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Abstract

We consider nonnegative solutions of the initial-boundary value
problems in cone domains for the reaction-diffusion systems with in-
homogeneous terms dependent on space coordinates and times. In our
previous paper the conditions for the nonexistence of global solutions
in time were shown. In this paper we show the condition of existence
of global solutions in time.

1 Introduction

We consider nonnegative solutions of initial-boundary value problems for the
reaction-diffusion systems of the form

ut = ∆u + K1(x, t)vp1 , x ∈ D, t > 0,
vt = ∆v + K2(x, t)up2 , x ∈ D, t > 0,
u(x, t) = v(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ D,

(1)

where p1, p2 ≥ 1 with p1p2 > 1. The domain D is a cone in RN such as

D = {x ∈ RN ; x 6= 0 and x/|x| ∈ Ω}, (2)

where Ω is some region on SN−1 satisfying Ω 6= SN−1 and ∂Ω is smooth
enough.

The initial data u0(x) and v0(x) are nonnegative, bounded and continuous
in D̄, and u0(x) = v0(x) = 0 on ∂D. The inhomogeneous terms Ki (i = 1, 2)
are nonnegative continuous functions in D × (0,∞).

Let ∆Ω denote the Laplace-Beltrami operator with homogeneous Dirichlet
boundary condition in Ω. Let ψn(x/|x|) denote the n-th eigenfunction of
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−∆Ω with Dirichlet problem in Ω satisfying ‖ψn‖L2(Ω) > 0, where ‖ξ‖L2(Ω) =√∫
Ω

ξ2(φ)dφ. Let ωn > 0 denote the corresponding eigenvalue to ψn. Assume

that the sequence {ψn/‖ψn‖L2(Ω)}∞n=1 is a complete orthonormal sequence.
Let γ+ denote the positive root of γ(γ + N − 2) = ω1, that is

γ+ =
−(N − 2) +

√
(N − 2)2 + 4ω1

2
. (3)

We introduce the Green’s function G(x, y, t) = G(r, θ, ρ, φ, t) for the linear
heat equation in the cone D, where

r = |x|, ρ = |y|, θ =
x

|x|
and φ =

y

|y|
∈ Ω. (4)

The Green’s function is expressed to

G(r, θ, ρ, φ, t) =
(rρ)−(N−2)/2

2t
exp

(
−ρ2 + r2

4t

) ∞∑
n=1

cnIνn

(rρ

2t

)
ψn(θ)ψn(φ),

(5)

where cn = 1/‖ψn‖2
L2(Ω), νn = [(N − 2)2/4 + ωn]

1/2
and Iν is the modified

Bessel function or

Iν(z) =
(z

2

)ν
∞∑

k=0

(z/2)2k

k!Γ(ν + k + 1)
∼

{
(z/2)ν/Γ(ν + 1), as z → 0+

ez/
√

2πz, as z → +∞ (6)

with the Gamma function Γ(z) =
∫ ∞

0
sz−1e−sds (see Section 4 in detail). The

operator S(t) is defined by

S(t)ξ(x) =

∫
D

G(x, y, t)ξ(y)dy =

∫ ∞

0

∫
Ω

G(r, θ, ρ, φ, t)ξ(ρ, φ)ρN−1dφdρ (7)

with G defined by (5). By using this S(t), the solution (u, v) of (1) is ex-
pressed to

u(x, t) = S(t)u0(x) +

∫ t

0

S(t − s)K1(x, s)v(x, s)p1ds,

v(x, t) = S(t)v0(x) +

∫ t

0

S(t − s)K2(x, s)u(x, s)p2ds.

Remark. It is easily seen that γ+ = ν1 − (N − 2)/2 by (3).

For given initial values (u0, v0), let T ∗ = T ∗(u0, v0) be a maximal existence
time of the solution of (1). If T ∗ = ∞, the solutions are global in time. On
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the other hand, if T ∗ < ∞, then the solutions are not global in time. If the
solution blows up in finite time such that

lim sup
t→T ∗

‖u(·, t)‖∞ + lim sup
t→T ∗

‖v(·, t)‖∞ = ∞, (8)

then the solution is not global, where ‖·‖∞ denotes the L∞-norm with respect
to space variable.

For our theorems we assume that the inhomogeneous terms Ki(i = 1, 2)
satisfy

Ki(x, t) ≤ CU〈x〉σi(t + 1)qi , (9)

or
Ki(x, t) ≥ CL|x|σitqi (10)

for some CU , CL > 0, and σi, qi ≥ 0, where

〈x〉 =
(
|x|2 + 1

)1/2
.

For conditions of the global existence we set

αi =
(2 + σi + 2qi) + (2 + σj + 2qj)pi

pipj − 1
((i, j) = (1, 2), (2, 1)). (11)

Note that (α1, α2) satisfies(
1 −p1

−p2 1

)(
α1

α2

)
= −

(
2 + σ1 + 2q1

2 + σ2 + 2q2

)
.

In [10] we considered the case there exists no global nontrivial solution of
(1). The result of the global nonexistence for (1) was stated as follows.

Theorem 0 (Theorem 2 of [10]). Assume that Ki(x, t) (i = 1, 2) satisfy (10).
Suppose that one of the following two conditions holds;

(i) max{α1, α2} ≥ N + γ+ with γ+ defined by (3),

(ii) u0 ∈ Ha1 for a1 < α1 or v0 ∈ Ha2 for a2 < α2,

where

Ha =

{
ξ ∈ C(D̄) : ξ(x) ≥ M〈x〉−aψ1

(
x

|x|

)
for x ∈ D with some M > 0

}
.

Then there exists no nontrivial nonnegative global solution of (1), that is
T ∗ < ∞.
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On the other hand, the main result of this paper is the following global
existence theorem.

Theorem 1. Assume that max{α1, α2} < N +γ+ with γ+ defined by (3) and
Ki(x, t) (i = 1, 2) satisfy (9). Suppose that

(u0, v0) ∈ Ha1 × Ha2 for a1 > α1, a2 > α2, (12)

where

Ha =

{
ξ ∈ C(D̄) : ξ(x) ≤ m〈x〉−aψ1

(
x

|x|

)
for x ∈ D with small m > 0

}
.

(13)
Then the solution (u, v) of (1) is global in time, that is T ∗ = ∞. Moreover,
there exists a positive constant C such that

u(x, t) ≤ CS(t)〈x〉−ã1ψ1

(
x

|x|

)
and v(x, t) ≤ CS(t)〈x〉−ã2ψ1

(
x

|x|

)
(14)

in D × (0,∞), where ã1 ≤ a1 and ã2 ≤ a2 are chosen to satisfy

pi min{ãj, N + γ+} − ãi > 2 + σi + 2qi ((i, j) = (1, 2), (2, 1)). (15)

¿From Theorems 0 and 1 we may draw up the following table.

max{α1, α2} ≥ N + γ+ max{α1, α2} < N + γ+

a1 < α1 or a2 < α2 NG NG
a1 > α1 and a2 > α2 NG G

NG : There exists no global nontrivial solution.

G : There exists a global nontrivial solution for small initial data.

We briefly recall a history of the studies on global existence of solutions
to the system (1).

First, the global existence of solutions in the case D = RN (Ω = SN−1),
u = v, pi = p and Ki(x, t) = 1 (i = 1, 2), that is{

ut = ∆u + up, x ∈ RN , t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ RN ,

(16)

was studied by Fujita [3]. Fujita proved that when p > 1 + 2/N the solution
of (16) is global in time if ‖u0‖∞ is small enough and u0 has an exponen-
tial decay. Fujita’s results were also extended by some researcher. For the
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case p > 1 + 2/N , Lee-Ni [15] studied that if ‖u0‖∞ is small enough and
lim sup|x|→∞ |x|au0(x) < ∞ with a > 2/(p − 1), the solution of (16) is global
in time. When D is a cone, that is

ut = ∆u + up, x ∈ D, t > 0,
u(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ D.

(17)

Levine-Meier [17] proved that if p > 1+2/(N+γ+), nontrivial global solutions
of (17) exist.

Fujita’s results were extended to the case D = RN , u = v, pi = p and
Ki(x, t) = K(x, t) for i = 1, 2, that is{

ut = ∆u + K(x, t)up, x ∈ RN , t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ RN .

(18)

In the case K(x, t) ∼ |x|σ as |x| → ∞ with σ ∈ R, Suzuki [25] had that
if p > 1 + (2 + σ)/N then a global solution of (18) exists (see also [21]).
Thereafter, Qi [23] extended the result to the case K(x, t) = tq|x|σ with
q ≥ 0, σ ≥ 0. He caught that if p > 1 + (2 + σ + 2q)/N , there exists a global
solution of (18). When D is a cone, that is

ut = ∆u + K(x, t)up, x ∈ D, t > 0,
u(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ D,

(19)

in the case K(x, t) = |x|σ with σ ≥ 0, Levine-Meier [17] had that if p >
1 + (2 + σ)/(N + γ+), there are nontrivial global solutions of (19). For the
case p > 1 + (2 + σ)/(N + γ+), Hamada [7] studied that if u0 ∈ Ha with
a > (2 + σ)/(p − 1), the solution of (19) is global in time.

In the case D = RN , our results are reduced to Escobedo-Herrero [2] and
Mochizuki [19] with Ki(x, t) = 1 (i = 1, 2), to Uda [26] with Ki(x, t) = tqi

(i = 1, 2), and to Mochizuki-Huang [20] with Ki(x, t) = |x|σi with σi ∈
[0, n(pi − 1)) (i = 1, 2). Moreover, when Ki(x, t) (i = 1, 2) satisfy (9) with
D = RN , the system (1) was studied by Igarashi-Umeda [9]. When D is
a cone, in the case Ki(x, t) = 1, the condition max{α1, α2} < N + γ+ of
Theorem 1 is reduced to Levine [16].

The history for the global nonexistence was stated in [10] (see also [3, 8,
12, 30, 1, 18, 17, 2, 16, 15, 6, 26, 7, 21, 19, 20, 23, 4, 11, 25, 9]).

The rest of the paper is organized as follows. Some preliminary lem-
mata are given in Section 2. Theorem 1 is proved in Section 3. In Section
4 we confirm the form of the Green function for the heat equation in the
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cone domain with the Dirichlet condition. In Section 5 we prove Lemma
2.2 in Section 2 of this paper. For the change of variable as (4), we de-
cide ζ(x, y, t) = ζ(r, θ, ρ, φ, t), ζ(x, t) = ζ(r, θ, t) or ζ0(x) = ζ0(r, θ) for any
functions.

2 Preliminaries

In this section we prepare a notation and some lemmata for proving Theorem
1.

We define for a > 0

ηa(x, t) = S(t)〈x〉−aψ1

(
x

|x|

)
, (20)

with S(t) defined by (7).

Lemma 2.1. Let ηa be defined in (20) with a > 0. Then we have in D ×
(0,∞),

ηa(x, t)−1 ≤ C max
{
〈x〉a, (1 + t)a/2

}
ψ1

(
x

|x|

)−1

,

where ηa is defined in (20).

Proof. As well known, ηa(x, t) → 〈x〉−aψ1(x/|x|) as t → 0 locally uniformly
in x ∈ D. By (5) we see that

ηa(x, t) ≥
∫ ∞

2t
r

∫
Ω

G(r, θ, ρ, φ, t)(1 + ρ2)−a/2ψ1(φ)ρN−1dφdρ.

¿From (6), we have

Iν(z) ≥
{

Czν , 0 < z ≤ 1,
Cz−1/2ez, z > 1

(21)

with some constant C > 0. Thus we obtain

ηa(x, t) ≥ Cψ1(θ)√
2t

∫ ∞

2t
r

r−(N−1)/2ρ(N−1)/2(1 + ρ2)−a/2 exp

(
−(ρ − r)2

4t

)
dρ.

Put s =
ρ − r√

t
. Then we see

ηa(x, t) ≥ Cψ1(θ)

∫ ∞

2
√

t
r

− r√
t

(
s
√

t

r
+ 1

)(N−1)/2 (
1 + (s

√
t + r)2

)−a/2

e−s2/4ds.
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First assume that 0 ≤ t < 1. Then it follows that

ηa(x, t) ≥ Cψ1(θ)

∫ ∞

2
r
−r

(
1 + (s + r)2

)−a/2
e−s2/4ds.

If |x| >
√

2, that is r >
√

2, then we obtain

ηa(x, t) ≥ Cψ1(θ)

∫ 1

0

(
1 + (s + r)2

)−a/2
e−s2/4ds

≥ Cψ1(θ)(1 + r2)−a/2

∫ 1

0

e−s2/4ds ≥ Cψ1(θ)〈x〉−a.

Next, let t ≥ 1. Then we have

ηa(x, t)

≥ Cψ1(θ)

∫ ∞

max
n

2
√

t
r

− r√
t
,0

o

(
s
√

t

r
+ 1

)N−1
2 (

1 + (s
√

t + r)2
)−a

2
e−

s2

4 ds

≥ Cψ1(θ)

ta/2

∫ ∞

max
n

2
√

t
r

− r√
t
,0

o

(
s
√

t

r
+ 1

)N−1
2

(
1 +

(
s +

r√
t

)2
)−a

2

e−
s2

4 ds.

If r/
√

t ≤ 1, this shows

ηa(x, t) ≥ Cψ1(θ)

ta/2

∫ ∞

max
n

2
√

t
r

− r√
t
,0

o

(1 + (s + 1)2)−a/2e−s2/4ds ≥ Cψ1(θ)

ta/2
.

On the other hand, if ξ = r/
√

t > 1, then

raηa(x, t) ≥ Cψ1(θ)

∫ ∞

max{ 2
ξ
−ξ,0}

(
1 +

s

ξ

)(N−1)/2
ξa

(1 + (ξ + s)2)a/2
e−s2/4ds

→ Cψ1(θ)

∫ ∞

0

e−s2/4ds as ξ → ∞.

Summarizing these results, we obtain the inequality in the lemma.

Lemma 2.2 (Lemma 3.1 of [7]). Let ηa be defined in (20) with a > 0. Assume
0 ≤ σ < min{a,N + γ+}. Then there exists a positive constant C such that

〈x〉σηa(x, t) ≤


C(1 + t)(σ−a)/2ψ1(x/|x|), if a < N + γ+,
C(1 + t){σ−(N+γ+)+ε}/2ψ1(x/|x|), if a = N + γ+,
C(1 + t){σ−(N+γ+)}/2ψ1(x/|x|), if a > N + γ+,

for any (x, t) ∈ D × (0,∞) and ε > 0.
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Proof. See Lemma 3.1 of [7] or Section 5 of this paper.

Lemma 2.3. Let ηa be defined in (20) with a > 0. Assume p ≥ 1, σ ≥ 0,
q ≥ 0 and b > 0 and

p min{a,N + γ+} − b > 2 + σ + 2q. (22)

Then there exists a positive constant C such that

(t + 1)q〈x〉σηa(x, t)p

≤


C(1 + t)(σ+2q+b−ap)/2ηb(x, t), if a < N + γ+,
C(1 + t){σ+2q+b−(N+γ+)p+ε}/2ηb(x, t), if a = N + γ+,
C(1 + t){σ+2q+b−(N+γ+)p}/2ηb(x, t), if a > N + γ+,

(23)

for any (x, t) ∈ D × (0,∞) and ε > 0.

Proof. By Lemma 2.1, we obtain

(t + 1)q〈x〉σηa(x, t)p = (t + 1)q〈x〉σηa(x, t)pηb(x, t)−1ηb(x, t)

≤ C(t + 1)q〈x〉σηa(x, t)p max{〈x〉b, (1 + t)b/2}ψ1(x/|x|)−1ηb(x, t).

¿From Lemma 2.2 and (22) we have

(t + 1)q〈x〉σηa(x, t)p

≤


C(1 + t)(σ+2q+b−ap)/2ηb(x, t)ψ1(x/|x|)p−1, if a < N + γ+,
C(1 + t){σ+2q+b−(N+γ+)p+ε}/2ηb(x, t)ψ1(x/|x|)p−1, if a = N + γ+,
C(1 + t){σ+2q+b−(N+γ+)p}/2ηb(x, t)ψ1(x/|x|)p−1, if a > N + γ+,

for any ε > 0. If p ≥ 1, then ψ1(x/|x|)p−1 is bounded. Hence, we obtain (23).

3 Existence of a global solution

In this section we treat the existence of global solutions in time of (1). Here,
we take the same strategy as in [20] and [28].

First note that condition (12) can be replaced by (u0, v0) ∈ H ã1 × H ã2

since we have Ha1 × Ha2 ⊂ H ã1 × H ã2 . Then, to establish Theorem 1, we
have only to consider the special case ã1 = a1 and ã2 = a2. As is easily seen,
in this case condition (15) is equivalent to

pi min{aj, N + γ+} − ai > 2 + σi + 2qi ((i, j) = (1, 2), (2, 1)). (24)

8



If (24) holds, then it is necessarily that max{α1, α2} < N + γ+, a1 > α1 and
a2 > α2.

We define the Banach space X as

X = {v : |‖v/ηa2 |‖∞ < ∞} ,

where ηa is defined in (20) with a > 0 and

|‖w|‖∞ = sup
(x,t)∈D×(0,∞)

|w(x, t)|.

We consider the associated integral system

u(x, t) = S(t)u0(x) +

∫ t

0

S(t − s)K1(x, s)v(x, s)p1ds, (25)

v(x, t) = S(t)v0(x) +

∫ t

0

S(t − s)K2(x, s)u(x, s)p2ds, (26)

with S(t) defined in (7). Substituting (25) into (26), we have

v(x, t) = V (u0, v0, v) (27)

with

V (u0, v0, v) =S(t)v0(x) +

∫ t

0

S(t − s)K2(x, s)

×
(

S(s)u0(x) +

∫ s

0

S(s − τ)K1(x, τ)v(x, τ)p1dτ

)p2

ds.

If V is a strict contraction, then its fixed point yields a solution of (1).
Moreover, by the fact (a + b)p ≤ 2p−1(ap + bp) for a > 0, b > 0 and p ≥ 1, we
obtain

V (u0, v0, v) ≤ T (u0, v0) + Γ(v) (28)

with

T (u0, v0) = S(t)v0(x) + 2p2−1

∫ t

0

S(t − s)K2(x, s)(S(s)u0(x))p2ds,

Γ(v) = 2p2−1

∫ t

0

S(t − s)K2(x, s)

(∫ s

0

S(s − τ)K1(x, τ)v(x, τ)p1dτ

)p2

ds.

Lemma 3.1. Assume the same hypotheses as in Lemma 2.3. Then there
exists a constant C > 0 such that∫ t

0

S(t − s)(s + 1)q〈x〉σηa(x, s)pds ≤ Cηb(x, t) (29)

for any (x, t) ∈ D × (0,∞).
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Proof. Put

ε =
p min{a,N + γ+} − b − 2 − σ − 2q

2
.

Then from (22) we see that

σ + 2q + b − p min{a,N + γ+} + ε ≡ β < −2. (30)

¿From Lemma 2.3, we have∫ t

0

S(t − s)(s + 1)q〈x〉σηa(x, s)pds ≤ Cηb(x, t)

∫ t

0

(1 + s)β/2ds.

¿From (30) there exists a constant C ′ > 0 such that∫ t

0

S(t − s)(s + 1)q〈x〉σηa(x, s)pds ≤ C ′ηb(x, t).

Lemma 3.2. Let ηa be defined in (20) with a > 0.
(i) Let (u0, v0) satisfy (12). Then T (u0, v0) ∈ X and

|‖T (u0, v0)/ηa2 |‖∞ ≤ Ca(m + mp2)

with some Ca > 0, where m is appeared in (13).
(ii) Let v be the second element of the solution of (1). Then Γ maps X

into itself and
|‖Γ(v)/ηa2 |‖∞ ≤ Cb|‖v/ηa2 |‖p1p2

∞

with some Cb > 0.

Proof. (i) First, it is easily seen that S(t)v0(x) ≤ mηa2(x, t). Next, from
Lemma 3.1 and (24), we obtain∫ t

0

S(t − s)K2(x, s)(S(s)u0(x))p2ds

≤
∫ t

0

S(t − s)CU(s + 1)q2〈x〉σ2(mηa1(x, s))p2ds ≤ Cmp2ηa2(x, t).

Thus, we have
|T (u0, v0)| ≤ Cηa2(x, t)(m + mp2).

This implies assertion (i).
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(ii) Similarly as above, it follows from Lemma 3.1 and (24) that

Γ(v) ≤C|‖v/ηa2 |‖p1p2
∞

∫ t

0

S(t − s)CU(s + 1)q2〈x〉σ2

×
(∫ s

0

S(s − τ)CU(τ + 1)q1〈x〉σ1ηa2(x, τ)p1dτ

)p2

ds

≤C|‖v/ηa2 |‖p1p2
∞

∫ t

0

S(t − s)CU(s + 1)q2〈x〉σ2ηa1(x, s)p2ds

≤C|‖v/ηa2 |‖p1p2
∞ ηa2(x, t).

Assertion (ii) thus is concluded.

Proof of Theorem 1. Let Bm = {v ∈ X; |‖v/ηa2 |‖∞ ≤ 3m} and P = {v ∈
X; v ≥ 0}, where m is appeared in (13). We shall show that V (u0, v0, v) is a
strict contraction of Bm ∩ P into itself provided m is small enough.

¿From (28) and Lemma 3.2 we have

|‖V (u0, v0, v)/ηa2|‖∞ ≤ |‖T (u0, v0)/ηa2 |‖∞ + |‖Γ(v)/ηa2 |‖∞
≤ Ca(m + mp2) + Cb(3m)p1p2 ≤ 3m.

This proves that V maps Bm ∩ P into Bm ∩ P .
Now, we show that V (u0, v0, v) is a strict contraction on Bm ∩P . By the

definition of V we obtain

|V (u0, v0, v1) − V (u0, v0, v2)| ≤
∫ t

0

S(t − s)K2(x, s)

×

∣∣∣∣∣
(

S(s)u0(x) +

∫ s

0

S(s − τ)K1(x, τ)v1(x, τ)p1dτ

)p2

−
(

S(s)u0(x) +

∫ s

0

S(s − τ)K1(x, τ)v2(x, τ)p1dτ

)p2

∣∣∣∣∣ds.

Since |ap−bp| ≤ p(a+b)p−1|a−b| for a ≥ 0, b ≥ 0 and p ≥ 1, we can estimate
as follows,

|V (u0, v0, v1) − V (u0, v0, v2)| ≤ p2

∫ t

0

S(t − s)K2(x, s)

×
(

2S(s)u0(x) +

∫ s

0

S(s − τ)K1(x, τ)(v1(x, τ)p1 + v2(x, τ)p1)dτ

)p2−1

×
∣∣∣∣∫ s

0

S(s − τ)K1(x, τ)(v1(x, τ)p1 − v2(x, τ)p1)dτ

∣∣∣∣ ds.

11



Put

A(x, s) =

(
2S(s)u0(x)

+

∫ s

0

S(s − τ)K1(x, τ)(v1(x, τ)p1 + v2(x, τ)p1)dτ

)p2−1

,

B(x, s) =

∣∣∣∣∫ s

0

S(s − τ)K1(x, τ)(v1(x, τ)p1 − v2(x, τ)p1)dτ

∣∣∣∣ .
Then we get

|V (u0, v0, v1) − V (u0, v0, v2)| ≤ p2

∫ t

0

S(t − s)K2(x, s)A(x, s)B(x, s)ds.

Since (a+ b)p ≤ 2max{p−1,0}(ap + bp) for a ≥ 0, b ≥ 0 and p ≥ 0, we obtain

A(x, s) ≤2max{p2−2,0}

{
(2S(s)u0(x))p2−1

+

(∫ s

0

S(s − τ)CU(τ + 1)q1〈x〉σ12ṽ(x, τ)p1dτ

)p2−1
}

with ṽ = max{v1, v2} and

B(x, s) ≤
∫ s

0

S(s − τ)CU(τ + 1)q1〈x〉σ1 |v1(x, τ)p1 − v2(x, τ)p1 |dτ

≤
∫ s

0

S(s − τ)CU(τ + 1)q1〈x〉σ1

× p1(v1(x, τ) + v2(x, τ))p1−1|v1(x, τ) − v2(x, τ)|dτ.

¿From Lemma 3.1 and (24), we have

A(x, s) ≤ 2max{p2−2,0}

{
(2mηa1(x, s))p2−1

+

(
2|‖ṽ/ηa2 |‖p1

∞

∫ s

0

S(s − τ)CU(τ + 1)q1〈x〉σ1ηp1
a2

(x, τ)dτ

)p2−1
}

≤ 2max{p2−2,0} {
(2m)p2−1ηp2−1

a1
(x, s) + (2C(3m)p1)p2−1 ηp2−1

a1
(x, s)

}
and

B(x, s) ≤
∫ s

0

S(s − τ)CU(τ + 1)q1〈x〉σ1p1(2v(x, τ))p1−1|v1(x, τ) − v2(x, τ)|dτ

≤ 2p1−1CU

∫ s

0

S(s − τ)(τ + 1)q1〈x〉σ1ηp1
a2

(x, τ)(ṽ(x, τ)/ηa2(x, τ))p1−1

× p1(|v1(x, τ) − v2(x, τ)|/ηa2(x, τ))dτ.

12



We can take m satisfying (2m)p2−1 + (2C(3m)p1)p2−1 ≤ 2p2m(p2−1)/2. Then
we have

|V (u0, v0, v1) − V (u0, v0, v2)|

≤C

∫ t

0

S(t − s)(s + 1)q2〈x〉σ2
(
2p2m(p2−1)/2ηp2−1

a1
(x, s)

)
ηa1(x, s)

× |‖ṽ/ηa2 |‖p1−1
∞ |‖v1/ηa2 − v2/ηa2 |‖∞ds

≤Cmp1+p2/2−3/2

∫ t

0

S(t − s)(s + 1)q2〈x〉σ2ηp2
a1

(x, s)ds|‖v1/ηa2 − v2/ηa2|‖∞

≤Cmp1+p2/2−3/2ηa2(x, t)|‖v1/ηa2 − v2/ηa2 |‖∞.

Since p1, p2 ≥ 1 and p1p2 > 1, we obtain for some ρ < 1

|‖V (u0, v0, v1)/ηa2 − V (u0, v0, v2)/ηa2 | ‖∞
≤ Cmp1+p2/2−3/2|‖v1/ηa2 − v2/ηa2 |‖∞ ≤ ρ|‖v1/ηa2 − v2/ηa2 |‖∞

with m small enough. Then V is a strict contraction of Bm ∩ P into itself.
Hence, there exists a unique fixed point v ∈ X which solves (27). Substitute
v into (25). Then (u, v) solves (25) and (26). Moreover, since v ∈ Bm, we
find

v(x, t) ≤ CS(t)〈x〉−a2ψ1

(
x

|x|

)
.

Substituting this into (25), we have

u(x, t) ≤mηa1(x, t) + C

∫ t

0

S(t − s)CU(s + 1)q1〈x〉σ1ηp1
a2

(x, s)ds

≤mηa1(x, t) + Cηa1(x, t) ≤ Cηa1(x, t).

Then u ∈ Bm; that is,

u(x, t) ≤ CS(t)〈x〉−a1ψ1

(
x

|x|

)
.

Then the proof of Theorem 1 is completed.

4 Appendix A: A Green function in a cone

domain

In this section we confirm the form of the Green function for the heat equation
in the cone domain with the Dirichlet condition.

13



We consider the initial-boundary value problem for a heat equation
ut = ∆u, x ∈ D, t > 0,
u(x, 0) = u0(x), x ∈ D,
u = 0, x ∈ ∂D, t ≥ 0,

(31)

where the domain D is a cone in RN such as

D =

{
x ∈ RN : x 6= 0 and

x

|x|
∈ Ω

}
,

where Ω is some region on SN−1 smooth enough. We introduce the Green’s
function G(x, y, t) = G(r, θ, ρ, φ, t) for the linear heat equation in the cone D.
By the variable transformation (4) the problem (31) is expressed the form ut = ∆u = urr + N−1

r
ur + ∆Ωu

r2 , r > 0, θ ∈ Ω, t > 0,
u(r, θ, 0) = u0(r, θ), r > 0, θ ∈ Ω,
u = 0, r > 0, θ ∈ ∂Ω,

(32)

where ∆Ω is Laplace-Beltrami operator on Ω ⊂ SN−1.
For the Laplace-Beltrami operator with homogeneous Dirichlet boundary

condition on Ω ∈ SN−1, define ωn as Dirichlet eigenvalues and ψn(θ) as the
Dirichlet eigenfunctions corresponding to ωn which satisfies

∫
Ω

ψ2
n(θ)dθ > 0.

It is following that ∫
Ω

ψm(θ)ψn(θ)dθ = 0

for m 6= n.
It is known that the Green’s function of the first equation of (31) is

expressed to

G(r, θ, ρ, φ, t) =
(rρ)−(N−2)/2

2t
exp

(
−ρ2 + r2

4t

) ∞∑
n=1

cnIνn

(rρ

2t

)
ψn(θ)ψn(φ),

(33)

where cn = 1/‖ψn‖2
L2(Ω) and νn = [(N − 2)2/4 + ωn]

1/2
. The function Iν is

the modified Bessel function. The functions satisfy∫ ∞

0

e−λtJν(
√

λr)Jν(
√

λρ)dλ =
1

t
exp

(
−r2 + ρ2

4t

)
Iν

(rρ

2t

)
(34)

with the Bessel functions Jν satisfying

x2J ′′
ν (x) + xJ ′

ν(x) + (x2 − ν2)Jν(x) = 0

14



and

Jν(x) =
(x

2

)ν
∞∑

m=0

(−1)m(x/2)2m

m!Γ(m + ν + 1)

(see [29, p.p.395]).
In [18] the above fact had been shown. However, the proof is not under-

stood easily for us. Thus in the rest of this section, the fact is confirmed.
¿From (33) and (34) we see that

G(r, θ, ρ, φ, t)

=
(rρ)−(N−2)/2

2

∞∑
n=1

cnψn(θ)ψn(φ)

∫ ∞

0

e−λtJνn(
√

λr)Jνn(
√

λρ)dλ. (35)

The solution of (31) is expressed to

u(x, t) = u(r, θ, t) =

∫ ∞

0

∫
Ω

G(r, θ, ρ, φ, t)u0(ρ, φ)ρN−1dφdρ. (36)

We should confirm the fact.
Let ũ be the inverse Laplace transformed function of u, i.e.

u(r, θ, t) =

∫ ∞

0

ũ(r, θ, s)e−stds.

Then this ũ satisfies the following equation of the form

−sũ = ũrr +
N − 1

r
ũr +

∆Ωũ

r2
, r > 0, θ ∈ Ω, s > 0. (37)

Since {ψn/‖ψn‖L2(Ω)} is a complete orthonormal system, we have

ũ(r, θ, s) =
∞∑

n=1

w̃n(r, s)ψn(θ) (38)

with

w̃n(r, s) = cn

∫
Ω

ũ(r, φ, s)ψn(φ)dφ.

¿From (37) and (38) we see that

r2(w̃n)rr + (N − 1)r(w̃n)r + (r2s − ωn)w̃n = 0. (39)

By the Frobenius method we obtain

w̃n(r, s) = an(s)r−(N−2)/2Jνn(
√

s r)

15



with some an(s). ¿From (38) we see that

ũ(r, θ, s) =
∞∑

n=1

{
an(s)r−(N−2)/2Jνn(

√
s r)ψn(θ)

}
. (40)

We thus see that

u(x, t) = u(r, θ, t) =
∞∑

n=1

∫ ∞

0

an(s)r−(N−2)/2Jνn(
√

sr)e−stdsψn(θ).

If we let t = 0, we have

u0(x) = u0(r, θ) =
∞∑

n=1

∫ ∞

0

an(s)r−(N−2)/2Jνn(
√

sr)dsψn(θ).

Then since

1

2

∫ ∞

0

∫ ∞

0

Jν(
√

sρ)Jν(
√

sr)f(ρ)dsdρ =

∫ ∞

0

∫ ∞

0

σJν(σρ)Jν(σr)f(ρ)dσdρ

=
1

r
f(r)

for any f ∈ C(0,∞) (see [29, p.p.453], see also [5, §2]) and {ψn/‖ψn‖L2(Ω)}
is a complete orthonomal system, we see that

an(s) =
cn

2

∫ ∞

0

∫
Ω

ρN/2Jνn(
√

sρ)u0(ρ, φ)ψn(φ)dφdρ.

Then we have (36).

5 Appendix B: Proof of Lemma 2.2

In this section we prove Lemma 2.2 ([7, Lemma 3.1]) in detail. This lemma
is equivalent for the following proposition:

Proposition 5.1. Let ηa be defined in (20) with a > 0. Assume 0 ≤ σ <
min{a,N + γ+}. Let ζ > 0 be

(i) ζ = a − σ, if a < N + γ+,
(ii) ζ < N + γ+ − σ, if a = N + γ+,
(iii) ζ = N + γ+ − σ, if a > N + γ+.

Then there exists a positive constant C such that

〈x〉σηa(x, t) ≤ C(1 + t)−ζ/2ψ1(x/|x|) for x ∈ D, t > 0.
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Proof. ¿From Lemma 2.1 of [10] and the fact a > σ, there exists a constant
C1 > 0 such that

〈x〉σηa(x, t) ≤ C1 for (x, t) ∈ D × (0, 1).

We should only show for t ≥ 1.
By a direct calculation, we see that

rσηa(x, t) = rσ

∫ ∞

0

∫
Ω

G(r, θ, ρ, φ, t)(1 + ρ2)−a/2ψ1(φ)ρN−1dφdρ.

Since {ψn} is a orthogornal system, we have

|x|σηa(x, t) = rσ

(∫ 2t/r

0

+

∫ ∞

2t/r

)
(rρ)−(N−2)/2

2t

× exp

(
−ρ2 + r2

4t

)
Iν1

(rρ

2t

)
(1 + ρ2)−a/2ρN−1dρψ1(θ)

≡ (A + B)ψ1(θ).

First, we estimate A. ¿From (6) we have for some constant C2 > 0

Iν(z) ≤
{

C2z
ν , 0 < z ≤ 1,

C2z
−1/2ez, z > 1.

(41)

By (41) we obtain

A ≤ C2r
σ

∫ 2t/r

0

(rρ)−(N−2)/2

2t
exp

(
−ρ2 + r2

4t

) (rρ

2t

)ν1

× (1 + ρ2)−a/2ρN−1dρ.

¿From the definitions of ν1 and γ+, we have

A ≤ C2(2t)
−N/2−γ+rσ+γ+ exp

(
−r2

4t

) ∫ 2t/r

0

exp

(
−ρ2

4t

)
× ρN−1+γ+(1 + ρ2)−a/2dρ.

Putting C3 = 2−N/2−γ+C2, we get

A ≤ C3t
(σ−(N+γ+))/2

(
r√
t

)σ+γ+

exp

(
−r2

4t

) ∫ 2t/r

0

exp

(
−ρ2

4t

)
× ρN−1+γ+(1 + ρ2)−a/2dρ.
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Since sσ+γ+ exp(−s2) is bounded for s > 0, there exists a constant C4 > 0
such that

A ≤ C4t
(σ−(N+γ+))/2

∫ 2t/r

0

exp

(
−ρ2

4t

)
ρN−1+γ+(1 + ρ2)−a/2dρ

≡ C4t
(σ−(N+γ+))/2E(r, t).

On the hand, the case a ≤ N + γ+ is considered. Since by the assumption
(i) and (ii) of Lemma 2.2, a ≥ ζ + σ, we see that

E(r, t) ≤ 2a/2

∫ 2t/r

0

exp

(
−ρ2

4t

)
ρN+γ+−1(1 + ρ)−ζ−σdρ

≤ 2a/2

∫ 2t/r

0

exp

(
−ρ2

4t

)
ρN+γ+−ζ−σ−1dρ.

Put ξ = ρ/
√

4t. Then we have

E(r, t) = 2a/2

∫ √
t/r

0

exp(−ξ2)(
√

4tξ)N+γ+−ζ−σ−1
√

4tdξ

≤ 2a/2(
√

4t)N+γ+−ζ−σ−1

∫ ∞

0

exp(−ξ2)ξN+γ+−ζ−σ−1dξ.

Since N + γ+ − ζ − σ > 0, there exists a constant C5 > 0 such that

E(r, t) ≤ C5t
1
2
(N+γ+−ζ−σ−1).

On the other hand, if a > N + γ+,

E(r, t) ≤ 2a/2

∫ 2t/r

0

exp

(
−ρ2

4t

)
(1 + ρ)N+γ+−a−1dρ

≤ 2a/2

∫ ∞

0

ρN+γ+−a−1dρ ≡ C6 < ∞.

Since ζ ≤ N + γ+ − σ, we obtain for any t ≥ 1

A ≤ max{C5, C6}t−ζ/2.

Next, B is estimated. From (41) we have

B ≤ C2

{∫
[2t/r,∞)∩[2r/3,2r]

+

∫
[2t/r,∞)\[2r/3,2r]

}(
1

2t

)1/2

exp

(
−(ρ − r)2

4t

)
× r−(N−1)/2+σρ(N−1)/2−adρ

≡ C2(J + K).
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On one hand, we compute J . If t ≥ r2 then J = 0. When t < r2, since
ρ ∈ [2r/3, 2r] we see that

J ≤
∫ 2r

2r/3

(
1

2t

)1/2

exp

(
−(ρ − r)2

4t

) (ρ

r

)(N−1)/2
(

r

ρ

)a

rσ−adρ

≤ 2(N−1)/2

(
3

2

)a

t(σ−a)/2

∫ ∞

−∞

(
1

2t

)1/2

exp

(
−(ρ − r)2

4t

)
dρ

≤ C7t
−(a−σ)/2

with some constant C7 > 0. On the other hand, we estimate K. Since
ρ ∈ [2t/r,∞)/[2r/3, 2r], we have |ρ − r| > max{r/3, ρ/2}. We thus obtain

−(ρ − r)2

4t
= −(ρ − r)2

8t
− (ρ − r)2

8t
≤ − ρ2

32t
− r2

72t
(42)

and

ρ ≤ 2t

r
and r ≤ 2t

ρ
. (43)

¿From (42) and (43) we obtain

K ≤
∫

[2t/r,∞)/[2r/3,2r]

(
1

2t

)1/2

exp

(
− ρ2

32t
− r2

72t

)(
2t

ρ

)−(N−1)/2

× rσρ(N−1)/2

(
2t

r

)−a

dρ

≤ (2t)−(N−1)/2−a exp

(
− r2

72t

) (
r√
t

)σ+a

(
√

t)σ+a+N−1

×
∫ ∞

0

(
1

2t

)1/2

exp

(
− ρ2

32t

)(
ρ√
t

)N−1

dρ.

So, there exists a constant C8 > 0 such that

K ≤ C8t
−(N−1)/2−a+σ/2+a/2+(N−1)/2 = C8t

−(a−σ)/2.

Then we have
B ≤ max{C7, C8}t−(a−σ)/2

for any t ≥ 1. On the other hand from the definition of ζ we have ζ ≤ a−σ.
We thus have

|x|σηa(x, t) ≤ max{C1, C5, C6, C7, C8}max{1, t}−ζ/2ψ1(θ)

≤ C9(t + 1)−ζ/2ψ1(θ)
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with some constant C9 > 0. Since 〈x〉 ≤ |x| + 1, we see that

〈x〉σηa(x, t) ≤ C9(t + 1)−ζ/2ψ1(x/|x|)

for (x, t) ∈ D × (0,∞).
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