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We consider an open (Brownian) classical harmonic oscillator in contact with a non-Markovian
thermal bath and described by the generalized Langevin equation. When the bath’s spectrum has
a finite upper cutoff frequency, the oscillator may have ergodic and nonergodic configurations. In
ergodic configurations (when exist, they correspond to lower oscillator frequencies) the oscillator
demonstrates conventional relaxation to thermal equilibrium with the bath. In nonergodic con-
figurations (which correspond to higher oscillator frequencies) the oscillator in general does not
thermalize, but relaxes to periodically correlated (cyclostationary) states whose statistics vary pe-
riodically in time. For a specific dissipation kernel in the Langevin equation, we evaluate explicitly
relevant relaxation functions, which describe the evolution of mean values and time correlations.
When the oscillator frequency is switched from a lower value to higher one, the oscillator may show
parametric ergodic to nonergodic transitions with equilibrium initial and cyclostationary final states.
These transitions are shown to resemble phase transitions of the second kind.

I. INTRODUCTION: TWO MECHANISMS OF NON-THERMALIZATION

Since thermodynamics is a very general theory, the cases when it does not apply in the ordinary way are intriguing.
A thermodynamic description assumes that a system, large or small, in contact with a macroscopic thermal bath at
temperature T will thermalize over the course of time, reaching a state of thermodynamic equilibrium characterized
by the same temperature T . While this scenario is the most common, there are certain types of open systems for
which thermalization does not occur. For a classical particle in contact with the thermal bath we are aware of two
mechanisms of relaxation which does not end up with thermal equilibrium. The first mechanism is due to the zero
integral friction [1–5], the second is related to the formation of a localized vibrational mode [6–18]. While this paper
concerns exclusively the latter, let us start with a brief outline of the former.
Consider a free Brownian particle of mass m described by the generalized Langevin equation [19]

v̇(t) = −
∫ t

0

K(t− τ) v(τ) dτ +
1

m
ξ(t), (1)

where v is the particle’s velocity, K(t) is the dissipation kernel, and ξ(t) is the zero-centered stationary random force,
connected to K(t) by the conventional fluctuation-dissipation relation. Assuming the random force does not correlate
with v(0), one finds from Eq. (1) that the normalized correlation function R(t) = 〈v(t)v(0)〉/〈v2(0)〉 satisfies the
homogeneous (and deterministic) equation

Ṙ(t) = −
∫ t

0

K(t− τ)R(τ) dτ (2)

with the initial condition R(0) = 1. In the Laplace domain the solution is

R̃(s) =

∫ ∞

0

e−stR(t) dt =
1

s+ K̃(s)
. (3)

Thermalization implies that the system eventually forgets initial conditions, so that R(t) vanishes at long times. On
the contrary, the condition of non-thermalization implies that R(t) does not vanish at long times, which leads to the
asymptotic condition on the dissipation kernel in the Laplace domain

lim
t→∞

R(t) = lim
s→0

s R̃(s) = lim
s→0

s

s+ K̃(s)
6= 0, (4)
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provided the limit exists. This condition is satisfied when the Laplace transform of the kernel has the asymptotic
form

K̃(s) ∼ sδ, δ ≥ 1, s → 0. (5)

In that case the integral of the kernel vanishes

γ =

∫ ∞

0

K(t) dt = K̃(s = 0) = 0. (6)

This may be called the condition of zero integral friction, because γ =
∫∞
0

K(t)dt is just the friction (dissipation)
coefficient in the expression for the damping force −γ p in the Markovian limit of the Langevin equation (1), v̇ =
−γ v +m−1ξ.
The lack of thermalization in the case γ = 0 is remarkable but appears to be a rather exotic phenomenon. One can

show that under condition (5) Brownian motion shows not only the lack of thermalization but also another anomalous
phenomenon, namely super-diffusion (which actually takes place for a broader condition δ > 0) [1–5].
At first glance it may appear that the condition of non-thermalization (5) is both sufficient and necessary. Actually

it is not necessary because the above discussion assumes, when the relation limt→∞ R(t) = lims→0 sR̃(s) is exploited,
that the correlation function R(t) possesses a well-defined long time limit. That is not necessarily the case in general:
It is easy to construct a dissipation kernel K(t) with reasonable properties (such as K(t) → 0 at long times) for which
Eq. (2) for R(t) has an oscillating solution and limt→∞ R(t) does not exists [20]. Can such mathematical possibility
be realized in any physical system?
One such system is well-known: it is the harmonic lattice with a light impurity atom. Such atom can be viewed

as a lattice defect which is known to generate a localized vibrational mode whose frequency (we shall denote it ω∗)
lies outside the spectrum of the unperturbed lattice [6–9]. The localized mode involves the impurity atom and a
few neighboring atoms of the lattice, the participation of other atoms is small and decreases exponentially with the
distance from the impurity. The formation of the localized mode can be attributed to destructive wave interference
and is analogous to localization of the electron wave function near the impurity in the otherwise ideal crystal, see [10]
for a pedagogical discussion. For a review of localized modes in anharmonic lattices (called breathers) see [11]. The
localized mode does not exchange energy with the bath; as a result the light impurity atom (the system) does not
reach thermal equilibrium with the lattice (the bath).
In earlier studies, localized vibrational modes and their unusual relaxation properties were studied by direct solving

the equations of motion of the lattice. Later the topic was addressed using the generalized Langevin equation (1),
which often offers a more compact, though less detailed, consideration [12–18]. Within that method, the condition of
non-thermalization due to localized modes does not imply conditions (5) and (6), yet it puts strong restrictions on the
properties of the bath and the system-bath coupling. As mentioned above, the frequency of the localized mode lies
outside the spectrum of the bath, which necessarily implies that the latter must have a finite upper cutoff frequency
ω0. That condition is satisfied neither for Markovian models with K(t) ∼ δ(t), nor for models with monotonically
(e.g., exponentially) decaying K(t).
Non-thermalization due to localized modes was demonstrated not only for a light isotope in the harmonic lattice, but

for a number of other models [12–16]. While the lattice-like structure of the bath is probably the necessary ingredient
(which guarantees that the bath spectrum has a finite upper bound ω0), the system of interest may be of different
nature. The earlier studies mostly concerned lattice models with mass and spring defects and their combinations.
More recently, non-thermalization of the Brownian oscillator (both linear and nonlinear) in the presence of localized
modes was demonstrated by Dhar and Wagh [16].
The Brownian oscillator in contact with a Markovian bath and described by the standard Markovian Langevin

or Fokker-Planck equations is an exemplary system, whose relaxation to thermal equilibrium can be analytically
described in full details. However, when the bath is not Markovian and has the frequency spectrum with an upper
cutoff ω0, the oscillator may thermalize or not thermalize depending on the values of the oscillator frequency ω and
parameters of the oscillator-bath coupling. In the model studied in Ref. [16], the oscillator thermalizes for ω ≤ ωc

and does not thermalize for ω > ωc, where ωc is a critical frequency of order of ω0. In configurations with ω > ωc

the oscillator evolves at long times into a non-equilibrium and non-stationary state in which the mean values and
correlation functions of dynamical variables oscillate with time with the localized normal mode frequency ω∗.
Stochastic processes with periodically varying statistics are called periodically correlated, or cyclostationary [22–25].

They are present in a great variety of physical, biological, meteorological, and technological processes, involving an
interplay of randomness and periodicity. While both ingredients are obviously present in the Brownian oscillator, the
emergence of cyclostationary states instead of stationary (equilibrium) states is rather unexpected from a thermody-
namics point of view. Cyclostationary stochastic processes are not stationary and are therefore manifestly nonergodic:
their ensemble and time averages cannot be equal since the the former are time periodic and the latter are constant.
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If the oscillator, due to the formation of a localized mode, does not thermalize, then it evolves in a cyclostationary
and hence nonergodic state.
Since the type of relaxation may depend on the oscillator frequency ω, we shall use the following nomenclature.

We will say that the oscillator with a given frequency is in an ergodic configuration if the oscillator relaxes to thermal
equilibrium. If the oscillator with a given frequency does not thermalize (with the exception of equilibrium initial
conditions) but evolves in a cyclostationary state, we shall say that the oscillator is in a nonergodic configuration.
Based on the results of [16] one would expect ergodic (resp. nonergodic) configurations to correspond to lower
(resp. higher) oscillator frequencies. We call a Brownian oscillator nonergodic if it has both ergodic and nonergodic
configurations, or only nonergodic ones. The oscillator with only ergodic configurations (which will hardly appear in
this text) may be referred as ergodic.
Note that, in general, the condition of thermalization is stronger than that of ergodicity and non-thermalization

does not necessarily imply nonergodicity. But for the nonergodic Brownian oscillator, this is indeed the case: If the
oscillator at given frequency fails to thermalize, then it will evolve to a non-stationary (cyclostationary) and therefore
nonergodic state.
The purpose of this paper is to evaluate explicitly the relaxation and correlation functions describing a nonergodic

Brownian oscillator. Compared to the work by Dhar and Wagh [16], where spectral properties of the bath are not
specified (except the part addressing a nonlinear oscillator), in this paper we shall focus on a case study of the
oscillator described by the generalized Langevin equation with a specific dissipation kernel K(t). We believe such a
study, though not generic, would be of interest since it may share many essential features and technicalities with a
variety of similar and extended models. With explicit expressions for relaxation and correlation functions at hands,
one can explore quantitatively a variety of nonergodic processes. As an application, we consider (in Sec. XIV) the
optical trap like setting when the oscillator frequency is instantaneously switched from a lower to higher value, bringing
the oscillator from an ergodic to nonergodic configuration. In that transition, the nonergodic oscillator may get and,
in contrast to its ergodic counterpart (whose energy eventually relaxes to kBT ), store forever an arbitrary amount of
energy. That property may be of interest for designing microscopic machines [35, 36].
We have given the paper a mostly linear structure, with only two Appendices. For the reader’s convenience,

Secs. VIII through X, which are fairly technical, conclude with brief summaries that suffice for comprehending the
following sections. The results of Secs. III and IV are generic and do not depend on a specific form of the dissipation
kernel K(t); in the rest of the paper the kernel K(t) is adopted in the form (9).

II. MODEL

We consider a classical Brownian particle of mass m and coordinate q, trapped in the harmonic potential V (q) =
−mω2 q2/2, and in contact with a single thermal bath with temperature T . The particle’s dynamics is governed by
the generalized Langevin equation [19]

q̈(t) = −ω2 q(t)−
∫ t

0

K(t− τ) q̇(τ) dτ +
1

m
ξ(t). (7)

The stationary fluctuating force (the noise) ξ(t) is zero-centered and related to the dissipation kernel K(t) via the
standard fluctuation-dissipation relation,

〈ξ(t)〉 = 0, 〈ξ(t) ξ(τ)〉 = mkB T K(|t− τ |). (8)

We shall assume that the kernel has a specific form,

K(t) =
µω2

0

4
[J0(ω0t) + J2(ω0t)] =

µω0

2

J1(ω0t)

t
, (9)

where µ and ω0 are arbitrary positive parameters, Jn(x) are Bessel functions of the first kind, and the second expression
is defined at t = 0 by continuity. The kernel (9) oscillates and decays at long times rather slowly as t−3/2. Otherwise,
it has all properties one expects from the dissipation kernel of the generalized Langevin equation: the function K(t)
given by (9) is even, has a maximum at t = 0, and vanishes at long times.
There are two reasons to pay a special attention to the kernel (9). First, it is one of the simplest kernels for which

the Langevin equation may have periodically correlated solutions. Indeed, the corresponding spectral density [21]

J(ω) = M ω

∫ ∞

0

K(t) cos(ωt) dt =
mω0

2
ω

√

1−
(

ω

ω0

)2

θ(ω0 − ω), (10)
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where θ(ω) is the step function, has the upper cutoff bound ω0. As was mentioned in Introduction, this is expected
to be the necessary condition of the localized mode formation and nonergodic configurations. The model with the
dissipation kernel decaying according to the power law, K(t) = K0t

−α, was considered earlier in Refs. [27, 28]. In
that case the oscillator is ergodic and thermalizes for any values of the oscillator frequency ω.
The second special feature of the kernel (9) is that it corresponds to a specific and familiar physical model, namely

Rubin’s model, where the thermal bath is the infinite harmonic chain of atoms of mass m0 and the system of interest
is an isotope atom of mass m [9, 19, 21]. The Langevin equation (7) describes the original Rubin’s model modified
by the presence of the external harmonic potential applied to the impurity atom. The parameter ω0 has the meaning
of the highest normal mode frequency of the infinite chain, ω0 = 2

√

k/m0, where k is the stiffness of the spring force
connecting atoms of the chain (and also the impurity atom). There are two versions of Rubin’s model. In the first
version the isotope of mass m is attached to the end of the semi-infinite chain of atoms of mass m0, see Fig. 3.1 in
Ref. [21]. In that case the parameter µ has the meaning of the mass ratio µ = m0/m. In the second version, the
isotope is embedded in the bulk of the infinite chain, i.e. attached to two semi-infinite chains. For that version µ
is the doubled mass ratio, µ = 2m0/m. The connection to Rubin’s model facilitates computer simulations, which
may be helpful for extended models (e.g., the oscillator is nonlinear, the oscillator frequency is subjected to a time
variation, etc.) when an analytical solution of the Langevin equation is not feasible.
For the given model, it will be shown that for µ < 2 the oscillator has both ergodic and nonergodic configurations.

Ergodic configurations correspond to lower frequencies

ω ≤ ωc, ωc =
√

1− µ/2ω0, (11)

while nonergodic configurations correspond to higher frequencies ω > ωc. On the other hand, for µ ≥ 2 the oscillator
is nonergodic and does not thermalize for any frequency ω. Our goal is to evaluate the relaxation and correlation
functions (defined in the next two sections) describing the oscillator’s dynamics for both ergodic and nonergodic
configurations.

III. SOLVING LANGEVIN EQUATION

The solution of the generalized Langevin equation (7) for the harmonic oscillator with an arbitrary kernel K(t) has
been addressed in several studies, see [26–29]. To make the paper self-contained we outline in this section the main
points.
Solving Eq. (7) with initial conditions q(0) = qi and v(0) = vi using the method of Laplace transform one finds for

the coordinate and velocity of the particle the following expressions:

q(t) = qi S(t) + viG(t) +
1

m
{G ∗ ξ}(t),

v(t) = −qi ω
2G(t) + viR(t) +

1

m
{R ∗ ξ}(t). (12)

Here the asterisk denotes the convolutions, e. g.

{G ∗ ξ}(t) =
∫ t

0

G(t− τ) ξ(τ) dτ, (13)

the relaxation functions G(t) is defined by its Laplace transform

G̃(s) =

∫ ∞

0

e−st G(t) dt =
1

s2 + sK̃(s) + ω2
, (14)

and the other two relaxation functions R(t) and S(t) are derived from G(t) as follows:

R(t) =
d

dt
G(t), S(t) = 1− ω2

∫ t

0

G(τ) dτ. (15)

As obvious from Eq. (12), the initial values of the relaxation functions are

G(0) = 0, R(0) = S(0) = 1. (16)

Note that G(t) has the dimension of time, while R(t) and S(t) are dimensionless.
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In the Laplace domain the relaxation functions are connected as

R̃(s) = s G̃(s), S̃(s) =
1

s
[1− ω2G̃(s)]. (17)

Using Eqs. (14) and (17) one can directly verify the validity of relations

s G̃(s) = S̃(s)− K̃(s) G̃(s), s R̃(s)− 1 = −ω2 G̃(s)− K̃(s) R̃(s). (18)

In the time domain they give expressions for derivatives of G and R:

Ġ(t) = S(t)− {K ∗G}(t), Ṙ(t) = −ω2G(t)− {K ∗R}(t). (19)

The derivative of S, according to Eq. (15), is

Ṡ(t) = −ω2G(t). (20)

As follows from Eq. (12), the relaxation to thermal equilibrium implies the asymptotic vanishing of the relaxation
functions

G(t), R(t), S(t) → 0, as t → ∞, (21)

which guarantees that the particle forgets the initial conditions at long times. One can show that the second moments
of q and v under conditions (21) relax to the equilibrium values. Indeed, by squaring solutions (12), averaging over
the initial parameters qi, vi, and assuming that

〈qi〉 = 〈vi〉 = 〈qi vi〉 = 0 (22)

one gets the following expressions for the second moments

〈q2(t)〉 = 〈q2i 〉S2(t) + 〈v2i 〉G2(t) +
1

m2
〈{G ∗ ξ}2(t)〉,

〈v2(t)〉 = 〈q2i 〉ω4 G2(t) + 〈v2i 〉R2(t) +
1

m2
〈{R ∗ ξ}2(t)〉,

〈q(t) v(t)〉 = −〈q2i 〉ω2G(t)S(t) + 〈v2i 〉G(t)R(t) +
1

m2
〈{G ∗ ξ} {R ∗ ξ}〉. (23)

Here the average squares of the convolutions can be readily evaluated using the fluctuation-dissipation relation (8)
and also relations (19) and (20),

〈{G ∗ ξ}2(t)〉 =
mkBT

ω2
[1− S2(t)]−mkBT G2(t),

〈{R ∗ ξ}2(t)〉 = mkBT
[

1−R2(t)− ω2 G2(t)
]

. (24)

(A common trick to derive these results is to write the double integral over the square region (0, t) × (0, t) of the
(t1, t2)-space as two times the integral over the triangle bounded by the lines t2 = t1, t2 = 0 and t1 = t.) The average
product of the convolutions is easier to find by noticing that

〈{G ∗ ξ} {R ∗ ξ}〉 = 1

2

d

dt
〈{G ∗ ξ}2〉. (25)

Then, recalling that Ṡ(t) = −ω2G(t) and Ġ(t) = R(t), one obtains

〈{G ∗ ξ} {R ∗ ξ}〉 = mkBT G(t) [S(t)−R(t)] . (26)

Finally, substituting (24) and (26) into (23) yields

〈q2(t)〉 = 〈q2i 〉S2(t) + 〈v2i 〉G2(t) +
kBT

mω2

[

1− S2(t)
]

− kBT

m
G2(t),

〈v2(t)〉 = 〈q2i 〉ω4 G2(t) + 〈v2i 〉R2(t) +
kBT

m

[

1−R2(t)− ω2G2(t)
]

,

〈q(t) v(t)〉 = −〈q2i 〉ω2G(t)S(t) + 〈v2i 〉G(t)R(t) +
kBT

m
G(t) [S(t)−R(t)] . (27)
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One observes that under conditions (21) the second moments relax at long times, for any initial conditions, to the
equilibrium values,

〈q2(t)〉 → kBT

mω2
, 〈v2(t)〉 → kBT

m
, 〈q(t) v(t)〉 → 0. (28)

On the other hand, if conditions (21) are not satisfied, then it follows from the above relations that the oscillator does
not thermilize in the general case.
An exception is the case of equilibrium initial conditions. As one observes from Eqs. (27), if the oscillator at

t = 0 is prepared in the state of equilibrium with 〈q2i 〉 = kBT/(mω2) and 〈v2i 〉 = kBT/m (that can be arrange by
connecting the oscillator at t < 0 to an additional thermal bath with no upper frequency cuttoff) then the terms
with relaxation functions are canceled and the moments keep the equilibrium values for t > 0 regardless of whether
asymptotic conditions (21) hold or not.

IV. TIME CORRELATIONS

Let us show that the relaxation functions G(t), R(t), S(t), introduced in the previous section, not only govern
the time dependence of the moments 〈q2(t)〉, 〈v2(t)〉, 〈q(t)v(t)〉, but also determine the time correlation functions
〈q(t)q(t′)〉, 〈v(t)v(t′)〉, 〈q(t)v(t′)〉. The general expressions for the latter, valid for arbitrary initial conditions, can be
obtained from Eqs. (12) using the method of double Laplace transforms [28, 29]. Here we consider only the case of
equilibrium initial conditions, i.e. when the initial coordinate and velocity (qi, vi) of the oscillator are drawn from the
equilibrium ensemble with the moments

〈qi〉 = 〈vi〉 = 〈qivi〉 = 0, 〈q2i 〉 = kBT/(mω2), 〈v2i 〉 = kBT/m. (29)

First consider the oscillator in an ergodic configuration. With equilibrium initial conditions the oscillator remains
in equilibrium also for t > 0, and the correlation functions depend on time only through the time difference. Then,
for t, t′ > 0 we get from Eq. (12),

〈q(t) q(t′)〉 = 〈qi q(|t− t′|)〉 = kBT

mω2
S(|t− t′|),

〈v(t) v(t′)〉 = 〈vi v(|t− t′|)〉 = kBT

m
R(|t− t′|). (30)

Here the averaging is taken over the noise and also over the equilibrium distribution for initial values qi, vi. Similarly,
for the cross-correlation we get from Eq. (12):

〈q(t)v(t′)〉 =
{

〈qi v(t′ − t)〉 = −kBT
m G(t′ − t), if t′ > t,

〈viq(t− t′)〉 = kBT
m G(t− t′), if t > t′.

(31)

Next, from Eqs. (12) and (15) one can observe that the relaxation function G(t) must be odd, and R(t) and S(t) are
both even. Then the above results can be written as

〈q(t) q(t′)〉 = kBT

mω2
S(t− t′), 〈v(t) v(t′)〉 = kBT

m
R(t− t′), 〈q(t)v(t′)〉 = kBT

m
G(t− t′). (32)

Thus the relaxation functions not only determine the moments of coordinate and velocity, but also coincide with the
time correlation functions in thermal equilibrium: S(t) and R(t) are the normalized auto-correlation functions for the
coordinate and velocity, respectively, while G(t) determines the cross-correlation.
Now consider the oscillator in a nonergodic configuration, and the initial conditions are still equilibrium ones,

satisfying Eq. (29). As was noted at the end of the previous section, in that case the moments 〈q2(t)〉, 〈v2(t)〉,
〈q(t)v(t)〉 do not change with time and keep their equilibrium values for t > 0. This suggests that the oscillator is
in equilibrium at t > 0, and therefore the correlations can be evaluated as above and are still given by Eq. (32).
Alternatively, the correlations can be evaluated directly. For equilibrium initial conditions (29) that method again
recovers the results (32).
Let us demonstrate that for the cross-correlation 〈q(t)v(t′)〉. From Eqs. (12) and (29) we get

〈q(t)v(t′)〉 = kBT

m
[G(t)R(t′)− S(t)G(t′) +X(t, t′)], (33)
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where X(t, t′) is the average product of two convolutions

X(t, t′) =
1

mkBT
〈{G ∗ ξ}(t) {R ∗ ξ}(t′)〉. (34)

We can express this function in terms of the relaxation functions as follows. Using the fluctuation-dissipation relation
(8), one can write X(t, t′) as a double convolution

X(t, t′) = {f ∗∗ g}(t, t′) =
∫ t

0

dτ

∫ t′

0

dτ ′ f(t− τ, t′ − τ ′) g(τ, τ ′) (35)

with

f(t, t′) = G(t)R(t′), g(t, t′) = K(t− t′). (36)

Applying the double Laplace transform

L2{· · · } =

∫ ∞

0

dt e−st

∫ ∞

0

dt′ e−s′t′{· · · }, (37)

and the convolution theorem L2{f ∗∗ g} = L2{f}L2{g}, we get

L2 {X(t, t′)} = L2{G(t)R(t′)}L2{K(t− t′)} = G̃(s) R̃(s′)L2{K(t− t′)}, (38)

where the tilde still denotes the one variable Laplace transform. Referring to the properties of double Laplace
transforms (see, e.g., Ref. [30]) and noticing that the dissipation kernel K(t) is an even function one gets

L2{K(t− t′)} =
K̃(s) + K̃(s′)

s+ s′
, (39)

and therefore

L2 {X(t, t′)} = G̃(s) R̃(s′)
K̃(s) + K̃(s′)

s+ s′
. (40)

Using Eq. (18), we can make here the following replacements

G̃(s)K̃(s) = S̃(s)− s G̃(s), R̃(s′)K̃(s′) = 1− s′ R̃(s′)− ω2G̃(s′) (41)

to get

L2 {X(t, t′)} =
1

s+ s′
[S̃(s)R̃(s′) + G̃(s)− ω2G̃(s)G̃(s′)]− G̃(s)R̃(s′). (42)

Next, using Eq. (17) one can make another replacements

R̃(s′) = s′G̃(s′) ω2G̃(s) = 1− s S̃(s), (43)

which yields

L2 {X(t, t′)} = S̃(s)G̃(s′)− G̃(s)R̃(s′) +
G̃(s)− G̃(s′)

s+ s′
. (44)

Recalling that G(t) is an odd function and referring again to the properties of double Laplace transform one notices
that the last term in the above expression if the double Laplace transform of G(t− t′),

L2 {X(t, t′)} = S̃(s)G̃(s′)− G̃(s)R̃(s′) + L2{G(t− t′)}. (45)

Therefore in the time domain X(t, t′) has the form

X(t, t′) = S(t)G(t′)−G(t)R(t′) +G(t− t′). (46)

Finally, substituting this expression into Eq. (33) we obtain

〈q(t)v(t′)〉 = kBT

m
G(t− t′), (47)

which coincides with the result (32) for the ergodic oscillator in equilibrium.
In a similar manner one can derive the results (32) for auto-correlations 〈q(t)q(t′)〉 and 〈v(t)v(t′)〉. Thus the

results (32), connecting the relaxation and correlation functions, hold for both ergodic and nonergodic configurations,
provided initial conditions are the equilibrium ones.
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V. RELAXATION FUNCTIONS IN LAPLACE DOMAIN

As was shown in the previous sections, the oscillator’s dynamics can be described in terms of the relaxation functions
G(t), R(t), S(t). Our goal is to find that functions in explicit forms for the specific dissipation kernel K(t) given by
Eq. (9). We shall focus on finding G(t), the other two functions can be found by differentiating and integrating G(t),
see Eq. (15).
The Laplace transform of the kernel (9) is

K̃(s) =
µ

2

(

√

s2 + ω2
0 − s

)

. (48)

Substituting it into Eq. (14) yields the Laplace transform for G(t),

G̃(s) =
2

(2− µ) s2 + µ s
√

s2 + ω2
0 + 2λω2

0

, (49)

where we introduce the parameter

λ = (ω/ω0)
2 (50)

as a dimensionless alias for the square of the oscillator frequency ω. In what follows, we shall use λ and ω concurrently.
The inversion of transform (49) can be expressed in terms of standard functions only for a few special cases, see the

next section. For arbitrary values of λ and µ, the inversion must be performed by evaluating the Bromwich integral

G(t) =
1

2πi

∫ γ+i∞

γ−i∞
est G̃(s) ds (51)

in the complex plane. The character of relaxation (thermalizing or non-thermalizing) is determined by analytical

properties of G̃(s). This can be anticipated as follows. Suppose transform G̃(s), in addition to the branch points
at ±iω0, also has two simple conjugated poles on the imaginary axis ±iω∗ with ω∗ > ω0. Evaluating the Bromwich
integral by closing the integration contour, see the right part of Fig. 1, and using Cauchy’s residue theorem one
expects to get contributions e±iω∗t which may result in the oscillatory behavior G(t) ∼ sinω∗t. In that case the

condition of thermalization (21) is not satisfied. On the other hand, if G̃(s) has no poles, or has poles on the real
axis, then one expects the relaxation to thermal equilibrium.
According to Eq. (49), the pole positions must be solutions of the equation

(2− µ) s2 + µ s
√

s2 + ω2
0 + 2λω2

0 = 0. (52)

The above consideration suggests that the necessary condition of nonergodicity is that Eq. (52) has purely imaginary

solutions. The subtlety is that the function f(s) =
√

s2 + ω2
0 , and therefore G̃(s), has two branches and only one of

the branches is physically meaningful. Therefore special care is needed to identify the poles of the physical branch of
G̃(s) and to discard the poles for the unphysical branch.

VI. SPECIAL CASES

Let us first consider two cases when the inversion of the transform G̃(s) given by Eq. (49) is known in closed
analytical form. In both cases the oscillator’s configuration is ergodic, so from the perspective of this paper those
cases are not of particular interest. Yet the special cases can be useful as reference points to verify the validity of the
general results.
For the first case

µ = 1, λ = (ω/ω0)
2 = 1/2, (53)

and transform (49) has the form

G̃(s) =
2

s2 + s
√

s2 + ω2
0 + ω2

0

. (54)
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The inverse transform of this expression is given by the Bessel function,

G(t) =
2

ω0
J1(ω0t). (55)

The other two relaxation functions, given by Eq. (15), are

R(t) = J0(ω0t)− J2(ω0t), S(t) = J0(ω0t). (56)

All three relaxation functions vanish at long times and thus satisfy the condition of ergodic relaxation to thermal
equilibrium (21).
The second special case corresponds to the parameter values

µ = 1, λ = (ω/ω0)
2 = 1/4 (57)

when

G̃(s) =
4

2 s2 + 2 s
√

s2 + ω2
0 + ω2

0

=
4

(

s+
√

s2 + ω2
0

)2 . (58)

The inverse transform of this expression is known to be

G(t) =
8

ω2
0t

J2(ω0t), (59)

and the other relaxation functions, according to Eq. (15), are

R(t) =
8

ω0t
J1(ω0t)−

24

(ω0t)2
J2(ω0t), S(t) =

2

ω0t
J1(ω0t). (60)

Again, the relaxation functions describe the ergodic relaxation since G(t), R(t), S(t) → 0 as t → ∞. It will be shown
below that for µ < 2 the condition of nonergodic relaxation reads λ > λc = 1−µ/2. For both special cases considered
in this section λc = 1/2, and the condition is not satisfied.

VII. EQUATIONS FOR POLES

As was noted in Sec. V, the character of the oscillator’s relaxation is governed by analytical properties of the
function G̃(s) given by Eq. (49). That function has two branch points at ±iω0 and possibly a number of poles. The
positions of poles must satisfy Eq. (52) which we rewrite here as

(2− µ) s2 + 2λω2
0 = −µ s f(s), (61)

where the function

f(s) =
√

s2 + ω2
0 =

√

(s− iω0)(s+ iω0), (62)

has two branches, which we denote as f1(s) and f2(s). Only one of the branches is physically relevant, and our
immediate goal is to define and present it in a form convenient for calculations.
To this end, let us write the factors s± iω0 in Eq. (62) in terms of polar coordinates (r1, θ1) and (r2, θ2),

s− iω0 = r1 e
iθ1 , s+ iω0 = r2 e

iθ2 , (63)

see the left part of Fig. 1. Then f(s) takes the form

f(s) =
√
r1r2 e

i
θ1+θ2

2 . (64)

Let us define the first branch f1(s) of f(s) by Eq. (64) with both polar angles in the interval (−3π/2, π/2],

−3π

2
< θ1 ≤ π

2
, −3π

2
< θ2 ≤ π

2
. (65)
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Re(s)

i

θ2

Re(s)

r2

−i

θ1
i

−i

ω

ω

0

0

ω

ω

∗

∗

i

−i

ω

ω

0

0

Γ

Im(s) Im(s)

1
r

s

FIG. 1: Left: Polar coordinates used in Eq. (63) to define two branches of the function f(s) =
√

s2 + ω2

0
. Right: The

integration contour Γ for integral (108). The poles at ±iω∗ exist only for nonergodic configurations with ω ≥ ωc.

The second branch f2(s) is defined by Eq. (64) with the interval for θ2 shifted by 2π,

−3π

2
< θ1 ≤ π

2
,

π

2
< θ2 ≤ 5π

2
. (66)

The first branch f1(s) has, in particular, the following mapping properties:
(a) If s = x is real and positive (negative), then f1(s) is also real and positive (negative);
(b) If s = ±iω∗ with real ω∗ ≥ ω0, then f1(s) = ±iz with real z ≥ 0.

One can further elaborate property (b): Suppose s = ±iω∗ with ω∗ ≥ ω0, then

f1(±iω∗) = ±i
√

ω2
∗ − ω2

0 , (67)

where the square root is the unique positive root of a positive real number.
As follows from Eqs.(64)-(66), for any s the two branches of f(s) are connected by the relation f2(s) = eiπf1(s) =

−f1(s). Therefore, the mapping properties of the second branch f2(s) are algebraically opposite to that of the first
branch, namely:
(a) If s = x is real and positive (negative), then f2(s) is real and negative (positive);
(b) If s = ±iω∗ with real ω∗ ≥ ω0, then f2(s) = ∓iz with real z ≥ 0.

Keeping in mind the mapping properties of f(s), one can verify that the physically meaningful branches of K̃(s)

and G̃(s) must involve the first branch f1(s), because only in that case one recovers the correct initial conditions for
K(t) and G(t),

K(0) = lim
s→∞

s K̃(s) =
µω2

0

4
, G(0) = lim

s→∞
s G̃(s) = 0. (68)

Therefore, in the equation for poles (61) one has to replace the function f(s) by its first (physical) branch,

(2− µ) s2 + 2λω2
0 = −µ s f1(s). (69)

Note that symbolic calculation systems like Wolfram Mathematica by default evaluate the function f(s) using its first
branch.
Squaring both sides of Eq. (69) and moving all terms to the left hand side, one gets

4(1− µ) s4 + [4λ(2− µ)− µ2]ω2
0 s

2 + 4λ2ω4
0 = 0. (70)

Each solution of Eq. (69) for poles is also a solution of the squared equation (70), but not vice versa. In other words,

positions of the poles of G̃(s) must be among solutions of the squared equation (70), but not every solution of Eq.

(70) determines a pole of G̃(s). A detailed analysis of analytical properties of G̃(s) is somewhat different for different
ranges of µ; below we shall consider those ranges separately starting with the simpler case µ = 1.
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VIII. POLES FOR µ = 1

For µ = 1 equation (69) for the poles of G̃(s) takes the form

s2 + 2λω2
0 = −s f1(s), (71)

while the squared equation (70), in general of order four, is reduced to a quadratic equation

(4λ− 1)ω2
0 s

2 + 4λ2ω4
0 = 0. (72)

First consider the case λ > 1/4 when Eq. (72) has two imaginary solutions

s1,2 = ±iω∗, ω∗ =
2λ√
4λ− 1

ω0 ≥ ω0. (73)

Let us show that s1,2 are also solutions of Eq. (71), i.e. G̃(s) has the poles at s1,2, but only under the additional
constraint λ ≥ 1/2.
To prove that the roots s1,2 of the squared equation (72) also satisfy Eq. (71) it is sufficient to show that the left-

and right-hand sides of Eq. (71) for s = s1,2 have consistent signs. Substituting s1 = iω∗ into Eq. (71) one gets for
the left-hand side

l.h.s. =
2λ (2λ− 1)

4λ− 1
ω2
0 . (74)

This expression is non-negative for λ ≥ 1/2. On the other hand, the right-hand side of Eq. (71) for s = s1 is always
non-negative,

r.h.s. = −iω∗f1(iω∗) ≥ 0. (75)

This follows from the mapping property (b) for f1(s) mentioned in Sec. IV, or from Eq. (67). Therefore, the signs of
the left- and right-hand sides of Eq. (71) for s = s1 are consistent only for λ ≥ 1/2. A similar consideration applies
for s = s2. Thus we conclude that s1,2 given by Eq. (73) are solutions of the equation for poles (71) provided λ ≥ 1/2.
The same conclusion can be arrive at by the direct evaluation of the right-hand side of Eq. (71) for s = s1,2 taking

into account Eqs. (67) and (73). For instance, for s = s1 one gets

r.h.s. = −iω∗f1(iω∗) = ω∗

√

ω2
∗ − ω2

0 =
2λ |2λ− 1|
4λ− 1

ω2
0 . (76)

For λ ≥ 1/2 this expression equals to the left-hand side (74). This proves that s1, and by similar argument s2, are
solutions of Eq. (71) for poles under condition λ ≥ 1/2.
Next consider the case λ < 1/4 when the squared equation (72) has two real solutions

s3,4 = ± 2λ√
1− 4λ

ω0. (77)

One observes that s3,4 are not solutions of Eq. (71) for poles. Indeed, for s = s3,4 the left-hand side of Eq. (71) is
still given by expression (74) which is positive for λ < 1/4. On the other hand, recalling the mapping property (a)
for f1(s), see Sec. VII, one finds that the right-hand side of Eq. (71) is negative for any real s, including s = s3,4.

Thus, s3,4 do not satisfy Eq. (71) and therefore the physical branch of G̃(s) has no poles at s3,4.
For the remaining case λ = 1/4 the equation (71) for poles takes the factorized form

s2 + s
√

s2 + ω2
0 +

ω2
0

2
=

1

2

(

s+
√

s2 + ω2
0

)2

= 0, (78)

which has no solutions.
Summarizing, for µ = 1 the physical branch of G̃(s) has the poles at s1,2 = ±iω∗ under the condition

λ ≥ λc = 1/2, (79)

i.e. for the oscillator frequency ω ≥ ωc = ω0/
√
2. The poles are located on the the imaginary axis and for λ > λc

the corresponding frequency ω∗, given by Eq. (73), is outside the bath spectrum, (ω∗ > ω0). As was discussed above

and will be shown explicitly below, under these conditions the relaxation is nonergodic. For λ < λc the function G̃(s)
has no poles but only the branch points at ±iω0. In that case the relaxation is expected and will be shown to be
ergodic. For λ = λc = 1/2 we get ω∗ = ω0, and the poles coincide with the branch points, s1,2 = ±iω0. That is one
of the special cases (µ = 1 and λ = 1/2) considered in Sec. VI. The relaxation was shown there to be ergodic. Thus
we conclude that for µ = 1 the relaxation is expected to be ergodic for λ ≤ λc = 1/2 (for lower oscillator frequencies

ω ≤ ωc = ω0/
√
2) and nonergodic for λ > λc (for higher oscillator frequencies ω > ωc).
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IX. POLES FOR µ < 1

For µ 6= 1 the squared equation (70) is of order four and has four roots which we present as two pairs

s1,2 = ±
√

z+(λ, µ)ω0, s3,4 = ±
√

z−(λ, µ)ω0, (80)

where

z±(λ, µ) =
1

8(1− µ)

(

µ2 + 4λ(µ− 2)± µ
√
D
)

, (81)

D = 16λ2 + 8λ(µ− 2) + µ2. (82)

We need to verify which of these roots, if any, are also solutions of the (unsquared) equation for poles (69). Below we

show that G̃(s) has poles only at s1,2, but not at s3,4, and only under the condition

λ ≥ λc = 1− µ/2. (83)

Properties of the roots s1,2 and s3,4 depend on the sign of the discriminant D. Consider first the case D ≥ 0 when
the functions z±(λ, µ) are both real. For the considered domain µ < 1, the inequality D ≥ 0 holds when

λ ≤ λ−, or λ ≥ λ+, (84)

where

λ± =
1

4

(

2− µ± 2
√

1− µ
)

< λc. (85)

One can verify that for λ ≤ λ− both functions z± are positive, so that all four roots (80) are real. But it is easy to
see, recalling mapping rule (a) for f1(s) in Sec. VII, that equation (69) for poles

(2− µ) s2 + 2λω2
0 = −µ s f1(s). (86)

cannot have real solutions for the given domain µ < 1 since the left- and right-hand sides of the equation for real s
have the opposite signs. Thus we find that for λ ≤ λ− the function G̃(s) has no poles.
On the other hand, for λ ≥ λ+ both functions z± can be shown to be negative, and all four roots (80) are purely

imaginary. Consider the first pair of roots, writing it as

s1,2 = ±i ω∗, ω∗ = β∗(λ, µ)ω0 (87)

where the dimensionless function β∗(λ, µ) reads

β∗(λ, µ) =
√

−z+(λ, µ) =

{ −1

8(1− µ)

(

µ2 + 4λ(µ− 2) + µ
√
D
)

}1/2

. (88)

Here the square roots are the unique positive roots of positive real numbers. Let us define the critical value λc for
which β∗(λ, µ) = 1,

β∗(µ, λc) = 1 ⇒ λc = 1− µ/2. (89)

Note again that λc > λ+. One can verify that for the considered domain µ < 1 the function β∗(λ, µ) for any fixed µ
has a minimum at λ = λc, so that

β∗(λ, µ) ≥ β∗(λc, µ) = 1, (90)

and the equality β∗ = 1 holds only for λ = λc. Therefore, the roots s1,2 have the structure s1,2 = ±iω∗ with
ω∗ = β∗ω0 ≥ ω0. Then according to Eq. (67)

f1(s1,2) = f1(±iω∗) = ±i
√

ω2
∗ − ω2

0 . (91)

Taking this into account and substituting s1,2 into equation (86) for poles we find that the right-hand side of the
equation is real and non-negative

−µ s1,2 f1(s1,2) = µω∗

√

ω2
∗ − ω2

0 ≥ 0. (92)
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The equation is satisfied by s1,2 only if the left-hand side is also non-negative,

(2− µ) (s1,2)
2 + 2λω2

0 = −(2− µ)ω2
∗ + 2λω2

0 ≥ 0, (93)

which gives the condition

λ ≥
(

1− µ

2

)

(

ω∗
ω0

)2

= λc β
2
∗(λ, µ). (94)

Writing this as

λ

λc
≥ β2

∗(λ, µ), (95)

one observes that, since β∗(λ, µ) ≥ 1, the condition necessarily implies λ ≥ λc. Further, one can directly verify that
the condition λ ≥ λc is not only necessary but also sufficient for the validity of inequality (95): the latter holds for
any λ ≥ λc. Thus we find that the first pair of roots s1,2 of the squared equation (70) also satisfy the equation for

poles (86), and therefore G̃(s) has poles at s1,2 under the condition λ ≥ λc. The same conclusion one gets directly
evaluating the left- and right-hand sides of equation (86) for poles at s = s1,2.
Consider now the second pair of roots of the squared equation (70), writing them as

s3,4 = ±i ω†, ω† = β†(λ, µ)ω0 (96)

with

β†(λ, µ) =
√

−z−(λ, µ) =

{ −1

8(1− µ)

(

µ2 + 4λ(µ− 2)− µ
√
D
)

}1/2

, (97)

and assuming λ ≥ λ+. One can verify that for the considered domain µ < 1

β†(λ, µ) > 1, for λ ≥ λ+, (98)

so that ω† = β† ω0 ≥ ω0. Repeating the above arguments for s1,2 we find that the roots s3,4 satisfy Eq. (86) for poles
under the condition

λ

λc
> β2

† (λ, µ), (99)

which is similar to condition (95) for s1,2. One can directly verify (for instance, graphically) that inequality (99)

cannot be satisfied for any λ ≥ λ+ and µ < 1. Therefore, the roots s3,4 do not satisfy Eq. (86) and G̃(s) has no poles
at s3,4.
Finally, we need to consider the interval λ− < λ < λ+. In that case the discriminant D in Eq. (81) is negative,

and the roots s1,2 and s3,4 have non-zero real and imaginary parts. In that case the simple arguments we used above,

based on the mapping rules for the function f(s) =
√

s2 + ω2
0 for purely real or imaginary s, do not apply. Yet, an

explicit evaluation (which is convenient to execute with Mathematica) shows that the imaginary parts of the left- and
right-hand sides of the equation for poles (86) for s = s1,2, and also for s = s3,4, have opposite signs. Real parts also
have opposite signs except one value of λ for which they are both zero. Thus for λ− < λ < λ+ neither s1,2 nor s3,4
give positions of poles of the physical branch of G̃(s).

Summarizing, for µ < 1 the function G̃(s) under condition

λ ≥ λc = 1− µ/2 (100)

has two poles. The poles positions are given by Eqs. (87) and (88) and have the form s1,2 = ±iω∗ with ω∗ ≥ ω0. The
equality ω∗ = ω0 occurs for λ = λc; for λ > λc the poles frequency ω∗ is higher than the maximal mode frequency
of the bath, ω∗ > ω0. Since λ = (ω/ω0)

2, condition (100) corresponds to higher values of the oscillator frequency ω.

For λ < λc, i.e. for lower frequencies, G̃(s) has no poles and its only singularities are the two branch points at ±iω0.
These analytical properties are expected and will be shown below to correspond to nonergodic behavior for λ > λc

(for the higher frequency domain) and ergodic relaxation to thermal equilibrium for λ ≤ λc (for the lower frequency
domain).
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X. POLES FOR µ > 1

For µ > 1 the roots s1,2 and s3,4 of the squared equation (70) are given by the same expressions (80)-(82) as for
µ < 1, but now the discriminant D = 16λ2 + 8λ(µ− 2) + µ2 is positive for any λ and the functions z±(λ, µ) are both
real. Further one finds that z+(λ, µ) < 0 and z−(λ, µ) > 0. Therefore, the first pair of roots s1,2 = ±√

z+ are purely
imaginary, and the second pair s3,4 = ±√

z− are real. As was noted in the previous section, a real s cannot be a

solution of Eq. (86) for poles. Therefore the roots s3,4 must be discarded, G̃(s) has no poles there.
Consider the purely imaginary roots s1,2. They are given by the same expressions (87) and (88) as for µ < 1,

s1,2 = ±i ω∗, ω∗ = β∗(λ, µ)ω0,

β∗(λ, µ) =
√

−z+(λ, µ) =

{ −1

8(1− µ)

(

µ2 + 4λ(µ− 2) + µ
√
D
)

}1/2

. (101)

As in the previous section, let us define the critical value λc for which β∗(λ, µ) = 1,

β∗(µ, λc) = 1 ⇒ λc = 1− µ/2. (102)

In contrast to the case µ ≤ 1 discussed in the previous sections, a meaningful (non-negative) λc exists only under the
additional constraint µ ≤ 2. Thus for µ > 1 we need to consider separately the intervals 1 < µ < 2 and µ ≥ 2.
For 1 < µ < 2, substituting s1,2 = ±iω∗ into Eq. (86) for poles, one finds as in the previous section that the

equation is satisfied under condition (94)

λ ≥ λc β
2
∗(λ, µ), (103)

which holds for λ ≥ λc.
For µ ≥ 2, the substitution of s1,2 = ±iω∗ into Eq. (86) for poles leads again to condition (103), but now that

condition is trivially satisfied for any λ > 0 since λc = 1 − µ/2 ≤ 0 and the right-hand side of inequality (103) is
non-positive.
Summarizing, for µ > 1 analytical properties of G̃(s) are different for the intervals 1 < µ < 2 and µ ≥ 2. For the

interval 1 < µ < 2 we find the properties similar to that for µ < 1, that is G̃(s) has poles at s1,2 given by Eq. (101)
under the condition λ ≥ λc = 1 − µ/2. For λ = λc the poles coincide with the branch points at ±iω0. On the other

hand, for µ ≥ 2 the transform G̃(s) has poles at s1,2 for any value of λ. These properties suggest the following: For
µ < 2 the relaxation is nonergodic for λ > λc (for higher oscillator frequency ω) and ergodic for λ ≤ λc (for lower ω).
For µ ≥ 2 the relaxation is nonergodic for any λ (for any ω). In what follows, these expectations will be confirmed
by explicit evaluation of the relaxation functions in the time domain.

XI. RELAXATION FUNCTIONS FOR µ = 1

For µ = 1 the Laplace transform (49) of the relaxation function G(t) takes the form

G̃(s) =
2

s2 + s f1(s) + 2λω2
0

, (104)

where f1(s) is the physical branch of the function f(s) =
√

s2 + ω2
0 defined in Sec. VII. The inverse transform is

given by the the Bromwich integral (51),

G(t) =
1

2πi

∫ γ+i∞

γ−i∞
est G̃(s) ds. (105)

The singular points of G̃(s) are two branch points ±iω0 and also possibly two poles. As was discussed in Sec. VIII,
for µ = 1 the poles exist under the condition

λ ≥ λc = 1/2, or ω ≥ ωc =
√

1/2ω0, (106)

and have the form

s1,2 = ±iω∗, ω∗ =
2λ√
4λ− 1

ω0 ≥ ω0. (107)
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For λ = λc the poles and branch points coincide, and for λ < λc the function G̃(s) has no poles. Since all singularities
are located on the imaginary axis, the integration path in Eq. (105) is along a vertical line to the right of the origin,
γ > 0. With the nature of singular points established, the evaluation of integral (105) is a standard exercise in
complex variable analysis; below we outline the main points.
The first step is to consider the auxiliary integral

I(t) =
1

2πi

∫

Γ

est G̃(s) ds (108)

over a closed contour Γ shown in Fig. 1. As the radius of the arc of Γ goes to infinity, the contribution from the
arc vanishes. The contributions from the paths above and below the negative real axis are mutually canceled. The
integrals over the small circles around the branch points ±iω0 can be shown to vanish as the circles radii goes to
zero. The latter is true for any λ including λ = λc = 1/2, when the branch points coincide with the poles. The only
non-zero contributions to the integral I(t) are those from the the rightmost vertical path and the two shores of the
branch cut along the imaginary axis connecting the branch points ±iω0. When the radius of the arc of Γ goes to
infinity, the contribution from the rightmost vertical path, according to Eq. (105), equals G(t), therefore

I(t) = G(t) + I0(t), (109)

where

I0 = I+0 + I−0 =
1

2πi

∫

Γ+

0

est G̃(s) ds+
1

2πi

∫

Γ−

0

est G̃(s) ds (110)

is the contribution from the path along the right (Γ+
0 ) and left (Γ−

0 ) shores of the branch cut in the clockwise direction.
On the other hand, the integral I(t) can be evaluated with Cauchy’s integral and residue theorems:

I(t) =







0, if λ ≤ λc.
∑

i=1,2

Res[estG̃(s), si], if λ > λc.
(111)

From (109) and (111) one gets

G(t) =







−I0(t), for λ ≤ λc,

−I0(t) +
∑

i=1,2

Res[estG̃(s), si], for λ > λc.
(112)

The integral I0(t) along the branch cut for arbitrary µ is evaluated in Appendix A; for µ = 1 the result takes the form

I0(t) = − 4

πω0

∫ 1

0

x
√
1− x2 sin(xω0t) dx

(1− 4λ)x2 + 4λ2
. (113)

The residues Res[estG̃(s), s1,2] are evaluated for arbitrary µ in Appendix B; for µ = 1 we get

Res[estG̃(s), s1] +Res[estG̃(s), s2] =
1

ω0

4
√

β2 − 1

(2β2 − 1) + 2 β
√

β2 − 1
sin(ω∗t), (114)

where

β = β(λ) =
ω∗
ω0

=
2λ√
4λ− 1

. (115)

This quantity has been denoted in the previous sections as β∗; from now on we drop the asterisk subscript as
superfluous. From Eqs. (114) and (115) one gets a more explicit expression

Res[estG̃(s), s1] +Res[estG̃(s), s2] =
1

ω0

8λ− 4

(4λ− 1)3/2
sin(ω∗t). (116)

Finally, substituting Eqs. (113) and (116) into Eq. (112) yields

G(t) =

{

Ge(t), if λ ≤ λc,

Ge(t) +G0 sin(ω∗t), if λ > λc.
(117)
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FIG. 2: Left: The ergodic component Ge(t) of the relaxation function G(t), see Eqs. (117) and (118), for the mass ratio
parameter µ = 1 and several values of the oscillator frequency parameter λ = (ω/ω0)

2. Right: The amplitude G0 of the
nonergodic time-periodic component of G(t) as a function of λ. It is zero for λ ≤ λc = 1/2 and has a maximum at λ = 1.

where

Ge(t) =
4

πω0

∫ 1

0

sin(xω0 t)x
√
1− x2 dx

(1 − 4λ)x2 + 4λ2
, G0 =

1

ω0

8λ− 4

(4λ− 1)3/2
, (118)

λc = 1/2, and the frequency of the oscillating (nonergodic) term is ω∗ = β ω0 with β = β(λ) given by Eq. (115).
The function Ge(t) for any λ vanishes at long times and thus represents the ergodic component of G(t) (hence the

subscript e), while G0 is the amplitude of the nonergodic component. At long times G(t) has the asymptotic form

G(t) →
{

0, if λ ≤ λc,

G0 sin(ω∗t), if λ > λc.
(119)

As was discussed in Sec. III, see Eq. (21), the asymptotic long time condition G(t) → 0 corresponds to ergodic
relaxation. Thus, as anticipated, the results (117) and (119) show that the oscillator is ergodic (reaches thermal
equilibrium with the bath at long times) when λ ≤ λc = 1/2. For λ > λc, the time-periodic component of G(t)
develops; the oscillator is nonergodic and does not thermalize.
For λ = 1/4 and λ = 1/2 the integral form of the ergodic component Ge(t) given by Eq. (118) can be expressed in

terms of the Bessel functions,

G(t) = Ge(t) =

{

8
ω2

0
t
J2(ω0t), for λ = 1/4,

2
ω0

J1(ω0t), for λ = 1/2.
(120)

Those are two special solutions already found in Sec. VI using a table of standard Laplace transforms.
For several values of λ < 1 the ergodic component Ge(t) is presented on the left plot of Fig. 2. For λ > 1, Ge(t)

has an oscillatory decaying shape similar to that for λ = 1/2, but its range quickly decreases with increasing λ; for
instance, for λ = 5 the maximum value of Ge(t) is of order of 10

−3.
The amplitude G0(λ) of the nonergodic oscillatory component, given by Eq. (118), as a function of λ is shown on

the right plot of Fig. 2. It is zero for λ ≤ λc, while for λ > λc it first quickly increases, reaches a maximum at λ = 1,
and then monotonically decreases as 1/

√
λ.

Differentiating and integrating Eq. (117) yield the other two relaxation functions R(t) and S(t), see Eq. (15). They
have the structure similar to G(t), i.e. have only ergodic component for λ ≤ λc and both ergodic and nonergodic
components for λ > λc. For R(t) = d

dtG(t) we get

R(t) =

{

Re(t), if λ ≤ λc,

Re(t) +R0 cos(ω∗t), if λ > λc,
(121)

where the ergodic component Re(t) and the amplitude R0 of the nonergodic component are

Re(t) =
4

π

∫ 1

0

cos(xω0 t)x
2
√
1− x2 dx

(1− 4λ)x2 + 4λ2
, R0 = βω0G0 =

8λ(2λ− 1)

(4λ− 1)2
. (122)
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FIG. 3: Left: The ergodic component Re(t) of the relaxation function R(t), see Eqs. (121) and (122), for the mass ratio
parameter µ = 1 and several values of the frequency parameter λ = (ω/ω0)

2. Right: The amplitude R0 of the nonergodic
time-periodic component of R(t) as a function of λ. The nonergodic component is zero for λ ≤ λc = 1/2.

The functions Re(t) and R0(λ) are presented in Fig. 3. Similar to Ge(t), Re(t) vanishes at long times for any λ, and
thus can be interpreted as an ergodic component of R(t). Note that Re(0) = 1 for λ ≤ λc and Re(0) + R0 = 1 for

λ > λc, so that R(0) = 1 for any λ. This is the correct initial condition which can be found without inverting R̃(s),
see Eq. (16).

For the relaxation function S(t) = 1− ω2
∫ t

0 G(t)dt we get

S(t) =

{

Se(t), if λ ≤ λc,

Se(t) + S0 [cos(ω∗t)− 1], if λ > λc.
(123)

with

Se(t) = 1− 4λ

π

∫ 1

0

[1− cos(xω0 t)]
√
1− x2 dx

(1− 4λ)x2 + 4λ2
, S0 =

λω0G0

β
=

4λ− 2

4λ− 1
. (124)

The functions Se(t) and S0(λ) are presented in Fig. 4. At long times Se(t) has the asymptotic time-independent form

Se(t) → 1− 4λ

π

∫ 1

0

√
1− x2 dx

(1− 4λ)x2 + 4λ2
, (125)

which takes different values for λ ≤ λc and for λ > λc, namely

Se(t) →
{

0, if λ ≤ λc,

S0, if λ > λc.
(126)

As the result, similar to the other two relaxation functions, S(t) at long times vanishes for ergodic configurations and
oscillates about zero for nonergodic ones,

S(t) →
{

0, if λ ≤ λc,

S0 cosω∗t, if λ > λc.
(127)

Summarizing, in this section we obtained explicit expressions for the relaxation functions for the case µ = 1. For
λ ≤ λc (for lower values of the oscillator frequency, ω ≤ ωc =

√
λc ω0 = ω0/

√
2), the relaxation functions vanish at

long times. As was discussed in Sec. III, such behavior corresponds to the ergodic relaxation to thermal equilibrium.
On the other hand, for λ > λc (for higher frequencies ω > ωc) the relaxation functions develop time-periodic terms
which do not vanish at long times but oscillate about zero. As a result, the oscillator does not thermalize but reaches
a cyclostationary non-equilibrium state characterized by the oscillatory behavior of the relaxation functions. Below
we show that similar results hold not only for µ = 1 but for the entire domain µ < 2.
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FIG. 4: Left: The ergodic component Se(t) of the relaxation function S(t), see Eqs. (123) and (124), for the mass ratio
parameter µ = 1 and several values of the frequency parameter λ = (ω/ω0)

2. Right: The amplitude S0 of the nonergodic
component of S(t) as a function of λ.

XII. RELAXATION FUNCTIONS FOR µ < 2

In Secs. IX and X we found that for the intervals µ < 1 and 1 < µ < 2, and also under the condition

λ ≥ λc = 1− µ/2, or ω ≥ ωc =
√

1− µ/2 ω0 (128)

the Laplace transform G̃(s) of the relaxation function G(t) has two poles on the imaginary axis. The poles are given
by the following expressions:

s1,2 = ±i ω∗, ω∗ = β(α, µ)ω0,

β(α, µ) =

{

1

8(µ− 1)

(

µ2 + 4λ(µ− 2) + µ
√

16λ2 + 8λ(µ− 2) + µ2
)

}1/2

, (129)

and λc is defined by the equation β(λc, µ) = 1. On the other hand, for λ < λc the transform G̃(s) has no poles. To
find G(t) for the combined domain

µ ∈ (0, 1) ∪ (1, 2) (130)

by inversion of G̃(s) we follow the same procedure as in the previous section to find again expression (112),

G(t) =







−I0(t), for λ ≤ λc,

−I0(t) +
∑

i=1,2

Res[estG̃(s), si], for λ > λc,
(131)

where the integral

I0 = I+0 + I−0 =
1

2πi

∫

Γ+

0

est G̃(s) ds+
1

2πi

∫

Γ−

0

est G̃(s) ds (132)

is along the right (Γ+
0 ) and left (Γ−

0 ) shores of the branch cut in the clockwise direction. As shown in Appendix A,
for arbitrary µ this integral has the form

I0(t) = − 4µ

πω0

∫ 1

0

x
√
1− x2 sin(xω0t) dx

4(1− µ)x4 + [4λ(µ− 2) + µ2]x2 + 4λ2
. (133)

The sum of residues is evaluated in Appendix B,

Res[estG̃(s), s1] +Res[estG̃(s), s2] =
1

ω0

4
√

β2 − 1

µ (2β2 − 1) + 2(2− µ)β
√

β2 − 1
sin(ω∗t). (134)
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FIG. 5: Left: The ergodic component Ge(t) of the relaxation function G(t), see Eqs. (135) and (136), for the mass ratio
parameter µ = 0.1 and several values of the frequency parameter λ = (ω/ω0)

2. Right: The amplitude G0 of the nonergodic
component of G(t) as a function of λ for µ = 0.1. The nonergodic term is zero for λ ≤ λc = 1− µ/2 = 0.95.

Substituting Eqs.(133) and (134) into Eq.(131) yields

G(t) =

{

Ge(t), if λ ≤ λc,

Ge(t) +G0 sin(ω∗t), if λ > λc.
(135)

where the ergodic component Ge(t) and the amplitude G0 of the nonergodic oscillatory term are

Ge(t) =
4µ

πω0

∫ 1

0

x
√
1− x2 sin(xω0t) dx

4(1− µ)x4 + [4λ(µ− 2) + µ2]x2 + 4λ2
,

G0 =
1

ω0

4
√

β2 − 1

µ (2β2 − 1) + 2(2− µ)β
√

β2 − 1
, (136)

the frequency of the nonergodic term is ω∗ = βω0, and β is given by Eq. (129).
For the relaxation function R(t) = dG(t)/dt we get

R(t) =

{

Re(t), if λ ≤ λc,

Re(t) +R0 cos(ω∗t), if λ > λc,

Re(t) =
4µ

π

∫ 1

0

x2
√
1− x2 cos(xω0t) dx

4(1− µ)x4 + [4λ(µ− 2) + µ2]x2 + 4λ2
,

R0 = βω0G0 =
4 β

√

β2 − 1

µ (2β2 − 1) + 2(2− µ)β
√

β2 − 1
, (137)

Finally, for the relaxation function S(t) = 1− ω2
∫ t

0 G(t)dt we obtain

S(t) =

{

Se(t), if λ ≤ λc,

Se(t) + S0 [cos(ω∗t)− 1], if λ > λc,

Se(t) = 1− 4λµ

π

∫ 1

0

√
1− x2 [1− cos(xω0t)] dx

4(1− µ)x4 + [4λ(µ− 2) + µ2]x2 + 4λ2
,

S0 =
λ

β
ω0G0 =

λ

β

4
√

β2 − 1

µ (2β2 − 1) + 2(2− µ)β
√

β2 − 1
. (138)

At long times the time-dependent contribution in the expression for Se(t) vanishes, and Se(t) takes the asymptotic
form

Se(t) → 1− 4λµ

π

∫ 1

0

√
1− x2 dx

4(1− µ)x4 + [4λ(µ− 2) + µ2]x2 + 4λ2
. (139)
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FIG. 6: Left: The ergodic component Re(t) of the relaxation function R(t), see Eq. (137), for the mass ratio parameter µ = 0.1
and several values of the frequency parameter λ = (ω/ω0)

2. Right: The amplitude R0 of the nonergodic component of R(t) as
a function of λ for µ = 0.1.

One can verify that, similar to the case µ = 1, the asymptotic expression (139) vanishes for λ ≤ λc and equals S0

otherwise,

Se(t) →
{

0, if λ ≤ λc,

S0, if λ > λc.
(140)

Then, as follows from Eqs.(138) and (140), S(t) at long times vanishes for ergodic configurations and oscillates about
zero for nonergodic ones,

S(t) →
{

0, if λ ≤ λc,

S0 cosω∗t, if λ > λc.
(141)

Two other relaxation functions have the similar asymptotic forms.
The behavior of the ergodic and nonergodic components of the relaxation functions G(t), R(t), S(t) for µ = 0.1 is

illustrated in Figs. 5, 6, and 7, respectively. The behavior is qualitatively similar to that for the case µ = 1, discussed
in the previous section. However, the ergodic components as functions of time decay faster, and the increase of the
amplitudes of the nonergodic components (the initial increase for G0) as functions of λ is steeper than for µ = 1.
The above results for the relaxation functions hold for µ in the interval (130), i.e. for 0 < µ < 2 except µ = 1. They

do not directly apply for µ = 1 because parameter β, given by Eq. (129), is not defined for µ = 1. Yet one observes
that the limit

lim
µ→1

β(λ, µ) =
2λ√
4λ− 1

(142)

coincides with the result we found for β = ω∗/ω0 for µ = 1, see Eq. (107). With that value for β and µ = 1, one finds
that the expressions obtained in this section recover those we found in Sec. XI for µ = 1. Therefore, if expression
(129) for the function β(λ, µ) is defined at µ = 1 by continuity,

β(λ, µ) =







{

1
8(µ−1)

(

µ2 + 4λ(µ− 2) + µ
√

16λ2 + 8λ(µ− 2) + µ2
)}1/2

, if µ 6= 1,
2λ√
4λ−1

, if µ = 1,
(143)

then the results of this sections hold for the whole range µ < 2 including µ = 1.
Summarizing the results of this and previous sections, we found that for the whole interval µ < 2 the relaxation is

ergodic for λ ≤ λc = 1−µ/2 (the relaxation functions vanish at long times) and nonergodic for λ > λc (the relaxation
functions at long times oscillate about zero). The relaxation functions are given by Eqs. (135)-(138), which hold for
the whole interval µ < 2, while the frequency of the nonergodic component is ω∗ = β ω0, where β(α, µ) is a continuous
function determined by Eq. (143).
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FIG. 7: Left: The ergodic component Se(t) of the relaxation function S(t), see Eq. (138), for the mass ratio parameter µ = 0.1
and several values of the frequency parameter λ = (ω/ω0)

2. Right: The amplitude S0 of the nonergodic component of S(t) as
a function of λ for µ = 0.1.
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FIG. 8: Left: The ergodic component Ge(t) of the relaxation function G(t) for the mass ratio parameter µ = 5.0 and several
values of the oscillator frequency parameter λ = (ω/ω0)

2. Right: The amplitude G0 of the nonergodic component of G(t) as a
function of λ for several values µ ≥ 2.

XIII. RELAXATION FUNCTIONS FOR µ ≥ 2

In Sec. X we found that for µ ≥ 2 the function G̃(s) has poles at s = ±iω∗ = ±iβω0 for any value of the frequency
parameter λ = (ω/ω0)

2. For that case, we obtain

G(t) = Ge(t) +G0 sinω∗t,

R(t) = Re(t) +R0 cosω∗t,

S(t) = Se(t) + S0[cosω∗t− 1], (144)

where the functions Ge(t), Re(t), Se(t), the amplitudes G0, R0, S0, and the frequency ω∗ are given by expressions of
the previous section. Thus, for µ ≥ 2 the oscillator has only nonergodic configurations and does not thermalize for
any λ, i.e. for any value of the oscillator frequency ω. Fig. 8 illustrates the behavior of Ge(t) and G0(λ) for µ ≥ 2.
Interestingly, for larger values of µ the interval of the initial increase of the function G0(λ) vanishes, and the function
decreases monotonically for all λ.



22

XIV. ERGODIC TO NONERGODIC TRANSITIONS

As an application of the results, let us consider a setting when the oscillator frequency ω, and the frequency
parameter λ = (ω/ω0)

2, can be changed instantaneously by an external agent. Suppose that the mass ratio parameter
is µ < 2. In that case the oscillator has both ergodic configurations corresponding to ω ≤ ωc and nonergodic ones
corresponding to ω > ωc, and the critical frequency is

ωc =
√

λc ω0 =
√

1− µ/2ω0. (145)

Let assume that at t < 0 the oscillator is in an ergodic initial configuration with the frequency ωi < ωc. Then at
t = 0 the oscillator is in thermal equilibrium with the average energy E(ωi) = kBT and the coordinate’s variance
〈q2i 〉 = kBT/(mω2

i ). At t = 0 the frequency is instantaneously changed, ωi → ω. If the new frequency ω is lower than
or equal to ωc, then the new configuration is also ergodic, so the oscillator, after some transient time, will reach again
the equilibrium state with the same energy as for the initial configuration, E(ω) = kBT . We may call that process an
ergodic to ergodic transition. Its characteristic feature is that, except for a transient initial relaxation, the oscillator
average energy does not change. Using an ergodic to ergodic transition, an external agent can temporarily supply
the oscillator with a large amount of energy, but the oscillator is unable to keep it for long; in the course of time the
energy surplus dissipates into the bath. For an ergodic oscillator that is the only scenario.
Now suppose the new frequency is higher than the critical value, ω > ωc. In that case the oscillator does not

thermalize, but instead reaches at long times a cyclostationary state, characterized by the oscillatory time dependence
of the relaxation and correlation functions. The average energy also oscillates in time and depends on both initial
ωi and final ω frequencies. One may say that the system undergoes an ergodic to nonergodic transition. Clearly the
properties of such transition depend on the protocol of switching ωi → ω, or λi → λ. The presented results allow us
to discuss only the case when the switching occurs instantaneously. If instead the switching takes a finite time and is
described by a smooth function λ(t), then the properties of the cyclostationary final state would be different. That
case is more difficult because requires to solve the generalized Langevin equation with a time-dependent oscillator
frequency.
The average oscillator energy after the instantaneous switching ωi → ω at time t = 0 is

E(t) =
mω2

2
〈q2(t)〉+ m

2
〈v2(t)〉, (146)

where the second moments of the coordinate and velocity are given by expressions (27). With equilibrium initial
conditions

〈q2i 〉 =
kBT

mω2
i

, 〈v2i 〉 =
kBT

m
(147)

that expressions take the form

〈q2(t)〉 =
kBT

mω2
i

S2(t) +
kBT

mω2

[

1− S2(t)
]

,

〈v2(t)〉 =
kBT

m

[

1− ω2 G2(t)
]

+
kBT

mω2
i

ω4G2(t). (148)

From Eqs. (146) and (148) we get

E(t) = kBT +
kBT

2

[

(

ω

ωi

)2

− 1

]

{

S2(t) + ω2G2(t)
}

. (149)

In terms of λ = (ω/ω0)
2 and λi = (ωi/ω0)

2 the result reads

E(t) = kBT +
kBT

2

[

λ

λi
− 1

]

{

S2(t) + λω2
0G

2(t)
}

. (150)

For λ ≤ λc = 1− µ/2, the relaxation functions have only ergodic components vanishing at long times

G(t) = Ge(t) → 0, S(t) = Se(t) → 0, as t → ∞ (151)

In that case, as expected, Eq. (150) shows that the oscillator’s energy relaxes to the equilibrium value kBT .
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Now suppose λ > λc. In that case the relaxation functions have both ergodic and nonergodic components,

G(t) = Ge(t) +G0 sinω∗t, S(t) = Se(t) + S0 [cos(ω∗t)− 1], (152)

and the ergodic components have the asymptotic properties

Ge(t) → 0, Se(t) → S0, as t → ∞. (153)

Then, taking into account that S0 = λω0G0/β, see Eq. (138), one finds in the limit of long times the oscillator energy
in the cyclostationary (cs) state:

Ecs(t) = kBT +
kBT

2

(

λ

λi
− 1

)

(ω0G0)
2

{

(

λ

β

)2

cos2(ω∗t) + λ sin2(ω∗t)

}

. (154)

Instead of relaxing to the equilibrium value kBT , the energy oscillates with time, and its lower bound exceeds the
equilibrium value kBT . After the additional averaging over time (denoted by the overbar), the energy of the oscillator
in the cyclostationary state takes the form

Ecs = kBT +
kBT

4

(

λ

λi
− 1

)

[

(

λ

β

)2

+ λ

]

(ω0G0)
2 (155)

Here ω0G0 and β = β(λ, µ) are given by Eqs. (136) and (143), respectively.
The physical interpretation of the above results is as follows. When the external agent at t = 0 instantaneously

increases the oscillator frequency ωi → ω, the oscillator (potential) energy is increased by the amount

∆E =
m

2
(ω2 − ω2

i )〈q2i 〉 =
kBT

2

[

(

ω

ωi

)2

− 1

]

=
kBT

2

(

λ

λi
− 1

)

. (156)

Thus at t = 0+ the oscillator, just kicked out of equilibrium, has the energy

E(0+) = kBT +∆E = kBT +
kBT

2

(

λ

λi
− 1

)

. (157)

Note that this expression is consistent with the result (150) for E(t) (taking into account that G(0) = 0 and S(0) = 1).
If the new frequency ω corresponds to an ergodic configuration (ω ≤ ωc) then the excess energy ∆E is eventually
dissipated into the bath, and the oscillator (now with the new frequency ω) returns to thermal equilibrium with the
average energy E = kBT . On the other hand, if the new frequency corresponds to a nonergodic configuration (ω > ωc)
then only a part of the excess energy ∆E dissipates into the bath. The dissipated energy Ediss = E(0+) − Ecs(t)
oscillates in time. Being averaged over time, it takes the form

Ediss = E(0+)− Ecs = f(λ, µ)∆E (158)

with

f(λ, µ) = 1− 1

2

[

(λ/β)2 + λ
]

(ω0G0)
2, (159)

and λ > λc. According to Eq. (158), the function f(λ, µ) has the meaning of the fraction of the initial excess energy
∆E eventually dissipated into the bath, so one expects 0 < f(λ, µ) ≤ 1.
Consider specifically the case µ = 1 when the expressions for β and G0, see Sec. XI, are less bulky,

ω0 G0 =
8λ− 4

(4λ− 1)3/2
, β =

2λ√
4λ− 1

, (160)

and λc = 1− µ/2 = 1/2. For that case f(λ) takes the form

f(λ) =
24λ2 − 12λ+ 1

(4λ− 1)3
. (161)

One observes that f(λ) takes the value 1 for λ = λc and monotonically decreases as 1/λ. This means that for a
nonergodic configuration with λ > λc only a part f ∆E of the excess energy ∆E is dissipated into the bath at long
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FIG. 9: The order parameter η(λ), its first η′(λ) and second η′′(λ) derivatives for µ = 1 and λi = 0.25 near the critical point
λc = 0.5.

times, another part (1− f)∆E remains localized in the oscillator. The localized energy monotonically increases with
λ and can be arbitrary large.
In our view, the ability to keep permanently the energy exceeding the thermal equilibrium value kBT , in violation

of the equipartition theorem, is the key property of the nonergodic oscillator. It is tempting to view configurations
with λ ≤ λc and λ > λc as two “phases” and to consider ergodic to nonergodic transitions λi → λ (with λi < λc) as
a phase transition with the dimensionless order parameter

η(λ) =
Ecs(λ)− kBT

kBT
. (162)

In the ergodic phase (λ ≤ λc) the order parameter vanishes, while in the nonergodic phase (λ > λc) it is non-zero and
increases with λ,

η(λ) =







0, if λ ≤ λc,

1
4

(

λ
λi

− 1
)

[

(

λ
β

)2

+ λ

]

(ω0G0)
2, if λ > λc.

(163)

For µ = 1, when G0 and β are given by Eq. (160) (and λc = 1/2), the explicit dependence of the order parameter on
λ is

η(λ) =

{

0, if λ ≤ λc,

c(λ, λi) (λ− λc)
2, if λ > λc,

(164)

with

c(λ, λi) =
4(8λ− 1)

(4λ− 1)3

(

λ

λi
− 1

)

. (165)

Since η(λ) and its first derivatives η′(λ) are continuous and the second derivative η′′(λ) is discontinuous at λ = λc, see
Fig. 9, there is a resemblance between ergodic to nonergodic transitions and conventional phase transitions of second
order. Note that the presented study is limited to the case when the switching λi → λ occurs instantaneously, and
there is no reason to believe that the exponent 2 in Eq. (164) would be the same if the switching takes a finite time.

XV. CONCLUSION

In this paper we have evaluated the relaxation and correlation functions for a Brownian oscillator described by
the generalized Langevin equation with the dissipation kernel of the form (9). The oscillator may have both ergodic
and nonergodic configurations (for µ < 2) , or only nonergodic configurations (for µ ≥ 2). In ergodic configurations,

which correspond to lower oscillator frequencies ω ≤ ωc =
√

1− µ/2ω0, the oscillator relaxes to thermal equilibrium
with the external bath. In nonergodic configurations, corresponding to higher oscillator frequencies ω > ωc, the
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oscillator does not reach thermal equilibrium (unless prepared in equilibrium initially), but evolves to non-equilibrium
cyclostationary states in which the average oscillator’s energy oscillates with time and exceeds the equilibrium value
kBT prescribed by the equipartition theorem.
In general, we observed that nonergodic configurations emerge when the spectrum of the bath’s modes is bounded

from the above. That is not the case for gas-like environments, but characteristic for lattices. The specific model
considered here corresponds to an isotope atom embedded in an infinite or semi-infinite harmonic chain (Rubin’s
model) and subjected to the external harmonic potential.
In the limit of zero oscillator frequency ω → 0, or λ = (ω/ω0)

2 → 0, the presented results recover that for Rubin’s
model. In particular, for the relaxation function R(t), which is also the normalized velocity autocorrelation function
in equilibrium, in the limit λ → 0 the presented results take the form

R(t) =

{

Re(t), if µ < 2,

Re(t) +R0 cos(ω∗t), if µ ≥ 2.
(166)

This reflects that for µ < 2 the condition of nonergodic relaxation λ > λc = 1− µ/2 cannot by satisfied when λ → 0,
and that for µ ≥ 2 the relaxation is nonergodic for any λ, including the limit λ → 0. As follows from Eq.(137), the
ergodic component of R(t) in the limit λ → 0 reads

Re(t) =
4µ

π

∫ 1

0

√
1− x2 cos(xω0t) dx

4(1− µ)x2 + µ2
. (167)

In particular, for µ = 2, which corresponds to the case of a tagged atom in a bulk of the uniform harmonic chain, we
recover the well-known result [19]

R(t) = Re(t) =
2

π

∫ 1

0

cos(xω0t) dx√
1− x2

= J0(ω0t).

For the amplitude and frequency of the nonergodic component we get from Eqs. (129) and (137) in the limit λ → 0

R0 =
µ− 2

µ− 1
, ω∗ =

µ

2
√
µ− 1

ω0. (168)

As expected, Eqs. (166)-(168) coincide with the known results for Rubin’s model, see Eq. (A28) in Ref. [9] (note that
parameter Q of Ref. [9] and parameter µ used in this paper are related as Q = 2/µ− 1).
The relaxation functions evaluated in the paper allow us to describe the evolution of the oscillator for t > 0 with

a frequency which is either fixed or switched instantaneously at t = 0. The latter setting allows one to study a
particular type of ergodic to nonergodic transitions. An interesting extension would be to study such transitions
when the oscillator frequency is tuned continuously during a finite time. Such an extension would be of interest,
in particular, from the perspective of the fluctuation theorems [31]. Their proofs often assume that the system is
ergodic for all values of the tunable parameter λ(t) [32, 33]. Not much is currently known about what happen if
that is not the case (see, however, [34]). Another interesting application is Brownian engines [35–37]. A nonergodic
oscillator in a cyclostationary state may store an arbitrary amount of energy. That property may be used beneficially
in designing Brownian machines. More generally, the parametric erodic to nonergodic transitions may be of interest
because algorithms involving periodically correlated (cyclostationary) processes in nonergodic configurations are often
advantageous relative to those based on stationary processes characteristic for ergodic regimes [25].
It might be tempting to seek implications of the presented results in the context of experiments with colloidal

particles held in optical traps. In a version called the capture experiment the strength of the optical trap (the
oscillator frequency in our model) is changed instantaneously, and the relaxation of the particle’s position and velocity
is recorded [38, 39]. This is precisely the setting described by the relaxation functions obtained in this paper. However,
when the bath is formed by a lattice, nonergodic configurations correspond to frequencies of order of ω0 which, even
for soft lattices, is several orders of magnitude higher than frequencies used in optical trap experiments with colloidal
particles in gaseous and aqueous environments.

Appendix A: Evaluation of I0(t)

In this Appendix we evaluate the integral I0 defined by Eq. (110). Consider the integral

I+0 (t) =
1

2πi

∫

Γ+

0

est G̃(s) ds =
1

πi

∫

Γ+

0

est ds

(2 − µ) s2 + µ s f1(s) + 2λω2
0

(A1)
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along the right shore of the branch cut, see Fig. 1, in the direction from iω0 to −iω0. Recall that f1(t) is the physical

branch of the function f(s) =
√

s2 + ω2
0 and can be evaluated as

f1(s) =
√
r1r2 e

i
θ1+θ2

2 (A2)

in terms of polar coordinates defined in Fig.1 with both polar angles θ1,2 in the range (−3π/2, π/2], see Eqs. (64) and
(65). For points s ∈ Γ+

0 once can use the parametrization s = iy + ǫ with −ω0 ≤ y ≤ ω0; then in the limit ǫ → 0 one
finds:

θ1 = −π

2
, θ2 =

π

2
, r1 = ω0 − y, r2 = ω0 + y, (A3)

Therefore

f1(s) =
√

ω2
0 − y2 for s ∈ Γ+

0 , (A4)

and

I+0 (t) = − 1

π

∫ ω0

−ω0

eiyt dy

(µ− 2) y2 + iµ y
√

ω2
0 − y2 + 2λω2

0

. (A5)

In a similar manner we can evaluate the integral

I−0 (t) =
1

2πi

∫

Γ−

0

est G̃(s) ds =
1

πi

∫

Γ−

0

est ds

(2− µ) s2 + µ s f1(s) + 2λω2
0

(A6)

along the left shore of the branch cut in the direction from −iω0 to iω0. In that case

θ1 = −π

2
, θ2 = −3π

2
, r1 = ω0 − y, r2 = ω0 + y. (A7)

This gives

f1(s) = −
√

ω2
0 − y2 for s ∈ Γ−

0 , (A8)

and

I−0 (t) =
1

π

∫ ω0

−ω0

eiyt dy

(µ− 2) y2 − iµ y
√

ω2
0 − y2 + 2λω2

0

. (A9)

Considering the sum I0 = I+0 + I−0 and evaluating its real and imaginary parts, one finds that the latter is zero due
to symmetry, and the result is

I0(t) = −4µ

π

∫ ω0

0

y
√

ω2
0 − y2 sin(yt) dy

4(1− µ) y4 + [4λ(µ− 2) + µ2]ω2
0 y

2 + 4λ2ω4
0

. (A10)

It is convenient to present the result using the dimensionless integration variable x = y/ω0,

I0(t) = − 4µ

πω0

∫ 1

0

x
√
1− x2 sin(xω0t) dx

4(1− µ)x4 + [4λ(µ− 2) + µ2]x2 + 4λ2
. (A11)

This result holds for arbitrary µ.

Appendix B: Evaluation of residues

Here we evaluate the residues in Eqs. (112) and (131) for the relaxation function G(t). One can verify that for

arbitrary µ the poles s1,2 = ±iω∗ of the transform G̃(s) are of order one (simple poles). Then the residue of estG̃(s)
at s1 is evaluated as follows:

Res[estG̃(s), s1] = lim
s→s1

estG̃(s) (s− s1) = eiω∗t lim
s→iω∗

G̃(s)(s− iω∗) = eiω∗t lim
s→iω∗

2(s− iω∗)

(2− µ) s2 + µ sf1(s) + 2λω2
0

.
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Applying L‘Hospital’s Rule yields

Res[estG̃(s), s1] = eiω∗t lim
s→iω∗

2f1(s)

µ s2 + 2(2− µ)s f1(s) + µ f2
1 (s)

. (B1)

Then, recalling Eq. (67), f1(iω∗) = i
√

ω2
∗ − ω2

0 , one gets

Res[estG̃(s), s1] =
2i

√

ω2
∗ − ω2

0

µ(ω2
0 − 2ω2

∗)− 2(2− µ)ω∗
√

ω2
∗ − ω2

0

eiω∗t (B2)

Similarly, for the residue at the second pole s2 = −iω∗ we obtain

Res[estG̃(s), s2] =
−2i

√

ω2
∗ − ω2

0

µ(ω2
0 − 2ω2

∗)− 2(2− µ)ω∗
√

ω2
∗ − ω2

0

e−iω∗t. (B3)

The sum of residues is

Res[estG̃(s), s1] +Res[estG̃(s), s2] =
4
√

ω2
∗ − ω2

0

µ (2ω2
∗ − ω2

0) + 2(2− µ)ω∗
√

ω2
∗ − ω2

0

sin(ω∗t), (B4)

These expressions hold for arbitrary µ, although the frequency ω∗ = ω∗(λ) has different forms for µ = 1 and for µ 6= 1.
Introducing the dimensionless function β(λ) = ω∗(λ)/ω0, the above expression can be written as

Res[estG̃(s), s1] +Res[estG̃(s), s2] =
1

ω0

4
√

β2 − 1

µ (2β2 − 1) + 2(2− µ)β
√

β2 − 1
sin(ω∗t). (B5)
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