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NONEXISTENCE OF MONOTONIC SOLUTIONS OF
SOME THIRD-ORDER ODE RELEVANT TO

THE KURAMOTO-SIVASHINSKY EQUATION

Naoyuki Ishimura and MasaAki Nakamura

Abstract. We study the third-order ordinary differential equations
(ODEs) which are relevant to the steady state of the Kuramoto-Sivashinsky
equation, and/or to a model of dendritic growth of needle crystals. We
show that there is no monotonic solution for certain range of parameter.

1. Introduction

We deal with the third-order ordinary differential equations (ODEs) of the
form

λy′′′ + y′ = f(y), y = y(x) for x ∈ R,(1)

where λ > 0 is a parameter. f is a smooth function in a neighborhood of the
interval [−α, α], which is assumed to satisfy

(H1) f(±α) = 0, f > 0 on (−α, α), f ′(±α) 6= 0;
(H2) there exists a positive constant a such that

−2f ′′f + (f ′)2 ≥ a on (−α, α).

Typical examples of f include

f(y) = 1− y2 for which α = 1 and a = 4;(2)
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f(y) = cos y for which α =
π

2
and a = 1.(3)

As is easily seen, the nonlinearity (2) is derived from the Kuramoto-
Sivashinsky equation [9, 10, 14]:

ut + uxxxx + uxx +
1
2
u2

x = 0, u = u(x, t) for x ∈ R, t > 0.

If we postulate u(x, t) = −2λt + v(x), which is numerically suggested by
[13, 12], and put y(x) = 2−1λ−1/2v′(λ−1/2x), then we find (1) with (2); the
solution in this case is usually referred to as steady state solutions of the
Kuramoto-Sivashinsky equation [16]. The nonlinearity (3), on the other hand,
is proposed as a simple model for two-dimensional dendritic growth of needle
crysals in a supercooled liquid [11, 5].

For both (2) and (3), we have special interest in investigating whether
there exists a solution y satisfying y′(x) > 0 for all x ∈ R and y(x) → ±α as
x → ±∞, respectively.

Indeed, in a seminal work [8], it is observed that the odd monotonic so-
lution of (1) with (3) verifying y(0) = 0 and y(±∞) = ±π/2 may have a
discontinuity of y′′(0); to be precise, y′′(0) 6= 0, and hence y(x) cannot be
odd. We remark that if y(x) fulfills (1), (3), then so does −y(−x). Amick and
McLeod [1] provide a mathematically rigorous demonstration on the nonexis-
tence of monotonic solution of (1), (3); the method of [1] involves the complex
variable and the theory of analytic functions. See also the foregone partial
results by Troy [17].

Similar phenomena take place in the nonlinearity (2). Inspired somewhat
by [8], Grimshaw and Hooper [4] indicate the nonexistence of monotonic so-
lution with y(±∞) = ±1 for (1), (2). Troy [17] gave an exact treatment if
λ = 1/2; he discusses the initial value problem y(0) = 0, y′(0) = β > 0,
y′′(0) = 0, and traces the trajectory in detail regarding β as a parameter.
Later, the complete nonexistence result for all λ > 0 is established in [7].
The strategy for proof in [7] follows the line in [1] with refinement and nec-
essary modifications. We hasten to remark that Toland [15] already showed
the nonexistence property for (1), (2) if λ ≥ 2/9. Toland employs elementary
calculus only but very ingeniously.

In this note, motivated by the above examples, we pursue the nonexistence
nature for general f ; we exhibit rather applicable techniques to derive the
desired consequence. Our main assertion reads as follows.

Theorem. Suppose f fulfills the hypotheses (H1) and (H2). Then there is
no solution of (1) which satisfies

y′(x) > 0 for all x ∈ R and y(x) → ±α as x → ±∞,(4)
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if λ ≥ 32/(27a).
Note that our achievement is imperfect especially concerning the above

examples (2) and (3) in the sense that it does not restore the nonexistence
results for all λ > 0. Nevertheless we wish to emphasize that the method is
simple and universal enough to be applied to general f .

We conclude this introduction by a comment on researches in (1) from the
viewpoint of the ODE community. It is evident that much attention has been
paid on the analysis of (1) (we refer for instance to [3]); however, the concerns
are laid exclusively on the case that f is odd, even if the nonlinear functions
are handled. Moreover, the connection with the mathematical physics does
not seem to be taken into consideration.

2. Proof of Theorem

We proceed along the way in [6]. For the sake of contradiction, suppose
that there exists a solution y of (1) which verifies (4).

Since y′ is positive definite, we use y as an independent variable. This idea
is introduced by [15] and independently by [2]. Let x(y) denote the inverse
function of y(x) defined on −α ≤ y ≤ α. We put

t = y and v(t) = {y′(x(t))}2,(5)

and compute

v′(t)= 2y′(x(t))x′(t)y′′(x(t)) = 2y′′(x(t)),

λv′′(t)= 2λy′′′(x(t))x′(t) = 2
f(t)√
v(t)

− 2.

The linearization of (1) at the equilibrium point y = ±α is

λϕ′′′ + ϕ′ − y′(±α)ϕ = 0,

and the corresponding characteristic polynomial is

λz3 + z − f ′(±α) = 0.

Since f ′(α) < 0 and f ′(−α) > 0, we infer that v′(±α) = 0 taking account
of the stable manifold theorem; the real part of one root of the characteristic
polynomial is negative for the case y = α and positive for y = −α.
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To summarize, as the result of transformation (5), we have deduced the
next overdetermined problem from (1), (4).

λv′′(t) = 2
f(t)√
v(t)

− 2, v(t) > 0 for − α < t < α,

v(±α) = v′(±α) = 0.

Next we prepare a comparison function

w(t) = M
√

f(t),

where M > 0 will be determined later. We perform the calculation

w′(t)=
M

2
f ′(t)√
f(t)

,

λw′′(t)−2
f(t)√
w(t)

+ 2

= − 1
f3/2

{
λM

4
(−2f ′′f + (f ′)2) +

2f9/4

√
M

− 2f3/2

}

≤ − 1
f3/2

(
λM

4
a +

2f9/4

√
M

− 2f3/2

)
.

Now the function g(X) := 4−1λMa+2M−1/2X9/4−2X3/2 takes the minimum
value g = (4−1λa− 8/27)M at X3/4 = 2

√
M/3; w(t) becomes a supersolution

if λ ≥ 32/(27a), irrespective of the value of M . In view of w(±α) = 0 and
w′(±α) = ∓∞, we can make w(t) touch v(t) from above at the interior, by
letting M large first and then decreasing it. The interior touching principle
prohibits such a situation. This absurdity leads us to the required conclusion.
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