
ar
X

iv
:2

30
4.

07
37

1v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

4 
A

pr
 2

02
3

Nonergodic Brownian oscillator: High-frequency response
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We consider a Brownian oscillator whose coupling to the environment may lead to the formation
of a localized normal mode. For lower values of the oscillator’s natural frequency, ω ≤ ωc, the
localized mode is absent and the unperturbed oscillator reaches thermal equilibrium. For higher
values of ω > ωc, when the localized mode is formed, the unperturbed oscillator does not thermalize
but rather evolves into a nonequilibrium cyclostationary state. We consider the response of such an
oscillator to an external periodic force. Despite the coupling to the environment, the oscillator shows
the unbounded resonance (with the response linearly increasing with time) when the frequency of
the external force coincides with the frequency of the localized mode. An unusual resonance (“quasi-
resonance”) occurs for the oscillator with the critical value of the natural frequency ω = ωc, which
separates thermalizing (ergodic) and non-thermalizing (nonergodic) configurations. In that case the
resonance response increases with time sublinearly, which can be interpreted as a resonance between
the external force and the incipient localized mode.

I. INTRODUCTION

Wave localization often occurs, as in Anderson local-
ization, due to destructive interference of waves from
multiple scatterers, but it also can be caused by a single
defect of mass or potential in extended periodic struc-
tures [1–6]. Effects of localized modes on dynamics of
the classical Brownian (open) oscillator were addressed,
to the best of our knowledge, only relatively recently,
using the formalism of the generalized Langevin equa-
tion [7–9]. Following Ref. [9], we will refer to an open
oscillator, whose coupling to the thermal bath may gen-
erate a localized mode, as the nonergodic Brownian oscil-
lator. In the presence of a localized mode, the oscillator
does not reach thermal equilibrium with the bath but
evolves into a cyclostationary state in which the mean
values and correlations of dynamical variables oscillate
with the frequency of the localized mode. Cyclostation-
ary stochastic processes are not stationary and, therefore,
manifestly nonergodic.

Compared to other mechanisms of the ergodicity
breaking [10–15], the formation of localized modes is eas-
ier to connect to specific, albeit often idealized, physical
models. In most of these models the thermal bath is rep-
resented by a lattice [1–6], but that does not appear to be
necessary. It was suggested that wave localization might
be important for the functional dynamics of proteins [16].
The presence or absence of a localized mode can often be
controlled by an experimentally tunable parameter, e.g.
the oscillator’s natural frequency ω. For the model dis-
cussed in this paper, a localized mode is formed when ω
exceeds a certain critical value, ω > ωc. By varying the
oscillator frequency, one can engineer a broader class of
nonequilibrium processes which may involve both ergodic
(ω ≤ ωc) and nonergodic (ω > ωc) configurations.

The previous studies of the nonergodic oscillator were
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focused on its relaxation and correlation properties in the
absence of external forces. In this paper, we consider the
dynamical response of a nonergodic Brownian oscillator
to the external harmonic force Fex(t) = F0 sin(Ω t). The
response has the form of unbounded resonance when the
external frequency Ω equals the frequency of the localized
mode. Most interesting is the response of the oscillator
with the critical natural frequency ωc just below the for-
mation of the localized mode. In that case a resonance
response will be shown to increase with time sublinearly.

II. MODEL

We consider a Brownian oscillator described by the
generalized Langevin equation [17, 18]

ẍ =−ω2x−
∫ t

0

K(t−τ) ẋ(τ)dτ+
F0

m
sin(Ωt)+

1

m
ξ(t), (1)

where the noise ξ(t) is zero-centered and connected to
the dissipation kernel K(t) by the standard fluctuation-
dissipation relation. The generalized Langevin equation
can be rigorously derived from first principles and, in
contrast to its Markovian (time-local) counterpart, may
hold on the time scale comparable with the relaxation
time of the thermal bath. The latter is important for
systems (particularly, viscoelastic) with a broad hierar-
chy of relevant time scales [19–21].
We consider a specific dissipation kernel

K(t) =
ω2
0

4
[J0(ω0t) + J2(ω0t)] =

ω0

2

J1(ω0t)

t
, (2)

where Jn(x)’s are Bessel functions of the first kind. The
kernel has the absolute maximum at t = 0 and for t > 0 it
oscillates with an amplitude decaying with time as t−3/2.
For F0 = 0 and ω = 0, the generalized Langevin equation
with kernel (2) describes Brownian motion of the termi-
nal atom of a semi-infinite harmonic chain, which is a
version of Rubin’s model [18].
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The special feature of the kernel (2) is that its spectral
density ρ(ν) has a finite upper bound ω0,

ρ(ν)=

∫

∞

0

K(t) cos(νt) dt=
1

2

√

ω2
0 − ν2 θ(ω0 − ν), (3)

where θ(x) is the step function. That is known to be
a condition for the formation of a localized mode whose
frequency ω∗ lies outside the spectrum, ω∗ > ω0 [1–4].
Thus, the unperturbed oscillator has three characteristic
frequencies, ω, ω0, and ω∗. The first two, ω and ω0, are
explicitly present in the Langevin equation, whereas the
third ω∗ is not, and can be viewed as a hidden parameter.
One may expect a singular response when the external
frequency Ω coincides with (or is close to) one of the
three characteristic frequencies. Since the localized mode
frequency lies in the interval ω∗ > ω0, the model shows
most interesting results for the high frequency response
at Ω ≥ ω0. We will limit ourselves to that case. The
response properties at lower frequencies Ω < ω0 require a
somewhat different mathematical approach (see a remark
in the Conclusion) and will be considered elsewhere.
As far as only the first moments of the coordinate and

its derivatives are concerned, the stochastic nature of
the generalized Langevin equation and the fluctuation-
dissipation relation are redundant. By averaging Eq. (1)
one gets for the average displacement q(t) = 〈x(t)〉 the
integro-differential equation

q̈ = −ω2q −
∫ t

0

K(t− τ) q̇(τ) dτ +
F0

m
sin(Ωt), (4)

which is totally deterministic. This equation was the
subject of several recent studies, particularly for the case
of the fractional oscillator with a power-law dissipation
kernel K(t) ∼ t−α [22, 23]. Solutions, while showing a
number of new interesting features, were still found to
satisfy general expectations of the linear response theory
and typical experimental setups: They involve transient
terms which die out at long times and a steady-state so-
lution which oscillates with the frequency of the external
field and a time-independent amplitude. As shown be-
low, for a nonergodic oscillator the solution may have a
very different structure.
We assume that for t < 0 the external force is zero and

the oscillator at t = 0 is in thermal equilibrium with the
bath. This implies zero initial conditions q(0) = q̇(0) = 0.
Then the solution of Eq. (4) in the Laplace domain reads

q̃(s) =
1

m
G̃(s) F̃ex(s), (5)

where the Laplace transforms of the Green’s function
G(t) and the external force are

G̃(s) =
1

s2 + s K̃(s) + ω2
, F̃ex(s) = F0

Ω

s2 +Ω2
. (6)

In the time domain, solution Eq. (5) has the form of the
convolution,

q(t) =
F0

m

∫ t

0

G(t− τ) sin(Ω τ) dτ. (7)

This expression is general; peculiarities of the model re-
side in the specific form of the Green’s function G(t).
Substituting the Laplace transform of kernel (2),

K̃(s) =
1

2

(

√

s2 + ω2
0 − s

)

(8)

into Eq. (6) for G̃(s) one gets

G̃(s) =
2

s2 + s
√

s2 + ω2
0 + 2ω2

. (9)

The inversion of this transform can be expressed in terms
of standard functions only for special values of the oscil-
lator frequency ω, see Eq. (15) below. For arbitrary ω,
the Green’s function in the time domain G(t) can be ex-

pressed in an integral form inverting G̃(s) by evaluating
a relevant Bromwich integral in the complex plane. As
shown in Ref. [9], for the given model there is a critical
value of the oscillator frequency

ωc = ω0/
√
2 ≈ 0.707ω0, (10)

which separates two types of the system’s behavior,

G(t) =

{

Ge(t), if ω ≤ ωc,

Ge(t) +G0 sin(ω∗t), if ω > ωc.
(11)

For ω ≤ ωc a localized mode is not formed, and the
Green’s function involves only the ergodic component

Ge(t) =
4

πω0

∫ 1

0

sin(xω0 t)x
√
1− x2 dx

(1 − 4λ2)x2 + 4λ4
, (12)

where λ denotes the dimensionless oscillator frequency
in units of ω0. We will also use the notation λc for the
dimensionless critical oscillator frequency,

λ = ω/ω0, λc = ωc/ω0 = 1/
√
2. (13)

One can verify that Ge(t) for any λ non-monotonically
and slowly decreases and vanishes at long times. We
will refer to settings with ω ≤ ωc (λ ≤ λc) as ergodic
configurations. One can show that the oscillator in er-
godic configurations reaches thermal equilibrium at long
times [9]. The Green’s function G(t) has also the mean-
ing of the (normalized) correlation function 〈x(0)ẋ(t)〉
[9]. The asymptotic behavior Ge(t) → 0 corresponds to
the asymptotic fading of correlations and relaxation to
thermal equilibrium.
For ω > ωc, as Eq. (11) shows, the localized mode

is developed, and the Green’s function involves both er-
godic and nonergodic components. The latter does not
vanish at long times but rather oscillates with the local-
ized mode frequency ω∗. The localized mode amplitude
G0 and frequency ω∗ of the nonergodic component are
given by the following expressions [9]:

ω0G0 =
8λ2 − 4

(4λ2 − 1)3/2
, ω∗ =

2λ2

√
4λ2 − 1

ω0. (14)
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In settings with ω > ωc (λ > λc), which we refer to as
nonergodic configurations, correlations do not vanish at
long times. The oscillator does not reach thermal equilib-
rium, but evolves to a cyclostationary state whose statis-
tics oscillate with frequency ω∗.
For two values of the oscillator frequency, ω = ω0/2

and ω = ωc, both corresponding to ergodic configura-
tions, the inverse transform of Eq. (9), or the integral
expression (12), can be compactly expressed in terms of
Bessel functions,

G(t) = Ge(t) =

{

8

ω2

0
t
J2(ω0t) if ω = ω0/2,

2

ω0

J1(ω0t) if ω = ωc.
(15)

One observes that for the critical configuration (ω = ωc)
the Green’s function decays slower. That feature can be
viewed as a precursor of the localized mode formation
and leads to conspicuous response properties.

III. RESPONSE OF CRITICAL

CONFIGURATION: QUASI-RESONANCE

The most appealing type of response, which we refer to
as quasi-resonance, occurs when the oscillator frequency
has the critical value and the external force frequency is
equal to the cutoff frequency of the bath spectrum,

ω = ωc, Ω = ω0. (16)

The Green’s function, according to Eq. (15), takes the
form G(t) = 2

ω0

J1(ωt). Substituting it into Eq. (7) and
taking into account Kapteyn’s integral

∫ t

0

J1(τ) sin(t− τ) dτ = sin(t)− tJ0(t), (17)

see Ref. [24] and the Appendix, immediately yields

q(t) =
2F0

mω2
0

{

sin(ω0t)− ω0t J0(ω0t)
}

. (18)

Here the first term is the anticipated steady-state solu-
tion oscillating with the frequency of the driving force
Ω = ω0 (remarkably, with a zero phase shift). The sec-
ond term, however, is quite unexpected. Instead of be-
ing transient, it oscillates with an amplitude increasing
indefinitely in time as

√
t. Such a resonance-like (quasi-

resonance) behavior is in drastic contrast to that of the
normal damped and fractional oscillators when the reso-
nance solution is stationary, and its amplitude is finite.
One may view the configuration with ω = ωc as a

critical phase where the localized mode is incipient and
its frequency coincides with the cutoff frequency of the
bath spectrum, limλ→λc

ω∗ = ω0, see Eq. (14). Unper-
turbed properties of such a phase show no signs of any
anomalies, except a slower decay of the Green’s func-
tion. However, the dynamical response to the force with
the frequency of the incipient localized mode, Ω = ω0,

is singular. One might suggest the following interpreta-
tion. Recall that the Green’s function is also the cor-
relation function 〈x(0)ẋ(t)〉. The slower decay of corre-
lations in the critical configuration signifies the slower
heat exchange between the system and the heat bath.
As a result, the system receives energy from the external
source with the rate higher than the rate of heat dissi-
pation into the heat bath, which makes the response to
increase with time indefinitely. This interpretation, how-
ever, is somewhat superficial and does not fully catch the
subtlety of the result. It does not explain the sublinear
increase of the response with time. Also, applying the
similar reasoning to the normal damped oscillator, one
might expect that for a sufficiently small dissipation co-
efficient the resonance response would increase with time
indefinitely. That, however, is not the case.

IV. RESPONSE OF SPECIAL ERGODIC

CONFIGURATION

Another special setting when the response can be ex-
pressed in a compact analytical form is (ω = ω0/2, Ω =
ω0). The Green’s function is given by the first expression
in Eq. (15), which can also be presented as

G(t) = Ge(t) =
2

ω0

[J1(ω0t) + J2(ω0t)] . (19)

Substituting this into Eq. (7) and taking into account
integral (17) and its generalization [25]
∫ t

0

J3(τ) sin(t−τ) dτ = −t J2(t)+6J1(t)−3 sin(t), (20)

which also can be expressed as
∫ t

0

J3(τ) sin(t−τ) dτ= tJ0(t)+4J1(t)−3 sin(t), (21)

yields

q(t) =
4F0

mω2
0

{

sin(ω0t− π) + 2J1(ω0t)
}

. (22)

The structure of this solution is similar to that for the
normal damped oscillator. The first term is the steady-
state solution which oscillates with the frequency of the
external force Ω = ω0. The second term is a transient
vanishing at long times. Notable features are as follows:
(1) a slow decay of the transient term, and (2) the phase
shift π of the steady-state term is the same as for the
undamped oscillator. Recall that for the normal damped
oscillator the phase shift reaches the value π only in the
limit Ω → ∞.

V. RESPONSE OF GENERAL ERGODIC

CONFIGURATIONS

Let us consider the response of general ergodic (sub-
critical) configurations with ω ≤ ωc. The Green’s func-
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tion has only an ergodic component, G(t) = Ge(t). Sub-
stituting Eq. (12) for Ge(t) into Eq. (7), changing the
integration order, and integrating over τ one obtains

q(t) =
F0

mω2
0

{

−A sin(Ωt) + ϕ(t)
}

, (23)

where the amplitude A and transient ϕ(t), both dimen-
sionless, are given by the integral expressions

A =
4

π

∫ 1

0

x2
√
1− x2 dx

[

(1− 4λ2)x2 + 4λ4

]

(Λ2 − x2)
, (24)

ϕ(t) =
4Λ

π

∫ 1

0

x
√
1− x2 sin(xω0 t) dx

[

(1− 4λ2)x2 + 4λ4

]

(Λ2 − x2)
. (25)

Here λ stands, as above, for the dimensionless oscillator
frequency, and Λ denotes the dimensionless external force
frequency, both in units of the cut-off frequency ω0,

λ = ω/ω0, Λ = Ω/ω0. (26)

The considered domain (ω ≤ ωc, Ω ≥ ω0) corresponds to
(λ ≤ λc, Λ ≥ 1).
For the strict inequality Λ > 1, the integrands in the

above expressions have no singularities, so the integrals
converge. For Λ = 1 and λ 6= λc, the integrands have
an integrable singularity at the upper integration limit,
and the integrals still converge. For the special case (λ =
λc, Λ = 1) the integrals diverge at the upper integration
limit, and the above expressions are not valid. That case,
however, was already described in Sec. III by another
method.
Excluding the special case (λ = λc, Λ = 1), the in-

tegral expression Eq. (24) for the amplitude A can be
worked out to the explicit form

A =
2

Λ2 + Λ
√
Λ2 − 1− 2λ2

. (27)

Equation (25) for ϕ(t) is reduced to a more explicit form
apparently only for (λ = 1/2, Λ = 1), which is one of
the two special settings considered above. For that case,
Eqs. (25) and (27) give ϕ(t) = 8J1(ω0t) and A = 4, and
Eq. (23) recovers Eq. (22).
According to Eq. (27), for the considered domain (λ ≤

λc,Λ ≥ 1) the amplitude A is positive. Then we can write
the result (23) as

q(t) =
F0

mω2
0

{

A sin(Ωt− π) + ϕ(t)
}

. (28)

Recall again that the phased shift π is a property similar
to that of the undamped oscillator for Ω > ω, whereas for
the normal damped oscillator the phase shift reaches π
only in the limit Ω ≫ ω.
One can verify that for λ < λc the term ϕ(t) given by

Eq. (25) is transient and vanishes at long times. Then
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λ=0.7, Λ=1.05

-10

 0
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λ=0.7, Λ=1.025

q
(t

)
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 0
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 0  100  200

λ=0.7, Λ=1.005

ω
0
t

FIG. 1: The average coordinate q(t), in units of q0 =
F0/(mω2

0), for ergodic configurations with the dimensionless
oscillator frequency λ = ω/ω0 = 0.7 (just below the critical
value λc = 1/

√
2 ≈ 0.707) and three values of the dimension-

less external frequency Λ = Ω/ω0. At longer times the beat
pattern dies out and q(t) takes the steady-state form Eq. (29).
The plot at the bottom is close to that for the quasi-resonance
solution Eq. (18).

the asymptotic solution is given by the steady-state term,
oscillating with the frequency of the external force,

q(t) → F0 A

mω2
0

sin(Ωt− π) as t → ∞. (29)

However, the decays of the transient ϕ(t) is slow, and
it is getting slower as λ → λc. As a result, there is
a significant time interval, whose duration increases, in
fact diverges, as λ → λc, when ϕ(t) oscillates with an
almost constant amplitude. Then the solution q(t) is
governed by the interplay of two oscillating terms in Eq.
(28). As a result, the solution, during a long, albeit finite,
time interval, has not a harmonic form (29), but instead
shows a beat pattern. For a fixed value of λ close to λc,
the beat period tends to increase when Λ → 1. In the
limits λ → λc and Λ → 1 the initial increasing section of
the first beat has the infinite duration, and the solution
takes the quasi-resonance form Eq. (18). The tendency
is shown in Fig. 1.

VI. RESPONSE OF NONERGODIC

CONFIGURATIONS

Consider now the oscillator with natural frequency
ω > ωc. The localized mode now is fully developed,



5

and the Green’s function, according to Eq. (11), involves
the harmonic (nonergodic) term G0 sinω∗t. In that case
one may anticipate the response to be similar to that of
the undamped oscillator with the natural frequency ω∗,
showing the resonance at Ω = ω∗. The expectation is
confirmed by the calculations below.
For nonergodic configurations with ω > ωc the Green’s

function has now both ergodic and nonergodic (periodic)
components, G(t) = Ge(t) + G0 sin(ω∗t). Substituting
this into Eq. (7), taking into account Eq. (12) for Ge(t),
changing the integration order, and integrating over τ
yields the result for q(t). We write it as

q(t) = qe(t) + qne(t), (30)

where the first and second terms come from the ergodic
and nonergodic components of the Green’s function, re-
spectively. The ergodic term qe(t) coincides with the re-
sponse of the ergodic configuration given by Eq. (28),

qe(t) =
F0

mω2
0

{

A sin(Ωt− π) + ϕ(t)
}

, (31)

where A and ϕ(t) are still given by integral expres-
sions (24) and (25). However, for the given domain
(λ > λc, Λ ≥ 1), expression (24) for A is reduced not
to Eq. (27), but to a more involved form

A =
2(4λ2 − 1)

(

Λ2 − Λ
√
Λ2 − 1

)

− 4λ2

(4λ2 − 1)(4λ4 − 4λ2Λ2 + Λ2)
. (32)

At Λ = Λ0 = 4λ4/(4λ2 − 1) both the numerator and
the denominator are zero, and the expression has to be
extended by continuity,

A(Λ0) = lim
Λ→Λ0

A =
1

2λ2 (4λ2 − 1) (2λ2 − 1)
. (33)

One observes that the amplitude A behaves qualitatively
similar to that for ergodic configurations, Eq. (27). For
any fixed value of λ > λc the amplitude A as a function
of Λ monotonically decreases and shows no maximum (no
resonance) near Λ = λ (Ω = ω).
The function ϕ(t) in Eq. (31) is still given by Eq. (25).

One can verify numerically that for the given domain it
is transient, i.e. dies out at long times. However, as for
the subcritical case λ ≤ λc, the decay time of ϕ(t) is
getting longer and diverges when λ → λc and Λ → 1. As
a result, the ergodic component qe(t) behaves similar to
the solution for ergodic configurations with λ ≤ λc. For
λ close to λc and Λ close to 1, qe(t) shows on a shorter
time scale beats patterns similar to those illustrated in
Fig. (1). In the limit λ → λ+

c and Λ → 1+ the duration of
the first beat diverges and qe(t) takes the quasi-resonance
form (18). For a finite λ − λc > 0, qe(t) evolves on a
longer time scale to the steady state solution oscillating
with frequency Ω.
Consider now the the nonergodic term qne(t) in Eq.

(30). Substituting the nonergodic component of the

-10

 0

 10
qe(t)

-10

 0

 10
qne(t)

-10

 0

 10

 0  100  200

q(t)=qe(t)+qne(t)

ω
0
t

FIG. 2: The response functions for a nonergodic configuration
with λ = 0.72 and Λ = 1.005. Top: the ergodic component
qe(t), Eq. (31). Middle: the nonergodic component qne(t),
Eq. (34). Bottom: the total solution, q(t) = qe(t) + qne(t).
The ergodic and nonergodic components oscillate with ampli-
tudes which increase with time as

√
t and t, respectively.

Green’s function G0 sinω∗t into Eq. (7) yields

qne(t)=
F0 G0

m

1

Ω2 − ω2
∗

[

Ω sin(ω∗t)−ω∗ sin(Ω t)
]

, (34)

for Ω 6= ω∗, and

qne(t) =
F0 G0

2m

[ 1

Ω
sin(Ω t)− t cos(Ω t)

]

, (35)

for Ω = ω∗. Those are exactly the expressions for the
response of the undamped oscillator with the natural fre-
quency ω∗, describing beat patterns for Ω 6= ω∗ and un-
bounded resonance for Ω = ω∗.
The total response q(t) = qe(t) + qne(t) is determined

by the interplay of both ergodic and nonergodic compo-
nents and shows a variety of beat patterns for Ω 6= ω∗

and unbounded resonance for Ω = ω∗. Of special inter-
est is the asymptotic case (λ → λ+

c , Λ → 1+) when both
components on a long time scale show the resonance-like
behavior, qe(t) ∼ tJ0(ωt) and qne(t) ∼ t cos(ω0t). The
case is illustrated in Fig. 2.

VII. CONCLUSION

The response properties of an open oscillator with a
well-developed localized mode with frequency ω∗ are sim-
ilar to those of an isolated oscillator with the natural
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FIG. 3: Simulation results for the quasi-resonance set up (ω =
ωc, Ω = ω0) when the bath is represented by a finite harmonic
chain of n = 10, 20, and 30 atoms. As n increases further, the
simulation results quickly converges to Eq. (18).

frequency ω∗. In particular, when the frequency of the
external force Ω coincides with ω∗, the oscillator, instead
of evolving into a steady state, shows an unbounded res-
onance. Superficially, this might come as a surprise since
the equation of motion (4) involves a dissipation term
(which usually smooths out resonance singularities) and
also because the equation does not involve the frequency
ω∗ explicitly. However, from a more educated point of
view, which we tried to develop in this paper, the un-
bounded resonance at Ω = ω∗ is hardly unexpected,
considering that the localized mode does not exchange
energy with the thermal bath and thus behaves as an
isolated oscillator.
More subtle is the result for the critical value of the

oscillator natural frequency ωc when, according to Eq.
(11), the localized mode is incipient. In that case, even
though the localized mode does not affect characteristics
of the unperturbed system, the dynamical response may
have a singular quasi-resonance form (18), which has no
analog or counterpart in other open oscillator models.
While only a specific dissipation kernel (2) was considered
here, one may expect similar results for other kernels
whose spectral density has a finite upper bound.
Although the presented results are exact, it might be

of interest to verify and extend them with numerical
simulations. As we already mentioned, the generalized
Langevin equation with the kernel (2) describes a termi-
nal atom of a semi-infinite harmonic chain subjected to
an external harmonic potential and driven by an exter-
nal periodic force. Figure 3 shows the simulation results
for the quasi-resonance response of the oscillator coupled
to the finite chain of n atoms. The dependence of the
response on the size of the thermal bath may be of in-
terest for biochemical applications when both a system

and a bath correspond to degrees of freedom of a single
macromolecule [16, 19, 20]. Simulation shows that for n
of an order of 100 or more the quasi-resonance response is
practically indistinguishable from the result (18) for the
infinite bath. For smaller n the amplitude of oscillations
as a function of time is non-monotonic, yet on the long
run the response increases with time indefinitely.
We have already noted in Ref. [9] that the parametric

transition between ergodic (ω ≤ ωc) and nonergodic (ω >
ωc) configurations resembles a phase transition of the sec-
ond kind. From that perspective, the quasi-resonance re-
sponse of the configuration with ω = ωc can be viewed
as a critical phenomenon, and the exponent 1/2 in the
asymptotic form of Eq. (18), q(t) ∼ t1/2 cos(w0t− π/4),
can be interpreted as a critical exponent.
In this paper we considered the response only at high

frequency Ω ≥ ω0. For the low-frequency response at Ω <
ω0, or Λ < 1, the integral expressions (24) and (25) for A
and ϕ(t) diverge and are not valid. One can show that the
results can be extended for the low-frequency response
merely by defining the improper integrals in Eqs. (24)
and (25) in the sense of Cauchy principal value. The
justification, however, requires a more involved technique
and will be addressed in a future publication.

APPENDIX

The integral (17)

I(t) =

∫ t

0

J1(τ) sin(t− τ) dτ (A1)

can be evaluated as follows. The Laplace transform of
J1(t) is

J̃1(s) = L{J1(t)} =
1

s2 + s
√
s2 + 1 + 1

, (A2)

and the convolution (A1) in the Laplace domain has the
form

Ĩ(s) = L{I(t)} =
1

(s2 + 1)(s2 + s
√
s2 + 1 + 1)

. (A3)

In terms of partial fractions it can be written as

Ĩ(s)=
1

s2 + 1
− s

(s2 + 1)3/2
=

1

s2 + 1
+

d

ds

1√
s2 + 1

. (A4)

Then, using the property

L{t f(t)} = − d

ds
L{f(t)} = − d

ds
f̃(s) (A5)

and taking account the transform of the Bessel function
L{J0(t)) = 1/

√
s2 + 1, one finds

I(t) = sin(t)− tJ0(t). (A6)

This is Eq. (17) of the main text.
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