation (15). Linearizing the equation
yields

Fx = −
a(x)

τo Acellγ‡

(

�x

2

)

∂µ̃(x)

∂x
, [16]

where a(x) is the activity as a function of position. This can be sim-
plified to a(x) = V γ(x)c(x). Plugging this into Equation (16), using
our definition of the diffusivity, D, from Equation (7), and the Ein-
stein relation, which states that M = D/kB T , we obtain the flux as
predicted by concentrated solution theory in the x-dimension. We can
easily expand this to other dimensions. Doing so, we obtain the form
of the flux proposed by concentrated solution theory,

F = −Mc∇µ, [17]

where c = c(x, y, z). Taking the dilute limit, as c → 0, and using
the definition of chemical potential, µ = kB T ln a, where a = γc and
γ = 1 (dilute limit), we obtain Fick’s Law from Equation (17),

F = −D∇c. [18]

Characterization of Porous Media

In batteries, the electrodes are typically composites consisting of
active material (e.g. graphite in the anode, iron phosphate in the cath-
ode), conducting material (e.g. carbon black), and binder. The elec-
trolyte penetrates the pores of this solid matrix. This porous electrode
is advantageous because it substantially increases the available ac-
tive area of the electrode. However, this type of system, which can
have variations in porosity (i.e. volume of electrolyte per volume of
the electrode) and loading percent of active material throughout the
volume, presents difficulty in modeling. To account for the variation
in electrode properties, various volume averaging methods for the
electrical conductivity and transport properties in the electrode are
employed. In this section, we will give a brief overview of modeling
the conductivity and transport of a heterogeneous material, consisting
of two or more materials with different properties110–113

Electrical conductivity of the porous media.— To characterize the
electrical conductivity of the porous media, we will consider rigor-
ous mathematical bounds over all possible microstructures with the
same volume fractions of each component. First we consider a general
anisotropic material as shown in Figure 5, in which case the conduc-
tivity bounds, due to Wiener, are attained by simple microstructures
with parallel stripes of the different materials.111 The left image in
Figure 5 represents the different materials as resistors in parallel,
which produces the lowest possible resistance and the upper limit of

σ
1

σ
2

σ
3

σ
1

σ
2

σ
3

E, j E, j

Figure 5. Wiener bounds on the effective conductivity of a two-phase

anisotropic material. The left figure demonstrates the upper conductivity
limit achieved by stripes aligned with the field, which act like resistors in
parallel. The right figure demonstrates the lower bound with the materials
arranged in transverse stripes to act like resistors in series.

the conductivity of the heterogeneous material. The right image rep-
resents the materials as resistors in series, which produces the highest
possible resistance, or lower limit of the conductivity. These limits are
referred to as the upper and lower Wiener bounds, respectively. Let
�i be the volume fraction of material i . For the upper Wiener bound,
attained by stripes parallel to the current, the effective conductivity is
simply the arithmetic mean of the individual conductivities, weighted
by their volume fractions,

σmax = 〈σ〉 =
∑

i

�iσi . [19]

The lower Wiener bound is attained by stripes perpendicular to the
current, and the effective conductivity is a weighted harmonic mean
of the individual conductivities, as for resistors in parallel,

σmin = 〈σ−1〉−1 =
1

∑

i
�i

σi

. [20]

For a general anisotropic material, the effective conductivity, σ, must
lie within the Wiener bounds,

〈σ−1〉−1 ≤ σ ≤ 〈σ〉. [21]

There are tighter bounds on the possible effective conductivity of
isotropic media, which have no preferred direction, due to Hashin
and Shtrikman (HS).111 There are a number of microstructures which
attain the HS bounds, such as a space-filling set of concentric circles
or spheres, whose radii are chosen to set the given volume fractions
of each material. The case of two components is shown in Figure 6.

1
2

Figure 6. Hashin-Shtrikman bounds on the effective conductivity of a

two-phase isotropic material. Isotropic random composite of space-filling
coated spheres which attain the bounds. The white represents material with
conductivity σ1 and the black represents material with conductivity σ2. Max-
imum conductivity is achieved when σ1 > σ2 and minimum conductivity is
obtained when σ2 > σ1. The volume fractions �1 and �2 are the same.
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The HS lower bound on conductivity is attained by ordering the in-
dividual materials so as to place the highest conductivity at the core
and the lowest conductivity in the outer shell, of each particle. For the
HS upper bound, the ordering is reversed, and the lowest conductivity
material is buried in the core of each particle, while the highest con-
ductivity is in the outer shell, forming a percolating network across
the system.

For the case of two components, where σ1 > σ2, the HS conductiv-
ity bounds for an isotropic two-component material in d dimensions
are

〈σ〉 −
(σ1 − σ2)2 �1�2

〈σ̃〉 + σ2 (d − 1)
≤ σ ≤ 〈σ〉 −

(σ1 − σ2)2 �1�2

〈σ̃〉 + σ1 (d − 1)
, [22]

where

〈σ〉 = �1σ1 + �2σ2

and

〈σ̃〉 = �1σ2 + �2σ1.

The Wiener and Hashin-Shtrikman bounds above provide us with
possible ranges for isotropic and anisotropic media with two compo-
nents. Figure 7 gives the Wiener and Hashin-Shtrikman bounds for
two materials, with conductivities of 1.0 and 0.1.

Next, we consider ion transport in porous media. Ion transport in
porous media often consists of a solid phase, which has little to no ionic
conductivity (i.e. slow or no diffusion) permeated by an electrolyte
phase which has very high ionic conductivity (i.e. fast diffusion). In
the next section, we will compare different models for effective porous
media properties.

Conduction in porous media.— For the case of ion transport in
porous media, there is an electrolyte phase, which has a non-zero
diffusivity, and the solid phase, through which transport is very slow
(essentially zero compared to the electrolyte diffusivity). Here, we
consider the pores (electrolyte phase) and give the solid matrix a zero
conductivity. The volume fraction of phase 1 (the pores), �1, is the
porosity:

�1 = ǫp , σ1 = σp.

The conductivity for all other phases is zero. This reduces the Wiener
(anisotropic) and Hashin-Shtrikman (isotropic) lower bounds to zero.
Figure 8 demonstrates a typical volume of a porous medium.

In porous electrode models for batteries,5,7,53 the empirical
Bruggeman formula is used to relate the conductivity to the
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Figure 7. Conductivity bounds for two-phase composites versus volume

fraction. The above figure shows the Wiener bounds (blue) for an anisotropic
two component material and Hashin-Shtrikman bounds (red) for an isotropic
two component material versus the volume fraction of material 1. The conduc-
tivities used to produce the figure are σ1 = 1 and σ2 = 0.1.

ε
p

Figure 8. Example of a porous volume. This is an example of a typical
porous volume. A mixture of solid particles is permeated by an electrolyte.
The porosity, ǫp , is the volume of electrolyte as a fraction of the volume of the
cube.

porosity,

σB = ǫ3/2
p σp [23]

although it is not clear what mathematical approximation is being
made. As shown in Figure 9, the Bruggeman formula turns out to be
close to (and fortunately, below) the HS upper bound, so we can see
that it corresponds to a highly conducting isotropic material, similar
to a core-shell microstructure with solid cores and conducting shells.
This makes sense for ionic conductivity in liquid-electrolyte-soaked
porous media, but not for electronic conductivity based on networks
of touching particles.

To understand the possible range of conductivity, we consider the
rigorous bounds above. If we assume the media consists of two phases
(�2 = 1 − ǫp , σ2 = 0), then the Wiener and Hashin-Shtrikman upper
bounds can be simplified to

σWiener
max = �1σ1 = ǫpσp, [24]

and

σH S
max = σpǫp

(

d − 1

d − ǫp

)

. [25]

where again d is the embedding dimension. The HS upper bound
is attained by spherical core-shell particles with the conducting pore
phase spanning the system via conducting shells on non-conducting
solid cores, similar to electron-conducting coatings on active battery
particles.114

The lower bounds vanish because it is always possible that the con-
ducting phase does not “percolate”, or form a continuous path, across
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Figure 9. Various models for effective conductivity in 3D. This figure
demonstrates the effective conductivity (scaled by the pore conductivity)
using Wiener bounds, Hashin-Shtrikman bounds, a percolation model, and
the Bruggeman formula. The percolation model uses a critical porosity of
ǫc = 0.25.
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the system. Equivalently, the non-conducting matrix phase can per-
colate and block conduction. In such situations, however, the bounds
are of little use, since they give no sense of the probability of finding
percolating paths through a random microstructure. For ionic conduc-
tion through the electrolyte, which permeates the matrix, percolation
may not be a major issue, but for electron conduction it is essential to
maintain a network of touching conducting particles (such as carbon
black in a typical battery electrode).114

In statistical physics, percolation models serve to quantify the con-
ductivity of random media due to geometrical connectivity of parti-
cles.112,113 The simplest percolation models corresponds to randomly
coloring a lattice of sites or bonds with a probability equal to the mean
porosity and measuring the statistics of conduction through clusters of
connected sites or bonds. Continuum percolation models, such as the
“swiss cheese model”, correspond to randomly placing or removing
overlapping particles of given shapes to form clusters. The striking
general feature of such models is the existence of a critical porosity
ǫc in the thermodynamic limit of an infinite system, below which the
probability of a spanning infinite cluster is zero, and above which it is
one. The critical point depends on the specific percolation model, and
for lattice models and decreases with increasing coordination number
(mean number of connected neighbors), as more paths across the sys-
tem are opened. Just above the critical point, the effective conductivity
scales as a power law

σperc ∼ (ǫp − ǫc)tp [26]

where the exponent is believed to be universal for all percolation
models in the same embedding dimensions and equal to tp = 2 in
three dimensions. A simple form to capture this behavior is

σperc
∼=

⎧

⎨

⎩

σp

(

ǫp−ǫc

1−ǫc

)2

ǫc ≤ ǫp ≤ 1

0 0 ≤ ǫp ≤ ǫc

. [27]

Diffusion in porous media.— We now relate the conductivity to the
effective diffusivity of the porous medium. The porosity is the volume
of the electrolyte as a fraction of the total volume. If the porosity is
assumed to be constant throughout the volume, then the area of each
face of the volume is proportional to the porosity. Also, the total mass
inside the volume is given by the volume averaged concentration,
c = ǫpc. We begin with a mass balance on the volume,

∂c

∂t
+ ∇ · F = 0, [28]

where F is the flux at the surfaces of the volume. The net flux is

F = −σd∇c, [29]

where c is the concentration in the pores and σd is the mean diffusive
conductivity of the porous medium (with the same units as diffusiv-
ity, m2/s), which, as the notation suggests, can be approximated or
bounded by the conductivity formulae in the previous section, with
σp replaced by the “free-solution” diffusivity Dp within the pores. It
is important to recognize that fluxes are driven by gradients in the mi-
croscopic concentration within the pores, c, and not the macroscopic,
volume-averaged concentration, c̄. Regardless of porosity fluctuations
in space, at equilibrium the concentration within the pores, which
determines the local chemical potential, is constant throughout the
volume.

Combining Equations (28) and (29), we get

∂c

∂t
= D∇2c, [30]

where the effective diffusivity in a porous medium, D, is given by

D =
σd

ǫp

. [31]

The reduction of the diffusivity inside a porous medium can be in-
terpreted as a reduction of the mean free path. The tortuosity, τp ,

is often used to related the effective macroscopic diffusivity to the
microscopic diffusivity within the pores,

D =
Dp

τp

, [32]

as suggested long ago by Peterson.115 One must keep in mind, how-
ever, that the tortuosity is just a way of interpreting the effective
diffusivity in a porous medium, which is not rigorously related to
any geometrical property of the microstructure. In Fick’s Law, which
involves one spatial derivative, the tortuosity can be interpreted as the
ratio of an effective microscopic diffusion path length L p to the macro-
scopic geometrical length: L p = τp L , although it is usually not clear
exactly what kind of averaging is performed over all possible paths.
Indeed, other definitions of tortuosity are also used.116 (In particular,
if the length rescaling concept is applied to the diffusion equation,

which has two spatial derivatives, then the definition D = Dp/τ
2 is

more natural, but equally arbitrary.)
In any case, using the definition above, the effective conductivity

can be expressed as

σd =
Dpǫp

τp

[33]

which allows us to interpret all the models and bounds above in terms
of Peterson’s tortuosity τp . The upper bounds on conductivity become
lower bounds on tortuosity. The Wiener lower bound tortuosity for
anisotropic pores is

τWiener
p = 1. [34]

For the Hashin-Shtrikman model, the lower bound of the tortuosity is

τH S
p =

d − ǫp

d − 1
[35]

in d dimensions. The percolation model produces a piecewise function
for the tortuosity, above and below the critical porosity, which is given
by

τperc
p

∼=

⎧

⎨

⎩

ǫp

(

1−ǫc

ǫp−ǫc

)2

ǫc ≤ ǫp ≤ 1

∞ 0 ≤ ǫp ≤ ǫc

[36]

Note that, as the conductivity approaches zero, the tortuosity makes no
physical sense as it no longer represents the extra path length. Instead
it represents the decreasing number of available percolating paths,
which are the cause of the lowered conductivity. Finally, from the
Bruggeman empirical relation we get the empirical tortuosity formula,

τB
p = ǫ−1/2, [37]

which is widely used in porous electrode models for batteries, stem-
ming from the work of J. Newman and collaborators. The different
tortuosity models are plotted in Figure 10, and we note again the
close comparison of the Bruggeman-Newman formula to the rigorous
Hashin-Shtrikman upper bound for an isotropic porous medium.

Porous Electrode Theory

Conservation equations.— Using the principles laid out in the first
section of this paper on concentrated solution theory, the Porous Elec-
trode Theory equations will be derived using mass and charge con-
servation combined with the Nernst-Planck Equation and a modified
form of the Butler-Volmer Equation. The derivation will present the
equations and how their properties have deep ties to the thermodynam-
ics of the system. Then, the equations will be non-dimensionalized
and scaled appropriately using characteristic time and length scales in
the system.
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Figure 10. Tortuosity versus porosity for different effective conductivity

models. This plot gives the tortuosity for different porosity values. While the
Wiener and Hashin-Shtrikman models produce finite tortuosities, the percola-
tion and Bruggeman models diverge as porosity goes to zero.

Mass and charge conservation.—We begin with the definition of flux
based on concentrated solution theory. Assuming the system is close
to equilibrium, the mass flux is

Ni = −Mi ci∇µi , [38]

where Mi is the mobility of species i , ci is the concentration of species
i , and µi is the chemical potential of species i . The conservation
equation for concentration is given by the divergence of the flux,

∂ci

∂t
= −∇ · Ni − Ri . [39]

It is important to note that Ri is the volumetric consumption of species
i . In order to express this conservation equation in a form that is
relevant to electrochemical systems, we must first postulate a suitable
form of the chemical potential. We begin with the standard definition
of the chemical potential including the activity contribution, then
include electrostatic effects to obtain

µi = kB T ln (ai ) + zi eφ. [40]

This chemical potential can be inserted into Equation (38). If the ac-
tivity of the electrolyte is available from experimental values, then
this form of the flux facilitates its use. However, diffusivities are typi-
cally given as a function of concentration. Simplifying Equation (38)
using Equation (40) for the chemical potential yields the Nernst-
Planck Equation,

Ni,± = −Dchem,i∇ci ∓
ezi

kB T
Di ci∇φ, [41]

where Dchem,i is the chemical diffusivity of species i , which is defined
as

Dchem,i = Di

(

1 +
∂ ln γi

∂ ln ci

)

. [42]

The dilute limit diffusivity, Di , can also have concentration depen-
dence. Above, γi is the activity coefficient, and φ is the potential. The
charge of the species is zi , which is treated as the absolute value.

For the bulk electrolyte, the electroneutrality approximation will
be used. This approximation assumes that the double layers are thin,
which is a reasonable approximation when there is no depletion in the
electrolyte. (For porous electrode modeling including double layer ef-
fects, see Refs. 59–61.) The electroneutrality approximation assumes

ρ = z+ec+ − z−ec− ≈ 0, [43]

where z+ and z− are defined as the absolute values of the charge
of the cation and anion, respectively. We will derive the ambipolar
diffusivity, which assumes we have a binary z : z electrolyte.

For porous electrodes, we also need to account for the porosity of
the medium. The porosity affects the interfacial area between volumes
of the porous electrode. It also affects the concentration of a given
volume of the electrode. Accounting for porosity, Equations (39) and
(38) become

ǫ
∂ci

∂t
= −∇ · Ni − Ri [44]

and

Ni = −ǫMi ci∇µi , [45]

where ǫ is the porosity, which is the volume of electrolyte per vol-
ume of the electrode. This value may change with position, but this
derivation assumes porosity is constant with respect to time. With
this assumption, the Nernst-Planck Equation can be defined for the
positive and negative species in the electrolyte. This yields the cation
and anion fluxes,

N+ = −ǫDchem,+∇c+ − ǫ
z+e

kB T
D+c+∇φ, [46]

and

N− = −ǫDchem,−∇c− + ǫ
z−e

kB T
D−c−∇φ. [47]

Next, the flux equations for the cation and anion in Equations (46)
and (47) are inserted into Equation (44) and combined with the elec-
troneutrality assumption in Equation (43) to eliminate the potential.
The mass conservation equation is

ǫ
∂c

∂t
= ∇ · (ǫDamb∇c) − ∇ ·

((

t+ − t−

2

)

i

)

−

(

z+ R+

2
+

z− R−

2

)

, [48]

where t+ and t− are the cation and anion transference numbers, re-
spectively, and Damb is the ambipolar diffusivity. These values are
defined as

t± ≡
z± D±

z+ D+ + z− D−
, [49]

and

Damb ≡
z+ D+ Dchem,− + z− D− Dchem,+

z+ D+ + z− D−
. [50]

In equation (48), i is the current density in the electrolyte, which is
given by the sum of the cation and anion fluxes multiplied by their
charge,

i = ez+N+ − ez−N−. [51]

Furthermore, the concentration c, using the electroneutrality assump-
tion, is defined as

c ≡ z+c+ = z−c−. [52]

Next, it is necessary to relate the charge conservation to the mass
conservation to simplify Equation (48).

The electroneutrality approximation puts a restriction on the charge
accumulation in the electrolyte. Since the cations and anions must
balance, the divergence of the current density must balance with the
ions being produced/consumed via faradaic reaction in the volume.
To determine the charge balance in some volume of the electrode, we
begin with the current density as given by Equation (51). Simplifying
this expression and combining it with the definition of c based on the
electroneutrality assumption, the current density is

i = −e
(

Dchem,+ − Dchem,−
)

ǫ∇c −

e2

kB T
(z+ D+ + z− D−) ǫc∇φ. [53]
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The divergence of the current density gives the accumulation of charge
within a given volume. As stated above, this value must equal the
charge produced or consumed by the reactions within the given vol-
ume, therefore

ez+ R+ − ez− R− = eap,+ jin,+ − eap,− jin,− = −∇ · i, [54]

where ap,i is the area per unit volume of the active intercalation
particles, and jin,i is the flux into the particles due to faradaic reactions
of species i . For the remainder of the derivation, the term ap jin will
imply the sum of the reaction rates of the species. Substituting this
expression into Equation (48) and using the definition t+ + t− = 1,
the conservation equation is

ǫ
∂c

∂t
= ∇ · (ǫDamb∇c) + ∇ ·

(

(1 − t+) i

e

)

. [55]

Substituting Equation (54) into Equation (55), the familiar Porous
Electrode Theory equation,

ǫ
∂c

∂t
+ ap jin = ∇ · (ǫDamb∇c) − ∇ ·

(

t+i

e

)

, [56]

is derived. Since the potential was eliminated in the ambipolar deriva-
tion, and the potential gradient is dependent on the current density via
Equation (53), Equations (53) and (54) can be used to formulate an
expression for the local electrolyte potential,

ap jin = ∇ ·
[(

Dchem,+ − Dchem,−
)

ǫ∇c

+
e2

kB T
(z+ D+ + z− D−) ǫc∇φ

]

. [57]

Finally, an expression for jin is required to complete the set of equa-
tions. This can be modeled via the Butler-Volmer Equation.

For phase transforming materials, the activity of the atoms and
energy of the transition state can have a dramatic effect on the reac-
tion rate. To account for this, a modified form of the Butler-Volmer
Equation, which accounts for the energy of the transition state, will
be derived.

Faradaic reaction kinetics.—The reader is referred to Bazant14,15 for
detailed, pedagogical derivations of faradaic reaction rates in con-
centrated solutions and solids, generalizing both the phenomenologi-
cal Butler-Volmer equation117 and the microscopic Marcus theory of
charge transfer.118–120 Here we summarize the basic derivation and fo-
cus applications to the case of lithium intercalation in a solid solution.

In the most general faradaic reaction, there are n electrons trans-
ferred from the electrode to the oxidized state O to produce the reduced
state R:

O + ne− ⇀↽ R.

Typically, one electron transfer is favored,117–119 but for now let us
keep the derivation as general as possible. The reaction goes through
a transition state, which involves solvent reorganization and charge
transfer. The net reaction rate, Rnet , is the sum of the forward and
reverse reaction rates,

Rnet = k

[

exp

(

−
µex

‡ − µ1

kB T

)

− exp

(

−
µex

‡ − µ2

kB T

)]

. [58]

Once again, for an isothermal process (which is reasonable at the
microscopic scale) the concentration of the transition state is constant
and can be factored into the rate constant.

It is first necessary to postulate forms of the electro-chemical
potentials in the generic faradaic reaction above. Here it is assumed
that both the oxidant and reductant are charged species, and that the
electron is at a potential φM , which is the potential of the metallic
electron-conducting phase (e.g. carbon black). The electrochemical
potentials of the oxidant and reductant are broken into chemical and
electrostatic contributions as follows:

µO = kB T ln aO + eqOφ − neφM + EO [59]

and

µR = kB T ln aR + eqRφ + ER, [60]

where EO and ER are the reference energies of the oxidant and reduc-
tant, respectively. The excess chemical potential of the transition state
is assumed to consist of an activity coefficient contribution and some
linear combination of the potentials of the oxidant and reductant,

µex
‡ = kB T ln γ‡ + αeqRφ + (1 − α)e (qOφ − nφM ) + E‡, [61]

where α, also known as the transfer coefficient, denotes the symmetry
of the transition state. This value is typically between 0 and 1. Charge
conservation in the reaction is given by

qO + n = qR [62]

At equilibrium, µO = µR , and the Nernst potential,

�φeq = V o +
kB T

ne
ln

(

aO

aR

)

, [63]

is obtained, where V o = (EO − ER) /ne. Equations (59), (60), and
(61) can be substituted directly into the generation reaction rate, (58),
to obtain

R =
ko

γ‡

[

aO exp
(

ẼO − Ẽ‡

)

exp
(

−αn�φ̃
)

− aR exp
(

ẼR − Ẽ‡

)

exp
(

(1 − α) n�φ̃
)]

, [64]

where the energy is scaled by the thermal energy and the voltage is
scaled by the thermal voltage. Next, the definition of overpotential is
substituted into Equation (64). The overpotential is defined as

η ≡ �φ − �φeq . [65]

Combining the definition of the overpotential with the Nernst equation
and substituting into Equation (64), after simplifying we obtain the
Modified Butler-Volmer Equation,

ejin = io

[

exp (−αη̃) − exp ((1 − α) η̃)
]

, [66]

where io, the exchange current density, is defined as

io =
neko (aO )(1−α)n (aR)αn

γ‡

, [67]

and ko, the rate constant, is given by

ko = ko exp
(

αnẼR + (1 − α) nẼO − Ẽ‡

)

[68]

The main difference is that the overpotential and exchange current are
defined in terms of the activities of the oxidized, reduced and transition
states, each of which can be expressed variationally in terms of the
total free energy functional of the system (below).

Using the Butler-Volmer Equation, the value of jin (the flux into
the particles due to faradaic reactions) can be modeled. The over-
potential is calculated via the definition given in Equation (65), and
the equilibrium potential is given by the Nernst Equation, where the
activity of the surface of the active material is used.

Potential drop in the conducting solid phase.—The reaction rate at
the surface of the particles is dependent on the potential of the elec-
tron as well as the potential of lithium in the electrolyte. This is ex-
pressed as �φ, which contributes to the overpotential in Equation (65).
The potential difference is the difference between the electron and
lithium-ion potential,

�φ = φM − φ,

where φM is the potential of the metallic electron-conducting phase
(e.g. carbon black) phase and φ is the potential of the electrolyte. The
potential of the electrolyte is determined by the charge conservation
equation in Equation (54). To determine the potential drop in the con-
ducting phase, we use current conservation which occurs throughout
the entire electrode, given by

i + iM = I/Asep, [69]
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where iM is the current density in the carbon black phase. For constant
current discharge, the relation between the local reaction rate and the
divergence of the current density in the conducting phase is

eap,+ jin,+ − eap,− jin,− = ∇ · iM . [70]

The current density in the conducting phase can be expressed using
Ohm’s Law. For a given conductivity of the conducting phase, the
current density is

iM = −σm∇φM . [71]

The conductivity of the conducting phase can be modeled or fit to
experiment based on porosity, the loading percent of the carbon black,
and/or the lithium concentration in the solid,

σm = σm

(

c̃s, L p, ǫ
)

.

As lithium concentration increases in the particles, there are more
electrons available for conduction. These are a few of the cell prop-
erties that can have a large impact on the conductivity of the solid
matrix in the porous electrode.

Diffusion in the solid.—Proper handling of diffusion in the solid parti-
cles requires the use of concentrated solution theory. Diffusion inside
solids is often non-linear, and diffusivities vary with local concentra-
tion due to finite volume and other interactions inside the solid. The
first section on concentrated solution theory laid the groundwork for
proper modeling of diffusion inside the solid. Here, we begin with the
flux defined in Equation (38),

Ni = −Mi ci∇µi ,

where Ni is the flux of species i , Mi is the mobility, ci is the
concentration, and µi is the chemical potential. With no sink or
source terms inside the particles, the mass conservation equation from
Equation (39) is

∂ci

∂t
= −∇ · Ni . [72]

There are many different models which can be used for the chemical
potential. For solid diffusion, one model that is typically used is the
regular solution model, which incorporates entropic and enthalpic
effects.22,97,121 The regular solution model free energy is

g = kB T [c̃ ln c̃s + (1 − c̃s) ln (1 − c̃s)] + �c̃s (1 − c̃s) , [73]

where c̃s is the dimensionless solid concentration (c̃s = cs/cs,max ).
Figure 11 demonstrates the effect of the regular solution parameter
(i.e. the pairwise interaction) on the free energy of the system. The
model is capable of capturing the physics of homogeneous and phase
separating systems.

Homogeneous particles demonstrate solid solution behavior, as all
filling fractions are accessible. This behavior is typically indicated by
a monotonically decreasing open circuit voltage curve. In terms of
the regular solution model, a material that demonstrates solid solution
behavior has a regular solution parameter of less than 2kB T , that is
� < 2kB T . This is related to the free energy curve. When � ≤
2kB T , there is a single minimum in the free energy curve over the
range of concentrations. However, for � > 2kB T , there are two
minima, resulting in phase separation and a common tangent, which
corresponds to changing fractions of each phase.

The common tangent construction arises from the fact that phases
in equilibrium have the same chemical potential (i.e. slope). The chem-
ical potential of the regular solution model is

µ =
∂gi

∂cs,i

= kB T ln

(

c̃s

1 − c̃s

)

+ � (1 − 2c̃s) . [74]

To obtain an analogous equation to Fick’s First Law, Equation (38)
can be expressed as

Ni = −Do (1 − c̃s)

(

1 +
∂ ln γi

∂ ln cs,i

)

∇cs,i = −Dchem∇cs,i , [75]

where Do is the diffusivity of species i in the solid in the infinitely
dilute limit and Dchem is the chemical diffusivity in a concentrated
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Figure 11. Regular solution model for the free energy of a homogeneous

mixture. This figure shows the effect of the regular solution parameter �

(mean pair interaction energy) and temperature T on the free energy versus
composition c of a regular solution of atoms and vacancies on a lattice. For
� < 2kB T , there is a single minimum. For � > 2kB T , there are two minima.
This produces phase separation, as the system is unstable with respect to
infinitesimal perturbations near the spinodal concentration, which is where the
curvature of the free energy changes.

solution. It is important to note that Do can still be a function of
concentration. The regular solution model in Equation (74) can be
substituted into Equation (75) using the definition of the chemical
potential, µ = kB T ln(cγ), to obtain the chemical diffusivity,

Dchem = Do

(

1 − 2�̃c̃s + 2�̃c̃2
s

)

, [76]

where �̃ = �/kB T , the dimensionless interaction energy. When the
interaction parameter, �, is zero, the dilute limit diffusivity (Fick’s
Law) is recovered. The mass conservation equation using the effective
diffusivity is

∂cs

∂t
= ∇ · (Dchem∇cs) . [77]

Phase separating materials (e.g. LiFePO4) can be described by the
Cahn-Hilliard free energy functional,97

G[c̃(x)] =
∫

V

[

ρs g(c̃) +
1

2
κ (∇ c̃)2

]

dV +
∫

A

γs (c̃) da, [78]

where g (c̃) is the homogeneous bulk free energy, ρs is the site density,
κ is the gradient energy (generally, a tensor for an anisotropic crys-
tal), with units of energy per length, and γs (c̃) is the surface tension,
which is integrated over the surface area A to obtain the total surface
energy. The “gradient penalty” (second term) can be viewed as the
first correction to the free energy for heterogeneous composition, in
a perturbation expansion about the homogeneous state. When phase
separation occurs, the gradient penalty controls the structure and en-
ergy of the phase boundary between stable phases (near the minima of
g(c̃)). For example, balancing terms in (78) in the case of the regular
solution model, the phase boundary width scales as λi ≈

√
κ/�, and

the interphasial tension as γi ≈
√

κ�ρs .19,22,97

More complicated phase-field models of the total free energy can
also be used in our general porous electrode theory. For example,
elastic coherency strain can be included with additional bulk stress-
strain terms,13,122,123 as described below. It is also possible to account
for diffuse charge and double layers by incorporating electrostatic
energy in the total free energy functional,15,42,87,88,122 although we
neglect such effects here and assume quasi-neutrality in the electrolyte
and active solid particles.
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Once the total free energy functional is defined, the chemical po-
tential of a given species is defined by the Euler-Lagrange variational
derivative with respect to concentration, which is the continuum equiv-
alent of the change in free energy to “add an atom” to the system. The
chemical potential per site is thus

µ =
1

ρs

δG

δc̃
= µ (c̃) − ∇ ·

(

κ

ρs

∇ c̃

)

, [79]

where µ is the homogeneous chemical potential. Using Equation (38),
the flux is based on the gradient of the chemical potential, and the
conservation equation is

∂c

∂t
= ∇ · (Mc∇µ) . [80]

For typical second-order diffusion equations, the boundary condition
relates the normal flux to the reaction rate of each species. When the
Cahn-Hilliard chemical potential is used in Equation (79), however,
the conservation equation contains a fourth derivative of concentra-
tion, requiring the use of another boundary condition. The calculus of
variations provides the additional “variational boundary condition”,

n̂ · κ∇ci =
∂γs

∂ci

[81]

which ensures continuity of the chemical potential19 and controls
surface wetting and nucleation.12

The choice of the gradient and divergence operators is dependent
upon the selected geometry of the particles. To complete the modeling
of the particles, we impose two flux conditions: one at the surface
and the other at the interior of the particle. For example, consider a
spherical particle with a radius of 1. The boundary conditions are

∂c

∂r

∣

∣

∣

∣

r=0

= 0 [82]

and

− Ds

∂c

∂r

∣

∣

∣

∣

r=1

= jin, [83]

where Ds is the solid diffusivity (can be a function of concentration).
These equations demonstrate the symmetry condition at the interior
of the particle, and the relation to the reaction rate at the surface of the
particle, which comes from the modified Butler-Volmer Equation.

Modeling the equilibrium potential.—To complete the model, a form
of the open circuit potential (OCP) is required. While traditional bat-
tery models fit the OCP to discharge data, the OCP is actually a
function of the thermodynamics of the material. The OCP can be
modeled using the Nernst Equation given in Equation (63),

�φeq = V o −
kB T

ne
ln

(

aR

aO

)

,

where V o is the standard potential. Typically, we take lithium metal
as the reference potential for the anode and cathode materials. For the
cathode material, this allows us to treat the activity of the oxidant as
a constant. Let’s again consider the regular solution model. Using the
definition for chemical potential, µ ≡ kB T ln a, we substitute in our
regular solution chemical potential to get

�φeq = V o −
kB T

e
ln

(

c̃s

1 − c̃s

)

−
�

e
(1 − c̃s) . [84]

Figure 12 shows open circuit potential curves for different regular
solution parameter values. For � > 2kB T , the system is phase sepa-
rating. This corresponds to a non-monotonic voltage diagram.

Since the reaction occurs at the surface, and the concentration
inside the solid is not necessarily uniform, then surface concentration
determines the local OCP. This in turn affects the overpotential and
the reaction rate. Larger overpotentials are required when the solid has
a slow diffusivity. As lithium builds up at the surface of the particle,
a higher overpotential is required to drive the intercalation reaction.
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Figure 12. Open circuit potential for different regular solution parameter

values. The battery voltage is the change in free energy per electron transferred.
In this model, the homogeneous voltage curve is non-monotonic when the
system has a tendency for phase separation.

Non-Dimensionalization and Scaling.— In this section, the equa-
tions are non-dimensionalized for the full three dimensional case. Here
we assume the anode is lithium metal with fast kinetics. This allows
us to model the separator and cathode. This non-dimensionalization
can easily be expanded to model the anode as well. The electrode
is assumed to have a constant cross sectional area, which is typical
in rolled electrodes where the area of the separator is much larger
than the electrode thickness. The total current is the sum of the fluxes
into the particles in the electrode. This is represented by the integral
equation

I =
∫

As

ejind As =
∫

Vs

eap jindVs, [85]

where ap is the area per volume of the particles. The solid volume,
Vs , can be expressed as (1 − ǫ) PL V , where ǫ is the porosity, PL

is the volume fraction of active material, and V is the volume of
the cell. Scaling the time by the diffusive time (in the dilute limit),
td = L2/Damb,o, and the charge by the capacity of the entire electrode,
the dimensionless current is

Ĩ =
I td

e (1 − ǫ) PL V cs,max

=
∫

Ṽ

j̃indṼ , [86]

where the dimensionless reaction flux, j̃in , is defined as

j̃in =
ap jin td

cs,max

. [87]

The non-dimensional current density in the electrolyte is

ĩ = −
(

D̃chem,+ − D̃chem,−
)

∇̃ c̃ −
(

z+ D̃+ + z− D̃−
)

c̃∇̃φ̃, [88]

where the dimensionless current density ĩ is defined as

ĩ =
td i

Leco

. [89]

The diffusivities in the dimensionless current density equation above
are scaled by the dilute limit ambipolar diffusivity. Similarly, the non-
dimensional charge conservation equation becomes

β j̃in = −∇̃ · ĩ, [90]

where β = Vscs,max/Veco is the ratio of lithium capacity in the solid
to initial lithium in the electrolyte. This parameter is important, as it
determines the type of cell. For β ≪ 1, the system has essentially no
storage capability, and the equations are typically used to model capac-
itors. At β ≈ 1, the system has comparable storage in the electrolyte
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Table I. Dimensional set of equations. A list of the set of dimensional equations for

Modified Porous Electrode Theory.

Equation Boundary Conditions

ǫ ∂c
∂t

+ ap jin = ∇ · (ǫDamb∇c) − ∇ ·
(

t+i
e

)

i|x=−xsep
= I/Asep

i = −e (D+ − D−) ǫ∇c − e2

kB T
(z+ D+ + z− D−) ǫc∇φ

jin = − ∇·i
eap

= io

[

exp
(

− αeη
kB T

)

− exp
(

(1−α)eη
kB T

)]

io = e(ko
c aO )1−α(ko

a aR)α

γ‡

η ≡ �φ − �φeq

�φeq = V o − kB T
ne

ln
(

aR
aO

)

∂cs
∂t

= ∇ ·
(

Ds cs
kB T

∇µ
)

− Ds cs
kB T

∂µ
∂r

∣

∣

∣

r=R
= jin

and solid. This is typically seen in pseudocapacitors. The equations
for systems like these typically include a term for double layer charge
storage as well. For β ≫ 1, there is a large storage capacity in the
solid, which is typically found in batteries.

Next, a mass balance on the electrolyte and solid are performed.
Equation (56) is non-dimensionalized for some control volume inside
the electrode. In this control volume, the electrolyte and solid volumes
are represented by Ve and Vs , respectively. It is assumed that the
electrode has the same properties throughout (e.g. porosity, loading
percent, area per volume, etc.). The dimensionless mass balance is

∂ c̃

∂ t̃
+ β j̃in = ∇̃ ·

(

D̃amb∇̃ c̃
)

− ∇̃ ·
(

t+ ĩ
)

, [91]

where the time is scaled by the diffusive time scale, td , the gradients
are scaled by the electrode length, L , the diffusivity is scaled by the
dilute limit ambipolar diffusivity, Damb,o, the electrolyte concentration
is scaled by the initial electrolyte concentration, co, and the current
density, jin , is scaled as in Equation (87).

Next, we need to find the dimensionless boundary conditions for
the system. This can be done via integrating the equations over the
volume of the cell (in this case the separator and cathode, but this can
easily be extended to include the anode). Integrating Equation (91)
over the volume yields

∫

Ṽ

[

∂ c̃

∂ t̃
+ β j̃in = ∇̃ ·

(

D̃amb∇̃ c̃
)

− ∇̃ ·
(

t+ ĩ
)

]

dṼ . [92]

First, we deal with the left most term. Given the electroneutrality
constraint, this term becomes zero because the amount of anions in the
system remains constant. This assumes no SEI growth. If SEI growth
is modeled, then this term will be related to the time integral of the
anion reaction rate. Integrating the second term, for constant β, reduces
to β Ĩ . The two terms on the right hand side of the equation facilitate
the use of the Fundamental Theorem of Calculus. Simplifying, we
obtain

β Ĩ =
(

D̃amb∇̃ c̃ − t+ ĩ
)
∣

∣

∣

1

0
. [93]

Given the no flux conditions in ỹ and z̃, and the no flux condition at
x̃ = 1, the flux into the separator is

−D̃amb∇̃ c̃
∣

∣

x̃=−x̃sep
= (1 − t+) β Ĩ . [94]

This set of dimensionless equations and boundary conditions are used
in the simulations presented in the results section. Table I lists the
equations used in the simulations.

Model Results

To characterize the properties of the model, we will demonstrate
some results from the non-dimensional model. Again it is assumed that
the anode is lithium metal with fast kinetics, allowing us to model the
separator and cathode. Results for monotonic (i.e. homogeneous) and

non-monotonic (i.e. phase separating) open circuit potential profiles
for particles demonstrating solid solution behavior will be given for
constant current discharge.

The electrolyte concentration, electrolyte potential, and solid con-
centration are all coupled via the mass and charge conservation equa-
tions listed above. Solving these equations is often done via Crank-
Nicholson and use of the BAND subroutine, which is used to solve the
system of equations.3 Botte et al. have reviewed the numerical methods
typically used to solve the porous electrode equations.124 The system
of equations presented in this paper was solved using MATLAB and
its ode15s differential algebraic equation (DAE) solver. This code uti-
lizes the backwards differentiation formula (BDF) for time stepping
and a dogleg trust-region method for its implicit solution. The spatial
equations were discretized using a finite volume method. Constant
current discharge involves an integral constraint on the system. This
integral constraint makes the system ideal for formulating the system
of equations as a DAE. Formulation of the system of equations as well
as some basic numerical methods employed in solving these types of
DAE’s will be the focus of a future paper.

These results will highlight the range of physics in the model,
which include electrolyte diffusion limited discharge and solid dif-
fusion limited discharge. These two limitations represent the most
common situations in a cell. Another common limitation is electron
conductivity in the solid matrix. This limitation is often suppressed via
increasing the amount of conductive additive used. Furthermore, some
active materials naturally conduct electrons, alleviating this effect.

The electrolyte diffusion limitation can also be alleviated with
proper cell design (i.e. thinner electrode), but this comes at the cost of
capacity of the cell. To demonstrate the effect of electrolyte diffusivity
limitations and solid diffusivity limitations, different discharge rates
were selected and different solid diffusivities were modeled. First,
we consider the case of homogeneous particles. Then we demon-
strate phase separating particles using the Cahn-Hilliard free energy
functional with and without approximated stress effects.

Simulation values.— The ambipolar diffusivity (given by
Equation (50)) is taken from literature values for the diffusivity of
Li+ and PF−

6 in an EC/EMC non-aqueous electrolyte. Using literature
values for the diffusivities, a value of 1.9×10−10 m2s−1 was calculated
for Damb,o.125,126 Suitable cell size parameters were used, including
a cross sectional area of 1 cm2, separator thickness of 25µm, and an
electrode length of 50µm. A porosity value of 0.4 was used, which is
a little larger than typical cell values. While cell dimensions are typi-
cally fixed, the ambipolar diffusivity and porosity values are flexible,
and can be varied (within reason) to fit experimental data.

Using these cell dimensions and ambipolar diffusivity, the diffusive
time scale for the system is 13.125 seconds. This value is important,
as it affects the non-dimensional total current (which is scaled by
the electrode capacity and the diffusive time), the non-dimensional
current density, and the non-dimensional exchange current density
(i.e. rate constant). Using this value of the ambipolar diffusivity, a
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Figure 13. Plot axes for diffusion-limited solid-solution particles. This
figure shows how the simulation results below are plotted for porous electrodes
with isotropic solid solution particles. The y-axis of the contour plots represent
the depth of the particles while the x-axis represents the depth into the electrode.
The particles are modeled in 1D.

dimensionless current of Ĩ = 0.00364 corresponds to approximately
a 1C discharge. The solid diffusivity is incorporated in a dimensionless
parameter,

δd =
L2

s Damb

L2 Ds

[95]

which is the ratio of the diffusion time in the solid (L2
s /Ds) to the

diffusion time in the electrolyte (L2/Damb). This parameter, which is
typically typically larger than one, can vary by orders of magnitude
for different materials. Typically, solid diffusivities are unknown, and
this parameter needs to be fit to data.

The rate constant, which directly affects the exchange current den-
sity, is another value that is unknown in the system. The dimensionless
value of the exchange current density is scaled to the diffusive time. It
also depends on the average particle size, as this gives the surface area
to volume ratio. For 50 nm particles, using the ambipolar diffusivity
above, a dimensionless exchange current density of one corresponds
to approximately 1.38 A/m2. This is a relatively high exchange current
density. For the simulations below, a dimensionless exchange current
density of 0.01 is used. It is important to note that this value must be
fit to data, though.

Homogeneous particles.— Homogeneous particles can access all
filling fractions as they are discharged. Here we consider homoge-
neous particles using the regular solution model for the open circuit
potential and diffusivity inside the solid, as in Equation 76. A value of
� = 1kB T was used. Figures 14, 16, and 17 demonstrate the effect of
various discharge rates and solid diffusivities on the voltage profile.
Each figure contains three different voltage plots. The red dots on the
voltage curves indicate the filling fraction of the solid concentration
contours below. The contour plots are arranged in the same order as
the red dots, going from left to right, top to bottom. Figure 13 gives
the axes for the simulations. Each particle is modeled in 1D, with
the intercalation reaction at the top and diffusion into the bulk of the
particle. The xs axis is the depth into the particle.

The contour plots give the solid concentration profile of each vol-
ume of particles along the length of the electrode. The y-axis is the
depth in the solid particle, with the top (ỹ = 1) denoting the inter-
face between the particle and the electrolyte. The x-axis denotes the
depth into the electrode, with the left side representing the separator-
electrode interface and the right side representing the current collector.
It is important to note that in order for lithium to travel horizontally,
it must first diffuse through the solid, undergo a faradaic reaction to
leave the solid, diffuse through the electrolyte, then intercalate into
another particle and diffuse. Therefore sharp concentration gradients
in the x-direction are stable, especially for the case of non-monotonic
voltage profiles, as is seen in phase separating materials.
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Figure 14. Effect of current on homogeneous particles. This figure demon-
strates the effect of different discharge rates on the voltage profile. The non-
dimensional currents correspond to roughly C/3, 3C, and 15C. The solid dif-
fusion is fast, with δd = 1.

Figure 14 demonstrates the effect of various discharge rates on the
voltage. At Ĩ = 0.001 (C/3), the discharge is slow and the solid in
the electrode fills homogeneously throughout. As the discharge rate is
increased, increased overpotential follows. Furthermore, gradients in
solid concentration down the length of the electrode begin to emerge.
Concentration gradients within the solid are not present because of
the high solid diffusivity (δd = 1, indicating the solid and electrolyte
diffusive time scales are the same).

As the current is increased, gradients in solid concentration across
the electrode begin to become prevalent. At the same time, transport
limitations in the electrolyte lead to a capacity limitation, as the elec-
trolyte is incapable of delivering lithium quickly enough deeper into
the electrode. Figure 15 demonstrates the electrolyte depletion leading
to the concentration polarization in the 15C discharge curve. While
the voltages appear to stop, these are actually points where it drops
off sharply. Tighter tolerances, which can significantly increase the
computation time, are needed to get the voltage down to zero.

It is important to note that δd is not the ratio of diffusivities, but
the ratio of diffusive times. Therefore, as particle size increases, the
diffusive time scales as the square of the particle size. Solid diffusivi-
ties are typically much slower than in the electrolyte. To demonstrate
the effect of increased current with slower solid diffusion, Figure 16
demonstrates the same discharge rates as the previous figure, except
the solid diffusive time scale has been increased to 100 times the
electrolyte diffusive time scale.
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Figure 15. Depletion of the electrolyte at higher current. This figure shows
the depletion of the electrolyte accompanying Figure 14 for the 15C discharge.
The left figure shows the solid concentration while the right figure demonstrates
the electrolyte concentration profile in the separator and electrode.

For decreased solid diffusivity, concentration gradients in the depth
direction of the particles are more prevalent. At low current (i.e. slow
discharge), the gradients in the electrode and particles are minimal. As
the current is increased, gradients in the particles begin to emerge. At
the fastest discharge rate, these solid concentration gradients become
very large. Finite volume effects at the surface of the particles increase
the overpotential substantially, producing a sharp voltage drop-off
and low utilization. This effect is caused by the slow solid diffusion
only. Despite plenty of lithium being available in the electrolyte, high
surface concentrations block available sites for intercalation.

To show the effect of solid diffusion alone, Figure 17 demonstrates
the effect of decreasing solid diffusivity at a constant discharge rate.
When the diffusive time scales of the solid and electrolyte are com-
parable, each particle fills homogeneously. There are small variations
along the length of the electrode, but these do not affect the utilization,
as almost 100% of the electrode is utilized.

As the solid diffusivity is decreased, and the diffusive time scale
approaches 50 times the electrolyte diffusive time scale, we see over
a 10% drop in capacity. Concentration gradients in the solid particles
begin to emerge. As the solid diffusivity is further decreased, and the
solid diffusive time scale approaches 100 times the electrolyte diffu-
sive time scale, the solid concentration gradients become quite large,
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Figure 16. Effect of current on homogeneous particles with slower solid

diffusion. This figure demonstrates the effect of different discharge rates on the
voltage profile. The non-dimensional currents correspond to roughly C/3, 3C,
and 15C. The solid diffusion is slower than the electrolyte diffusion (δd = 100).

leading to a 50% drop in capacity. While these changes in δd seem
significant, they represent approximately a two order of magnitude
change in diffusivity, and a one order of magnitude change in particle
size.

Phase separating particles.— For the case of phase separating ma-
terials, the equilibrium homogeneous voltage curve is non-monotonic.
This is demonstrated in Figure 12, for regular solution parameters
greater than 2kB T . For these materials, the free energy curve has two
local minima. When the second derivative of the free energy with re-
spect to filling fraction changes sign (positive to negative), the system
is unstable for infinitesimal perturbations, resulting in phase sepa-
ration. A tie line represents the free energy of the system, and the
proportion of the two phases changes as the system fills.

Modeling phase separating materials requires the use of the Cahn-
Hilliard free energy functional as given in Equation (78), and the
Cahn-Hilliard diffusional chemical potential, given in Equation (79).
When we insert the chemical potential into the modified Butler-Volmer
Equation, we obtain a forced Allen-Cahn type equation. Here, we
present the first solution of multiple phase separating particles in a
porous electrode.

For phase separating particles, values of � = 4kB T and
κ̃ = 0.001 were used along with a regular solution model to model the
homogeneous chemical potential, µ. The same exchange current as
above was used. The figures are similar to those of the homogeneous
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Figure 17. Effect of solid diffusivity on homogeneous particles. This figure
demonstrates the effect of decreasing solid diffusivity on the voltage profile.
Each of these simulations was run at a dimensionless exchange current density
of 0.01 and a dimensionless current of 0.01.

plots, but instead of the depth direction, we now plot along the surface.
Figure 18 depicts the axes plotted. This assumes that the diffusion into
the particle is fast, and that the process is essentially surface reaction
limited. This is a reasonable approximation for LiFePO4.12 Figure 19
demonstrates slow discharge (approx. C/30).

Initially, the discrete filling of the electrode suppresses phase sep-
aration inside the particles. Towards of the end of the discharge, de-
creased electrolyte diffusion (from longer path length) allow for par-

x/L

y
s
/L

y,s

Electrolyte diffusion

Figure 18. Plot axes for reaction-limited phase separating particles. This
figure shows how the results are plotted below for porous electrodes with
reaction-limited phase separating nanoparticles. The y-axis of the contour
plots represent the length along the surface of the particle, since diffusion is
assumed to be fast in the depth direction. The x-axis represents the depth in
the electrode.

Figure 19. Phase separating particles slowly discharged. This figure shows
slow discharge (approx. C/30) of phase separating particles. Adequate elec-
trolyte diffusion and discrete filling don’t allow time for the particles to phase
separate early on. At the end of the discharge, sufficient time allows the parti-
cles to phase separate.

ticles to phase separate. Another important feature of the simulation
is the voltage spikes toward the end of the simulation. These voltage
spikes, which are on the order of the thermal voltage, are an artifact
of the discrete nature of the model. Towards the end of the simulation,
only a few particles remain to fill, therefore the voltage is dominated by
effectively the single particle response. Dreyer et al. demonstrated this
previously for phase separating particles filling homogeneously.10,11

The kinetics of phase separating particles can also be heavily in-
fluenced by stress effects, as demonstrated recently by Cogswell and
Bazant.13 Including stress involves the addition of energy terms in the
free energy model. With stress included, the full form of the bulk free
energy functional is

G[c̃(x)] =
∫

V

[

ρs f (c̃) +
1

2
κ (∇ c̃)2 +

1

2
Ci jklεi j εkl − σi j εi j

]

dV,

[96]

where the additional terms represent the elastic strain energy and the
homogeneous component of the total strain, respectively. (Here, we
neglect the surface term, which mainly affects nucleation of phase
separation via surface wetting.12) The effects of coherency strain on
phase separation can be approximated by a volume averaged stress
term100,127,128 The homogeneous component of the total strain is
then

1

2
Ci jklεi j εkl ≈

1

2
B (c̃ − X )2 , [97]

where X is the volume averaged concentration. This approximation
limits local fluctuations and promotes homogeneous filling depending
on the value of the constant B (which generally depends on orienta-
tion13). Including this term the chemical potential we obtain

µ = µ − ∇ ·
(

κ

ρs

∇ c̃

)

+
B

ρs

(c̃ − X ) . [98]
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Figure 20. Phase separating particles including coherent stress effects

slowly discharged. This figure shows slowly discharge (approx. C/30) phase
separating particles. The inclusion of the coherent stress effects suppresses
phase separation inside the particles. This figure is the same as Figure 19, with
an additional coherent stress term.

As the difference between the local and average global particle con-
centration increases, the overpotential required to drive the interca-
lation reaction increases. This promotes homogeneous filling of the
particles. Figure 20 demonstrates how this additional term suppresses
phase separation. However, the discrete filling still produces the volt-
age plateau and spikes in voltage.

While these spikes appear to be large, they are actually on the order
of the thermal voltage or smaller. At typical voltage scales (2.0V-
3.5V) these spikes are not seen, resulting in a flat voltage profile
as seen in experimental data for LiFePO4. This demonstrates that a
phase separating material’s flat voltage profile can be modeled without
modeling phase transformation itself. The voltage spikes depend on
the value of the Damköhler number, or ratio of the diffusion time
across the porous electrode to the typical reaction time to fill an active
particle.

Figure 21 shows a faster (3C) discharge of the phase separating
particles. The voltage spikes are suppressed and the voltage curve
resembles “solid solution” behavior. There are three small voltages
fluctuations present in the simulation which are caused by the discrete
filling effect. However, instead of individual particles filling, now
larger clusters of particles fill to alleviate the current (i.e. the number of
active particles, or particles undergoing intercalation, has increased).
To explain this, consider the equivalent circuit for a porous electrode
in Figure 22.

The particles are represented by equivalent circuits. Each particle
(which could also be considered to be a cluster of particles with similar
properties) has a charge transfer resistance, Rct , and capacitance C p .
These values can be non-linear, and vary depending on the particle
filling fraction and/or local potential. For each particle or cluster of
particles, there is a charging time, tc, which scales as

tc ∼ Rct C p. [99]

Figure 21. Effect of current on phase separating particles. When dis-
charged at a higher C-rate (in this example, 3C), the size of the discrete
particle filling is larger, leading to more particles filling simultaneously and a
voltage curve that resembles solid solution behavior.

For a given discharge rate at constant current, particles in the electrode
must alleviate a given amount of lithium per time in the electrode. The
number of active particles scales as

nap ∼ tc Ĩ . [100]

As the discharge rate is increased, the number of active particles in-
creases until it spans the electrode, resulting in the electrode filling
homogeneously. For fast kinetics or slow discharge rates, the num-
ber of active particles is small, which produces the discrete filling
effect. For the non-monotonic OCP of homogeneous phase separating

Figure 22. Equivalent circuit model for a porous electrode. This equivalent
circuit represents a typical porous electrode in cases without significant elec-
trolyte depletion, where the pore phase maintains nearly uniform conductivity.
Resistors represent the contact, transport, and charge transfer resistances, and
the capacitance of the particles is represented by a capacitor. All elements are
not necessarily linear.
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particles, the voltage plateau has three filling fractions that can ex-
ist in equilibrium: the left miscibility gap filling fraction, half filling
fraction, and right miscibility gap filling fraction. As the particles fill,
if the kinetics are sufficiently fast, then other particles close to the ac-
tive particle will empty to reach the equilibrium voltage (the plateau
voltage). This increase in voltage for each particle as it deviates from
the voltage at the spinodal concentration leads to an increase in cell
voltage, producing the voltage spikes.

For slower kinetics, this effect is suppressed by two mechanisms.
First, the charge transfer resistance is larger, leading to higher charging
times and subsequently a larger number of active particles. Also,
slower kinetics hinders the ability of particles to easily insert/remove
lithium, which prevents the particles from emptying and increasing
the voltage, leading to the spikes.

Summary

In this paper, we have generalized porous electrode theory using
principles of non-equilibrium thermodynamics. A unique feature is
the use of the variational formulation of reaction kinetics,14,15 which
allows the use of phase field models to describe macroscopic phase
transformations in porous electrodes for the first time. The thermo-
dynamic consistency of all aspects of the model is crucial. Unlike
existing battery simulation models, the open circuit voltage, reaction
rate, and solid transport properties are not left free to be indepen-
dently fit to experimental data. Instead, these properties are all linked
consistently to the electrochemical potentials of ions and electrons in
the different components of the porous electrode. Moreover, emergent
properties of a phase-separating porous electrode, such as its voltage
plateau at low current, are not fitted to empirical functional forms,
but rather follow from the microscopic physics of the material. This
allows the model to capture stochastic, discrete phase transforma-
tion events, which are beyond the reach of traditional diffusion-based
porous electrode theory.

In a companion paper,129 we will apply the model to predict the
electrochemical behavior of composite, porous graphite anodes130 and
LFP cathodes,10 each of which have multiple stable phases. Complex
nonlinear phenomena, such as narrow reaction fronts, mosaic insta-
bilities, zero current voltage gap, and voltage fluctuations, naturally
follow from the simple physics contained in the model. The model is
able to fit experimental data for phase transformations in porous elec-
trodes under very different conditions, limited either by electrolyte
diffusion130 or by reaction kinetics.10

This work was supported by the National Science Foundation
under Contracts DMS-0842504 and DMS-0948071 (H. Warchall) and
by a seed grant from the MIT Energy Initiative.

List of Symbols Used

NOTE: unless explicitly noted, all quantities with a tilde denote
dimensionless quantities. Energies are scaled by the thermal energy,
kB T , and potentials are scaled by the thermal voltage, kB T/e

Symbols Used

a activity (dimensionless)
ap pore area per volume [1/m]
A area [m2]
Acell area of unit cell (CST derivation) [m2]
Asep area of separator [m2]
B volume averaged elastic strain energy [J/m3]
c number concentration [1/m3]
c̃ dimensionless concentration
c volume averaged number concentration [1/m3]
cmax maximum number concentration (solubility limit) [1/m3]
C p capacitance [C/V]
Ci jkl elastic stiffness tensor [J/m3]
d dimensionality

D diffusivity [m2/s]
Damb ambipolar diffusivity [m2/s]
Dchem chemical diffusivity [m2/s]
Do tracer diffusivity [m2/s]
Dp diffusivity inside a pore [m2/s]

D effective diffusivity [m2/s]
e elementary charge [C]
ei coordinate vector
EO reference energy of oxidant [J]
ER reference energy of reductant [J]
E‡ reference energy of transition state [J]
f homogeneous free energy per volume [J/m3]
F number flux [1/m2s]
g free energy per lattice site [J]
G total free energy [J]
i current density [C/m2s]
io exchange current density [C/m2s]
I total current [C/s]
jin reaction flux [1/m2s]
ko rate constant [1/s]
ko modified rate constant [1/s]
kB Boltzmann’s constant [J/K]
L characteristic length [m]
L p characteristic pore length
M mobility [m2/Js]
Mi chemical symbol of species i
n number electrons transferred
nap number of active particles
N number species flux [1/m2s]
PL loading percent of active material by volume
q species charge number
r radial direction [m]
R reaction rate [1/m3s]
Rct charge transfer resistance
S1 stoichiometric sum of reactants
S2 stoichiometric sum of products
si stoichiometric coefficients
t time [s]
tc charging time [s]
td characteristic diffusion time [s]
tp percolation exponent
t± transference number of positive/negative species
T temperature [K]
V volume [m3]
x spatial direction [m]
X average dimensionless concentration
zi charge number of species i

Greek Symbols

α transfer coefficient
β ratio of solid:electrolyte lithium capacity
δd ratio of characteristic solid:electrolyte diffusive times
ǫ porosity (pore volume per total volume)
εi j strain
εi j homogeneous component of elastic strain
η overpotential [V]
η dimensionless overpotential
γ activity coefficient [m3]
γ‡ activity coefficient of transition state [m3]
κ gradient energy [J/m]
κ̃ dimensionless gradient energy
µ chemical potential [J]
µ̃ dimensionless chemical potential
µex excess chemical potential [J]
µ homogeneous chemical potential [J]
µo reference chemical potential [J]
ν attempt frequency [1/s]
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� regular solution interaction parameter [J]
φ electrolyte potential [V]
φ̃ dimensionless potential
� volume fraction
ρs site density [1/m3]
σ conductivity [S/m]
σ effective conductivity [S/m]
σd diffusive mean conductivity [m2/s]
σi j applied external stress tensor [N/m2]
τ time between transitions [s]
τp tortuosity (pore length per total length)
τo barrier-less transition time [s]

Subscripts

+ positive species

− negative species

B Bruggeman model

c critical (percolation model)

eq equilibrium

i species i

O oxidant

p pore phase

perc percolation model

M metal/electron conducting phase

max maximum

min minimum

R reductant

s solid (intercalation) phase

sep separator

Superscripts

B Bruggeman model
H S Hashin-Shtrikman model
perc Percolation model
Wiener Wiener model
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