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NONEXISTENCE OF GLOBAL SOLUTIONS AND

BIFURCATION ANALYSIS

FOR A BOUNDARY-VALUE PROBLEM OF PARABOLIC TYPE

C V. PAO

Abstract. The aim of this paper is to present a bifurcation analysis on the

existence of the nonexistence of a global solution for a semilinear parabolic

equation and to characterize the local stability and the instability of the

corresponding steady-state solutions. The bifurcation result can be de-

scribed either by a parameter X for a fixed spatial domain Ü or by varying Í2

for a fixed A. The stability analysis gives a result which can be used to

determine the stability or instability problem when the system possesses

nonintersecting multiple steady-state solutions.

1. Introduction. Let Í2 be a bounded domain in R " and 3 Q the boundary of

ß. Consider the following initial boundary-value problem:

(11) u, - V-(D(x)Vu) = Xieau - b)       (? > 0, x G B),

(1.2) ßidu/dv) + u = 0       (i>0, xG3fi),

(1.3) M(0, x) = u0ix)       (xGfi),

where X, ß, a, b are nonnegative constants with 0 < b < 1, D is a positive

function on £2 (the closure of Q), V is the gradient operator in fi and 9/3»' is

the outward normal derivative on 3B. We assume that ß is sufficiently

smooth, D is continuously differentiable in fi, and u0 is continuous nonnega-

tive on Í2 and satisfies the boundary condition (1.2). The above system arises

in the thermal ignition of mixture of gases and some nonlinear diffusion

problems (cf. [6], [8], [9]). The purpose of this paper is to give a bifurcation

analysis on the existence and nonexistence of a global solution of the system

(1.1)—(1.3), and to characterize the local stability and instability behavior of

steady-state solutions. Our bifurcation results can be described either by

considering X as a parameter with a fixed domain ñ or by varying the size of

fi with a fixed X. Specifically, we show for the case of fixed ß that as X

increases from zero a unique global solution exists until X = Xc for some

Ac > 0. As soon as X > Xc this solution not only grows unbounded but also

diverges to oo in a finite time Tx which decreases as X increases. In fact, we

obtain an explicit upper bound for the "finite escape time" Tx. We also show

that if a steady-state solution Me(x) exists then it is either asymptotically
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stable or unstable depending solely on Xexp(awe(x)) < Xc or > \ on ñ. This

result characterizes the local behavior of a steady-state solution which can be

used to determine the stability and instability problem when the system

possesses nonintersecting multiple steady-state solutions.

The nonexistence of global solutions for semilinear parabolic equations was

discussed in [5], [7], [15]. The papers of [7], [15] are concerned with initial-

value problems with ñ = R" while the work in [5] treats a special form of

(l.l)-(l-3) with D = o = X = 1 and ß = b = 0. It was announced in [5] that

if the size of ñ is sufficiently large then the solution diverges to oo either as

/ -» oo or in a finite time. In this paper, we obtain a more definite conclusion

for the system (1.1)—(1.3). Specifically, we show that there is a domain flc such

that the solution actually diverges to oo in finite time when the size of ñ is

increased beyond the size of S2C. On the other hand, the existence of positive

solutions for the corresponding steady-state solution has recently been inves-

tigated in [1], [2], [9], [14]. In particular, the bounds of the steady-state

solution given in [2] coupled with our results can be used to obtain detailed

information about the stability problem such as stability region and rate of

decay of the perturbed solution to the steady-state solution. Our approach to

the stability problem uses a similar technique as that in [3].

2. The main results. By a steady-state solution we mean a time-independent

solution ue(x) of (1.1), (1.2). In view of the maxium principle any steady-state

solution is nonnegative. Notice that if b = 1 the zero function ue — 0 is a

steady-state solution. Let líq he the last eigenvalue and \j/(x) the corresponding

eigenfunction of the linear eigenvalue problem

V-(Z>(x)V<p) + p<f> = 0       (xEfi),

ß(d<b/dv) + <¡> = 0       (x Edü).

It is well known that po is positive and \p(x) > 0 in ß. In fact, if ß > 0 then

the maximum_ principle implies that \¡/(x) > 0 on fl (cf. [12]). We set \pm =

min \p(x) on £2 and normalize \p(x) so that max \p(x) = 1. Notice that \pm > 0

when ß > 0. Our results for the existence and nonexistence of global

solutions are given in the following two theorems.

Theorem 1. Let ß > 0 and let u0(x) > 8\p(x) for some constant 8 > 0. If

aX > pn then there exists a constant Tx < oo such that a unique nonnegative

solution u(t, x) to (1.1)—(1.3) exists on [0, Tx) xß andsatisifes

(2.2) lim max«(í, x) = oo.
'-^i íes

In fact, u(t, x) > 8(1 - yt)-\p(x), where y = X8a2xbJ2.

Theorem 2. Let b = 1 aAia" let u0(x) < p\p(x)for a sufficiently small constant

p > 0. If aX < Pq then a unique nonnegative solution u(t, x) to (1.1)—(1.3) exists

on [0, oo) X fi and satisfies

(2.3) lim maxu(í, x) = 0.
'-*00 xeä
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Theorem 2 implies that when b = 1 the zero solution is asymptotically

stable. In the case of b < 1, positive steady-state solutions still exist when Xa

is sufficiently small (cf. [2], [12]). Our next theorem is to characterize the local

stability and instability behavior of any nonnegative steady-state solution.

Theorem 3. Let ueix) be any nonnegative steady-state solution. If

(2.4) exp(a«e(x)) < (aX)~ ' ¡^       (x G ß),

then there exist positive constants p„ a„ / = 1, 2, such that a unique solution

t/(/, x) to (1.1)—(1.3) exists and satisfies

ueix) - Pxe-atyix) < u(t,x)

(2.5)
< «e(x) + p2e_a^(x)       (r > 0, x G fl)

provided that

ueix) - PMX) < uoix) < UÁX) + PiHx)       ix G ß)-

On the other hand, if

(2.6) exp(awe(x)) > (aX) " ' ^       (x G Q),

then there exists a3 > 0 such that for every positive constant p3,

(2.7) m(î, x) > ueix) + p3eamx)       (r > 0, x G ß)

whenever w0(x) > ueix) + p3\pix)for x G ß.

Remarks, (a) The conclusions in Theorems 1, 2 and 3 remain valid when

the operator V-(£)(x) Vu) is replaced by a uniformly elliptic operator of the

form

n n

Lu s 2  ay(x)K     + 2 a,(x)«v
<,y-l i = i

In this situation, ¡Iq and ^ are the least eigenvalue and its corresponding

eigenfunction of L (under the boundary condition in (2.1)). Notice that u„ is

real, positive and u>(x) is positive in ß or ß according to ß = 0 or ß > 0 (cf.

[12], [13]).
(b) Since ¡iffx is directly related to the size of ß (for certain fixed geometry).

Theorems 1 and 2 imply that for fixed X if we increase the size of ß then there

is a critical domain ßc such that a global solution exists and converges to zero

(for small u0 and 6=1) when ß is smaller than ßc, and there exists no global

solution when ß is larger than ßc. This phenomenon also leads to a

bifurcation result in terms of the size of the spatial domain.

3. Proof of the main theorems. The proof of the results in Theorems 1, 2

and 3 is based on the notion of upper and lower solution which has

frequently been used in the treatment of both elliptic and parabolic type

boundary-value problems (cf. [1], [9], [11], [14]). In this paper, by an upper

and lower solution we mean a pair of smooth functions ù(î, x) and m(/, x)
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such that for every finite T > 0, ü > u on [0, T] X ß and ü satisfies the

inequalities

Ü, - V-(D(x)Vü) >X(eaü -b)       (/E(0, r],xEñ),

(3.1) ß(dü/dv) + ü > 0       (í £ (0, T],x £9fi),

m(0, x) > u0(x)       (x E fi),

while u satisfies all the reversed inequalities in (3.1). Here by a smooth

function is meant a continuous function v on [0, T] X ñ which is

continuously differentiable in t > 0, twice continuously differentiable in

x E fi and dv/dv exists on(0, T] X 30.

By starting from the initial iterations u(0) = iii and u(0) = u we can

construct two sequences from the linear system

„(*>_ V-(Z)(x) Vh(W) = X(exp(aW(*-')) - b)   (t E(0, T],xE H),

(3.2) /?(3h(*)/6>) + m(W = 0    (t E(0, T],x saß),

u(k)(0, x) = u0(x)    (x E Í2),       k = 1, 2, . . . .

Denote these two sequences, respectively, by {uik)} and {t/fc)}. Then by the

property of ü and u it is easily seen that {M***} is monotone nonincreasing

while {u^} is monotone nondecreasing and mw < üS® for every ä =

1, 2, ... . Thus the pointwise limits of these sequences exist and are denoted

by m and u. A regularity argument shows that ü and u are both solutions of

(1.1)—(1.3) and satisfy the relations

(3.3) U  <UW  < M(2)  <•••    <«<»<•••    <   H(2) <   M0)  <   Ü.

In fact, ¿7 coincides with u and is the unique solution of (1.1)—(1.3). (See

[11], [14] for a detailed discussion. See also [10] for the uniqueness problem.)

Hence the asymptotic behavior of the solution can be determined through the

construction of suitable upper and lower solutions. The proofs of our main

theorems are based on some explicit construction of these functions. Before

doing this, we observed that u = 0 satisfies all the reversed inequalities in

(3.1) and thus the problem has a unique nonnegative solution if there exists a

nonnegative upper solution. On the other hand, if « is a function satisfying

the reversed inequality in (3.1) then the corresponding sequence {t/*'} is

monotone nondecreasing and thus converges to the unique solution when it is

bounded from above. This approach will be used in the proof of the

nonexistence of a global solution.

Proof of Theorem 1. We seek a lower solution in the form of u =

p(t)\p(x) where p(t) is a positive function with p(0) > 8. To insure that u

satisfies the reversed inequalities in (3.1) it suffices to findp such that

p'(t)Hx) + WOW*) < X[exp(ap(0>K*)) " b]
(3.4) J

(íe(0, r],*eO).
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Since e^ - b > at] + a2r¡2/2 for tj > 0, where 0 < b < 1, we only need to

find/5 sucn that/?(0) > 5 and

(3.5) />'(,) - (aX - ti0)pit) < Xa^2(/)^(x)/2.

In view of the hypothesis aX > ¡iç the above inequality holds if we choose

(3.6) pit) - 6(\ - yt)-\       ie[0,y-'),

where y = X8a2\pm/2. With this choice of p the function « = //(f)i//(x)

becomes a lower solution if there exists an upper solution ü satisfying ü > u

on [0, y_1)Xß. However, since u is unbounded at every point of ß as

t -» y ~x such a function cannot exist unless the solution is also unbounded at

all points xGßasf-»y_1. To overcome this difficulty we take a sufficiently

large constant N > w0(x) and define a function / by /(rj) = e"1 — b for

0 < Tj < N and /(tj) = eaN - b for tj > N. Choose 7" sufficiently close to

y_1 such that «(7", x') > N for some x' G ß. Then the sequence {ww}

obtained from (3.2) with exp(aw(*_1)) - b replaced by /(m(A:_1)) and with

u(°) = pp, T = 7" is monotone nondecreasing. Since /(w(*-1)) is uniformly

bounded, the well-known estimate for linear parabolic system insures that

{i/fc)} is bounded (cf. [4, p. 146]). It follows from its nondecreasing property

that {u^k)} converges pointwise to a function w*(f, x). A regularity argument

shows that u* is a solution of the equation

(3.7) u, - V-(7J(x)Vu) =X/(u)        (/ G(0, T'],x G ß)

and satisfies conditions (1.2), (1.3). Since u* > u = pip on [0, T'] X ß and

uiT', x') > N there exists T* < T'_ such that «*(/, x) < TV on [0, 7*] X ß

and u*iT*, x0) = N for some x0 G ß. By the definition off, u* is the solution

of (1.1)—(1.3) for at least (r, x) G [0, T*] x ß. The above conclusion shows

that for every large constant N there is a number T* < y~x and a solution

w*(r, x) of (1.1)-(1.3) on [0, T*] X ß such that max «*(/, x) = N. Hence (2.2)

must hold. For if u were bounded on [ 0, y ~x) X ß, say by K, then by the

choice of N > K there would exist a point x0 E ß and 7* < y ~x such that

uiT*, x0) = N > K which is absurd. This completes the proof of the

theorem.

Proof of Theorem 2. It suffices to find a nonnegative upper solution

which converges to zero as t —> oo since u = 0 clearly satisfies the reversed

inequalities in (3.1). We seek an upper solution of the form « = pe~"'ipix) for

some positive constants p and a. In view of (3.1), ü is an upper solution if

(3.8) (Mo - ct)pe-a'iPix) > X[exp(ape-<"iPix)) - l].

The above inequality holds if

(3.9) (/i0 _ a)v > X[exp(oT}) - l]    forO < 17 < p.

But by the hypothesis Xa < ¡Xq there exists p > 0 such that

(3.10) iav,y\e^ - 1) <(Xa)"'Ju0   for 0 < t, < p.

It follows by letting a = n0 - p-xXieap - 1) > 0 that
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(Aa)-1(p0-a) = (ap)-VP-l)

(3-U) >(aV)-l(e^-l)       (0<i,<p),

which proves (3.9). Hence a unique nonnegative solution u(t, x) exists and is

bounded by pe~a'i¡/(x). Relation (2.3) follows immediately.

Proof of Theorem 3. To prove relation (2.5) it suffices to show that

ü = ue(x) + p2e~a2'\p(x) and u = ue(x) - pxe~ttl'\¡/(x) are upper and lower

solutions, respectively. Clearly, ü is an upper solution if

-V-(D(x)Vue) + (p0-a2)p2e-a^(x)

(3.12)
> X[exp(aMe(x))exp(ap2e~a2'i|/(x)) - b]

since both ue and \p satisfy the boundary condition (1.2). From -V(D Vue)

= X(exp(a«e) — b) the above inequality holds if

(3.13) (p„ - a2)ij > A(exp(ai/e(x)))[exp(ûT7j) - l]       (0 < tj < p2).

But this follows from hypothesis (2.4) for some sufficiently small p2 and a2.

The proof of u being a lower solution is similar. To show the relation (2.7) we

observe that the function v = ue(x) + p3ea,'\¡/(x) satisfies the reversed

inequalities in (3.1) if

(3.14) (p0 + a3)T) < Aexp(aue(x))(e'n' - 1)    forrj > 0.

In view of (2.6) and the nonnegative property of ue this relation is clearly

satisfied by some a3 > '0. Using the modified function /(tj) and the initial

iteration w(0) = u we conclude from the same argument as in the proof of

Theorem 1 that a solution u(t, x) to (1.1)—(1.3) exists and satisfies u(t, x) >

u(t, x) on [0, T] X ß for every finite T. This completes the proof of the

theorem.

Remark. The proofs of Theorems 1, 2 and 3 yield the following additional

information, (i) The finite escape time Tx is bounded by 2(X8a2\(/m)~l which

has a natural physical interpretation, (ii) The constants p, a which give the

extent of stability and the exponential rate of decay can be explicitly

estimated from (pg - aX). (iii) A stability region of ue(x) is contained

between ue(x) — px\p(x) and ue(x) + p2$(x) where p,, p2 can be estimated

from the bound of ue (e.g., see [2] for such a bound).
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