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Nonequilibrium transitions in complex networks: A model of social interaction

Konstantin Klemm,* Victor M. Eguiluz,” Raul Toral,” and Maxi San Miguel®
Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), E07122 Palma de Mallorca, Spain
(Received 1 November 2002; published 26 February 2003)

We analyze the nonequilibrium order-disorder transition of Axelrod’s model of social interaction in several
complex networks. In a small-world network, we find a transition between an ordered homogeneous state and
a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network,
the network disorder favoring ordered configurations. In random scale-free networks the transition is only
observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered
configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in
structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.

DOI: 10.1103/PhysRevE.67.026120

I. INTRODUCTION

Lattice models are a powerful basic instrument in the
study of phase transitions in equilibrium statistical mechan-
ics, as well as in nonequilibrium systems [1]. Traditionally,
equilibrium phase transitions have been studied in regular
lattices, with the critical temperature being a nonuniversal
quantity that depends on the particular lattice under consid-
eration, while critical exponents and some amplitude ratios
are universal quantities depending only on spatial dimension
and some symmetries of the order parameter. The detailed
structure of the regular network connections is, in most
cases, irrelevant in the sense of the renormalization group.
However, recent research in the structure and topology of
complex networks [2,3] has shown that social interactions
and, more generally, biological and technological networks,
are far from being regular as well as being also far from a
random network or from a mean-field network linking all to
all. This has triggered the study of standard models of statis-
tical mechanics in these complex networks. In particular, re-
cent studies of the Ising model in the so-called small world
[4] and the scale-free [5] networks have shown that the be-
havior of the model differs from that observed in a regular
network.

The statistical properties of real-world social networks
vary strongly. The degree distribution can be single-scale,
broad-scale or scale-free [6,7]. See also three recent studies
on networks of individual electronic mail communication
[8—10]. Due to the lack of a single model encompassing the
topological features of social networks, we consider a few
established network models aiming to unveil the effect of
different aspects of the topology.

A small-world network [4] is generated by rewiring with a
probability p the links of a regular lattice by long-distance
random links. The presence of a small fraction of “‘short
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cuts’ connecting otherwise distant points, drastically reduces
the average shortest distance between any pair of nodes in
network, keeping the clustering high. The small-world net-
works generated by rewiring links have degree distributions
with exponential tails. In contrast, scale-free networks [5] are
characterized by a fat-tailed (power law) degree distribution.
They are usually modelled by growing networks and prefer-
ential attachment of links.

The Ising model in small-world topologies shows a
change of behavior from the regular case to the mean-field
characteristics. In Ref. [11] it is shown analytically that for a
small world lattice, obtained from rewiring with probability
p the links of a (one-dimensional) 1D ring lattice with 2k
nearest neighbors interactions, the crossover temperature to
the mean-field critical behavior varies for p<1 as T,,(p) >
—k(k+1)/In(p), whereas the critical temperature scales as
T.(p)>—2k/In(p), so that a ferromagnetic ordered phase ex-
ists for any finite value of p. The crossover to mean-field
behavior in small-world ring lattices has been further dis-
cussed in Refs. [12,13], whereas numerical results in 2D and
3D lattices have been reported in Ref. [14]. Interestingly, if
directed links are considered, not only the critical tempera-
ture changes but the nature of the transition also switches
from second order to first order [15].

A much different behavior is observed in scale-free net-
works. This can be related to the influence of the presence of
so-called hubs, i.e., units whose degree is much larger than
average. This is well illustrated by the behavior of the Ising
model in scale-free networks with degree distribution P (k)
k™7, y>1. The results of Refs. [16,17] show that equilib-
rium systems exhibit a phase diagram that is qualitatively
different from the mean-field case. In particular, the Ising
model in a random scale-free networks shows an infinite
critical temperature in the thermodynamic limit of an infinite
number of nodes. In fact, an analytical theory has been de-
veloped connecting the exponent of the degree distribution
and the critical behavior of the Ising model [18-20].

In this paper, we address the question of the role played
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equilibrium, Ising-type models in these complex networks.
Simple nonequilibrium models closely related to percolation
have been already considered [21-23]. Here, and given the
social motivation and relevance of these complex networks,
we have chosen to analyze the model proposed by Axelrod
for the dissemination of culture [24]. The spreading process
in this model cannot be reduced to a percolation process. The
model rather describes a competition between dominance
and spatial coexistence of different states in a nonequilibrium
dynamics of coupled Potts-type models. The model was
originally considered by Axelrod in a square lattice. The sta-
tistical mechanics analysis of the model in this regular two-
dimensional network identifies a nonequilibrium order-
disorder phase transition [25]. However, it is interesting to
notice that, in his original paper, Axelrod already discussed
the relevance of the topology, speculating that “with random
long-distance interactions, the heterogeneity sustained by lo-
cal interaction cannot be sustained.” In particular, we con-
sider here this question.

In the following section, we introduce the original model
proposed in Ref. [24] and summarize briefly the main results
in regular 2D networks. The model in small-world and scale-
free networks is presented in Secs. III and IV, respectively.
The nonequilibrium transition is shown to disappear in the
thermodynamic limit of a scale-free network. We then con-
sider in Sec. V, a structured scale-free network [26,27] which
shares characteristics of small-world and scale-free net-
works. A nonequilibrium transition is shown to persist for
large systems in this network. Our conclusions are summa-
rized in Sec. VL

II. THE MODEL

The model we study is defined [24] by considering
N agents as the sites of a network. The state of agent i
is a vector of F components (cultural features)
(071,002, ... ,0;p). Each o, can take any of the ¢ integer
values (cultural traits) 1,...,q, initially assigned indepen-
dently and with equal probability 1/q. The time-discrete dy-
namics is defined as iterating the following steps:

(1) Select at random a pair of sites of the network con-
nected by a bond (i,j).

(2) Calculate the overlap (number of shared features)
i) =2f=18,, 0,

(3) If 0<(i,j)<F, the bond is said to be active and sites
i and j interact with probability /(i,j)/F. In case of interac-
tion, choose g randomly such that o;,#0;, and set oy,
=0, .

Iillgany finite network the dynamics settles into an absorb-
ing state, characterized by the absence of active bonds. Ob-
viously all the ¢ completely homogeneous configurations
are absorbing. Homogeneous means here that all the sites
have the same value of the cultural trait for each cultural
feature. Inhomogeneous states consisting of two or more ho-
mogeneous domains interconnected by bonds with zero over-
lap are absorbing as well. A domain is a set of contiguous
sites with identical cultural traits. We define an order param-
eter in this system [25,28] as the relative size of the largest
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FIG. 1. The order parameter S,,,,/N as a function of ¢ in regu-
lar lattices with N = 1007 nodes for F=10. For each value of g the
outcome of 32 independent realizations is shown. The transition
occurs for g=~55 (see Fig. 2).

homogeneous domain S,,,,/N, being N the number of sites
in the network.

Previous results have been obtained in square lattices with
nearest neighbor interaction. A variation of the model with
initial distribution of traits according to a Poisson rather than
a uniform distribution shows a nonequilibrium order-disorder
phase transition where the number of traits ¢ plays the role of
a control parameter [25]. The system reaches ordered absorb-
ing states for ¢<g.[S,,.x=O(N)] and disordered states for
q>q.(S,,..<N). The same type of phase transition occurs
in the original model with a uniform initial distribution of
traits [28].

When comparing the effect of complex networks in this
phase transition with the equilibrium Ising transition one
should notice several conceptual differences. First, this is a
sort of zero-temperature transition in which ordered or dis-
ordered states exists with no reference to thermal fluctua-
tions. In fact, the effect of small noise in this system is es-
sential, revealing the presence of metastable states and
changing the phase diagram in a nontrivial way [28]. A sec-
ond related point is that the control parameter of the transi-
tion ¢, is here not a collective property of the system as
temperature, but rather an ingredient of the definition of the
system itself. In a way, the transition occurs going from one
system to another as ¢ is changed. Finally, and in reference
to critical properties and exponents, we note that the transi-
tion (except for F=2) is of first-order type. In Fig. 1, we
plot the final values for the order parameter, obtained for 32
different realizations of the dynamics. Notice that for ¢
<50 all the systems end up in a homogenous state that ba-
sically fills up the entire lattice (S,,,,/N~1), whereas for
g >60 the maximum homogenous regions obtained are very
small. This is the order-disorder phase transition discussed
before. For 50<g <60, we observe bistability in the sense
that the system settles around any of two mean values for the
order parameter. This bistability, which is usually associated
with first-order phase transitions, is clearly made explicit in
the corresponding histogram shown in Fig. 2 where the two
preferred values appear as maxima of the histogram. The
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FIG. 2. Distribution of the order parameter at g=55, F=101in a
square lattice of size N=100%. The distribution is based on 100
independent realizations.

transition point corresponds to g =g, for which these two
values are equally probable.

III. SMALL-WORLD NETWORK

Social networks are far from being regular or completely
random. However, they also share some features with them.
On the one hand, social networks are known to be small [30],
i.e., any pair of nodes in the network can be connected fol-
lowing a number of links much smaller than the size of the
network. This is also observed in random networks, where
the average shortest distance between pair of nodes (the so-
called path length ¢) increases logarithmically with the size
of the network € ~1In N, while in regular lattice in d dimen-
sions £~N" On the other hand, social networks are also
known to form cliques [31], i.e., groups of nodes highly
connected between them. “Cliquishness” can be character-
ized by the so-called clustering coefficient C, which is de-
fined as the relative number of closed triangles in the net-
work. Regular lattices can show large clustering, while in
random networks C~N~!. High clustering and short path
length define a small-world network.

The first model encompassing the small-world effect was
introduced in Ref. [4] proposing an algorithm that interpo-
lates between a random and a regular lattice. First one gen-
erates a two-dimensional regular lattice with bonds between
nearest neighbors and open boundary conditions. Then for
each bond (ij), with probability p detach the bond from
node j and attach it to a node [ instead. Node [ is chosen at
random with the restriction that duplicate and self-
connections are excluded. The parameter p interpolates be-
tween the original regular lattice (p=0, no rewiring) and a
network very similar to a random graph (p=1). Thus, in the
limiting case p=0, we have a network with high clustering
but also large path length; in the limit p=1, we have net-
works with small path length but also small clustering. For
intermediate values of p the algorithm generates networks
with high clustering and small path length.

We now study the behavior of Axelrod’s model in depen-
dence of p. A small-world network is used from the begin-
ning of each simulation run. Figure 3 shows the dependence
of the order parameter on ¢, for three different values of p.

PHYSICAL REVIEW E 67, 026120 (2003)
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150 200

FIG. 3. The average order parameter (S,,,,)/N as a function of
q for three different values of the small-world parameter p. System
sizes are N=5007 (squares) and N =1000? (diamonds); number of
features F = 10. Each plotted value is an average over 100 runs with
independent rewiring (p>0) and independent initial conditions.

For any fixed value p>0, we find a nonequilibrium phase
transition which becomes sharp and well defined as the sys-
tem size increases. There is a critical value g of the control
parameter which separates the ordered and the disordered
state, just as in regular lattices. However, g. increases with
the amount of spatial disorder. This is clearly shown in the
(p.q)-phase diagram, Fig. 4. The filled area above the
[p.q.(p)] curve represents the disordered states, the area
below the curve represents the ordered states. Consequently,
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FIG. 4. Phase diagram for the Axelrod model in a small-world
network. The curve separates parameter values (p,q) which pro-
duce a disordered state (shaded area) from those with ordered out-
come (white area). For a given p the plotted value ¢, is the one for
which the value of the order parameter is closest to the, somewhat
arbitrary but small, value 0.1 for system size N=5007 and F= 10.
Inset: After subtraction of a bias ¢ .(p=0)=57, ¢g.(p) follows a
power law % p®3 (dashed line).
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FIG. 5. The average order parameter (S,,,.)/N in random scale-
free networks for F'=10. Averages are taken over 1000 independent
realizations. Different curves are for different system sizes: 1000
(circles), 2000 (squares), 5000 (diamonds), and 10 000 (triangles).

for values g<<q.(p) the outcome of the dynamics is always
complete order, whereas for ¢>¢.(p) only disordered frozen
states are encountered. The density p of rewired bonds deter-
mines the nature of these frozen states, but for g<q.(p
=1) the system orders by increasing p, that is, the number of
long-distance links. We find a dependence ¢.(p)—q.(p
=0)ocp® with a«=0.4 obtained from a best fit. This result is
displayed in the inset of Fig. 4. Therefore, we find the same
qualitative result as for the equilibrium Ising model, in the
sense that the small-world connectivity favors ordered states.

The robustness of the phase diagram is shown by per-
forming a different dynamical scenario. First, a run of the
dynamics in a regular lattice is performed. Only after an
absorbing configuration has been reached the lattice is re-
wired according to the above rewiring procedure with the
parameter p. After the rewiring, the configuration is not nec-
essarily frozen because the rewiring can introduce active
bonds connecting compatible cultures that have been discon-
nected before. Starting the dynamics again, the system may
relax to a different absorbing configuration, which, in gen-
eral, is more ordered than the configuration reached before
the rewiring. After this second phase of relaxation, the order
parameter is measured in the absorbing state. We find that the
results of this alternative scenario (see Fig. 4) are in good
agreement with the ones of the above original scenario, start-
ing with a small-world network in the initial condition.

IV. SCALE-FREE NETWORKS

One important ingredient missing in the small-world net-
works considered so far is that the degree distribution does
not show a fat tail. Although it is not clear whether social
networks present a power law distribution of degree, the evi-
dence indicates that they are ubiquitous in biological and
artificial networks [6]. Scale-free networks are characterized
by a power law tail in the degree distribution of the form
P(k)xk™ 7, where the exponent vy lies in the range between
2 and 3. Two ingredients have been shown to be sufficient to
generate such feature: growing number of nodes and prefer-
ential attachment of links.

PHYSICAL REVIEW E 67, 026120 (2003)
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FIG. 6. Rescaled plot of the data shown in Fig. 5 for different
system sizes.

The well established Barabasi-Albert model is based in
these two mechanisms [5]. At each time step a new node is
added to the network and attaches m links to an existing node
with degree k with probability IT(k)ok. This algorithm gen-
erates networks whose degree distribution follows P(k)
=2m?k 3, the path length increases as £~InN, and the
clustering decreases as C ~(InN)>/N. We have studied the
dynamics of Axelrod’s model for the diffusion of culture in
scale-free networks following this algorithm. In Fig. 5, we
show our results for the order parameter for different system
sizes. For a given size N, we find a transition at g.(N). We
can define the critical value ¢g.(N) as the value where the
standard deviation of the distribution of §,,,,/N reaches the
maximum value. We find that ¢.(N)~N%3. Using this re-
sult, we observe data collapse with a rescaling gN~#, see
Fig. 6. The best result is obtained for S=0.39 in excellent
agreement with the scaling obtained previously. This indi-
cates that in the thermodynamic limit the transition disap-
pears and the ordered monocultural state establishes in the
system. This behavior is similar to the Ising model in regular
and scale-free networks: While in a two-dimensional lattice

FIG. 7. Order parameter in random scale-free networks of size
N=5000 with F=10. For each value of ¢ the outcomes of 100
independent realizations and the mean value (solid curve) are
shown.
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FIG. 8. The average order parameter (S,,,.)/N as a function of
g for F=10 in structured scale-free networks. The networks con-
tained N= 1000 (circles), N= 2000 (squares), N= 5000 (diamonds),
and N=10000 (triangles) nodes with F=10 features. Each data
point is an average over 32 independent realizations.

the Ising model displays a phase transition at a finite critical
temperature, in random scale-free networks an effective tran-
sition is observed for finite systems where the effective criti-
cal temperature diverges logarithmically with system size.
This can be explained by the role of the hubs (nodes with a
large number of links) in these networks. They are highly
instrumental in establishing ferromagnetic order in the sys-
tem. The same prominent role is played by the hubs in the
case of the dissemination of culture. The hubs help the
spreading of cultural traits as can be inferred from the ob-
served dependence with system size. Note, however, that the
effective transition of Axelrod’s model for a finite system in
a scale-free network displays the characteristics of a first-
order transition: We show in Fig. 7 the same type of behavior
as observed in Fig. 1 for the regular network. For a range of
values of g around ¢, a realization ends either in an ordered
monocultural state or in a disordered frozen configuration,
the two preferred values of the order parameter.

V. STRUCTURED SCALE-FREE NETWORKS

The scale-free networks considered in the preceding sec-
tion, underestimate the clustering observed in real networks
[32]. A question that merits being addressed is if scale-free
networks with high clustering present an absence of the
phase transition in the thermodynamic limit. In order to re-
produce a high clustering along with a scale-free distribution
of the degree, we employ the networks generated by the
algorithm proposed in Ref. [26]: Again at each time step we
add a new node to the network. The node is attached to the m
active nodes in the network. The new node becomes active
and one of the m+ 1 active nodes is deactivated with prob-
ability IT(k)ok~!. Starting from m fully interconnected ac-
tive nodes, this algorithm generates scale-free networks with
a clustering coefficient C~5/6 independent of system size.
In the following, we call these networks structured scale-free
networks because of the large clustering coefficient, the
strong negative correlation between degrees of connected
nodes [23], and the modular structure [32]. These properties
are not found in the random scale-free networks of the pre-
ceding section.

PHYSICAL REVIEW E 67, 026120 (2003)

FIG. 9. Relation between the size of the largest cultural cluster
and the largest degree in the network for ¢g=20 (triangles), ¢
=100 (squares), and ¢=500 (circles). Each data point is the out-
come of one realization run in a structured scale-free network of
size N=1000. Solid lines are running averages over 10 adjacent
data points for ¢ =20,100,500 (top to bottom). For each value of ¢,
100 independent networks and initial conditions were generated.

As shown in Fig. 8, in the structured scale-free networks
the model displays a behavior different to what we observed
in random scale-free networks in the preceding section. For
g =10 the system settles into an ordered state. For increasing
values of ¢, the order parameter undergoes a decay whose
slope grows with system size. This suggests a phase transi-
tion at g~ 10, in contrast to the absence of a transition point
found for the randomly wired scale-free networks in the ther-
modynamic limit. As on large scales the structured scale-free
networks have one-dimensional topology [27] it seems natu-
ral that this transition at g.~F coincides with the behavior
of the model found in one-dimensional regular lattices [29].

At difference with the regular lattices, in the structured
scale-free networks for g>¢,. the order parameter does not
tend to zero. For the system sizes considered, the order pa-
rameter reaches a finite plateau value, indicating partial or-
dering of the system. Only for values ¢> ¢, the order param-
eter drops below the plateau value and tends to zero. This
behavior may be understood by relating the size S,,,, of the
largest cultural cluster with the largest degree k,,,, present in
the network, as shown in Fig. 9. In the intermediate range
50<g<<200, where the plateau of the order parameter is
observed, we find S,,,,~k,.. for almost all realizations.
This suggests that the largest hub, the node with the largest
degree, and its neighbors order such that they form the larg-
est cluster in the absorbing state. As ¢ is reduced and its
value approaches g. from above, the ordering goes beyond
the largest hub and an increasing part of the network forms
the largest cluster. On the other hand, for large values g
>200, the neighborhood of the largest hub does no longer
reach complete ordering and S,,,,<k,,...- The g value for
the onset of the decay of §,,,, below k,,,, is expected to be
dependent on system size: as Fig. 8 shows, for increasing
system size, the plateau in the order parameter extends to
larger values of ¢. With increasing system size, the value of
the plateau is expected to decrease as k,,,, /N=NP"1 with

026120-5
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B=(y—1)"!, where v is the exponent of the degree distri-
bution. These results suggest that in the limit N—o, the
dynamics of the social interaction model in structured net-
works experiences a transition similar to the one observed in
a one-dimensional lattice.

VI. CONCLUSIONS

We have found that the nonequilibrium transition between
order and disorder that exists in a regular d=2 network for
Axelrod’s model of cultural influence [24] is modified by
underlying complex networks with similar qualitative fea-
tures that an equilibrium thermal Ising-type transition. We
have shown that the transition pertains also in the presence
of random long-distance connections: with increasing den-
sity of long-distance connections in a small-world network,
the critical point g.(p) increases. Therefore, the small-world
connectivity favors cultural globalization as described by the
ordered state. The value of ¢, reaches a maximum for the
random network obtained with a p=1 probability of rewir-
ing in the small-world network construction. A transition

PHYSICAL REVIEW E 67, 026120 (2003)

from disorder to order is obtained increasing p for a fixed
value of the control parameter ¢<<qg.(p=1). We have also
found that, for a fixed finite system size, the scale-free con-
nectivity is more efficient than the limiting random connec-
tivity of the small-world network in promoting the ordered
state of cultural globalization. However, there is a system
size scaling in the transition observed for a free scale net-
work, so that the transition disappears in the thermodynamic
limit: In the presence of scale-free interactions the order state
prevails due to the presence of hubs. The consideration of
structured scale free-networks restores the order-disorder
transitions in spite of the hubs, but the value of the order
parameter for the disordered state reveals the existence of
ordered clusters.
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