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1. Introduction. The system of differential equations developed by Hodgkin and
Huxley is well known as a valid biological model of the squid giant axon membrane.
However, since this system consists of four variables, the mathematical analysis for
the Hodgkin-Huxley model is rather complicated. In [2, 3] FitzHugh simplified this
model and proposed the reduced system

x =y- \x3 +x + I,
y = p{a-x- by),

where the variable x is the potential difference through the axon membrane, y is
the sodium inactivation (potassium activation), and the quantity 7 is the current
through the membrane. FitzHugh investigated the system (1.1) for special values
of 7 using numerical methods and phase space analysis. Several authors [4-6, 9]
applied Hopf theory to (1.1), and studied the direction of bifurcation and stability
of bifurcating periodic solutions of (1.1).

The purpose of this paper is to give a new criterion under which the system (1.1)
and a system equivalent to (1.1) have no nonconstant periodic solutions.

Throughout this paper we assume that the parameters in (1.1) satisfy the conditions

a€ R, 0<b<\, and p > 0. (1.2)

For each / e R, the system (1.1) has the only critical point (xn yf) satisfying

x, = y {3(7 + a/b) + \!%I + a/b)2 + 4(1/b - l)3}/2

+ ^{3(7 + a/b) - s]%I + a/b)2 + 4(1 /b - l)^}/2

and
y, = (a-x,)/b.

A simple argument shows that if pb > 1 , then there exist no periodic solutions
except for the critical point (x{, yt). (For details, see Remark 3.2.) We therefore
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intend to discuss the case
0 < pb < 1. (1.3)

Let us take tj = x7 and rjQ - - pb as new parameters. Then we notice that
< 1 • Suppose that rj^ > r]2; then all solutions of (1.1) are bounded and the

critical point (x/; y,) is unstable. Hence, by the Poincare-Bendixson theorem (see,
for example, [1]), there exists at least one nonconstant periodic solution of (1.1).
Thus, it is quite reasonable to assume that

(1-4)

in Theorem A and Theorem 1.1 below.
Kaumann and Staude [7] gave the following result on the nonexistence of periodic

solutions of (1.1).

Theorem A [7], Suppose that the assumptions (1.2) and (1.3) are satisfied. Further,
suppose that either

ril<ri2 and r\\ < ^ - 1; (1.5)
or

and ^-1 <r]20. (1.6)

Then the system (1.1) has no nonconstant periodic solutions.
If j < b < 1, then the region given by (1.5) or (1.6) corresponds to the shaded

portion in Fig. 1. This and succeeding figures were drawn with an X-Y plotter by a
computer.

Fig.
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In the case 0 < b < 5 , (1.6) does not hold and (1.5) coincides with (1.4), and hence
Theorem A shows that (1.4) implies there exist no nonconstant periodic solutions of
(1.1). Thus, (1.4) is a necessary and sufficient condition for the nonexistence of
periodic solutions of (1.1). However, in the case \ < b < 1, (1.5) or (1.6) is not
always necessary as Examples 4.1 and 4.3 in Sec. 4 show. It would be natural to
conjecture that (1.4) implies there exist no nonconstant periodic solutions of (1.1)
even if 5 < b < 1 . We indeed show that Theorem A is extended as follows.

Theorem 1.1. Suppose that the assumptions (1.2) and (1.3) are satisfied. Further,
suppose that either

>/4-4r/2^ + ^ + 2(i-l)^2-4(i-1)^ + 4^-1) >0;

or

{
2./1 , \ 1 3 2 f 2.-/1,»+U'1J/ <ri r +3U vl • (h8)

Then the system (1.1) has no nonconstant periodic solutions.
The region (1.7) or (1.8) is shown by the shaded portion in Fig. 2. In Example

4.2 we also show that the above conjecture is false.

Fig. 2

2. Preliminary. Let us consider the Lienard system

x' = y-F{x), y = —g(x) [2A]
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in which F(x) and g(x) are continuous functions on R satisfying locally a Lipschitz
condition. We assume that

F(0) — 0 and xg(x) > 0 if x / 0. (2.2)

/o°° g(x)dx, f~Then the origin is the only critical point. Let M = min{/0°< 3 g(x)dx, L 00 g{x)dx}
(M may be oo) and let

w = G(X)= [xm.
J 0

Then by (2.2), G(x) is strictly increasing. We denote the inverse function of G(x)
by G~'(w).

In a recent article [8], the author and Hara gave the following condition on F(x)
and g(x) under which the system (2.1) has no periodic solutions except for the
origin.

Theorem B [8]. Suppose that

F(G '(-w))^F(G '(w)) for 0 < w < M. (2.3)
Then the system (2.1) has no nonconstant periodic solutions.

Now we turn to the FitzHugh nerve system (1.1). It is known that this system can
be rewritten as

' I 1 3 2,2 , ,,c =y-\^x +tjx +(t] + pb - l)x

y = -pb { ̂ x3 + rjx2 + (V + i - 1 j xj ,
v 3

where rj is a new parameter (see [4, 7]). Let

(2.4)

and

F(x, t]) = + Tjx2 + (t]2 + pb - l)x (2.5)

g(x, rj) = pb | jx3 + r]X2 + ^ - 1 j x|. (2.6)

Then (2.2) is satisfied for all rj e R. Thus, we can regard the system (2.4) as a special
case of (2.1) for each fixed t] e R with M = oo . By applying Theorem B, we wish
to prove Theorem 1.1. Unfortunately, however, it is difficult to construct explicitly
the inverse function G~l(w , rj), and hence we must contrive to verify (2.3).

In the next section we will give some conditions which are equivalent to (2.3), and
show that they are satisfied if (1.7) or (1.8) holds.

3. Proof of Theorem 1.1. Let rj0 = sj\ - pb as before. We first note that not only
2 2(1.7) but also (1.8) yields rjQ < rj . Therefore, for the sake of convenience, we divide

2 2 2 2 2the proof into the following two cases: (i) 4t]0 < rj ; (ii) tjQ < q < 41]0 .
2 2Suppose that 4 rjQ < . Then we can verify

xF(x, rj)> 0 if x ^ 0.

Since G~\w , r\) is strictly increasing for all weR,

G \-w,t])<G 1 (0, rj) = 0 < G~\w , rj) for w > 0.
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Hence, we have

F{G~\-w ,ri))< 0 < F(G~\w , rj)) forw>0,

and therefore (2.3) is verified. Thus by Theorem B, the system (2.4) and its equivalent
system (1.1) have no nonconstant periodic solutions.

Suppose that rj2 < rj2 < 4q2 . By the transformations x -> -x and y —> -y, the
system (2.4) becomes

X' = y ~ {I^3 ~ nxl + ^ ~ ^X} '

y = ~pb - rjx2 4- (V + i - 1 j xj.

Thus, we may only consider the case

-2 ti0<ti<-ri0. (3.1)

In this case the function F(x, r\) has two real zeros besides x = 0. Let /? and y
be the zeros satisfying /? < y . Then

P = H~3'7 - _ rj2)} > 0,

7 = + \/3(4^7l~ti2)} > 0.

Define X* = \{rj0- t])2{2t]Q + rj) and denote by a(X), p(X), and y(X) the roots of
the equation F(x, t]) = -X for 0 < X < X* (refer to Fig. 3). Then we can see that

Fig. 3
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a(A) < 0 < /?(A) < 7(A) (3.3)
and

a(A) - 0, 0(A)-* fi, y(A) -7 as A - 0. (3.4)
As it is serious to verify (2.3) directly, we give some conditions equivalent to (2.3).

For clarity of arguments, we show Claims 1 and 2 below.
Claim 1. Condition (2.3) is equivalent to

G(a(X),ri) + G(fi(X),fl)^0 for 0 < A < A*,
G(a(A), t]) + G(7(A), q) ± 0 for 0 < A < A*.

In fact, by the definitions of a(A), /?(A), and 7(A), there exists w0 > 0 such that

F(G~'(-w0, tj)) = F(G~'(w0, n))

if and only if there exists A0 e (0, A*] such that"o

G~\-w0, rj) = q(A0) and G~\w0, tj) =

or
G~\-w0,ri) = a(X0) and G~\w0, tj) = y(X0),

that is,
—G(a(A0), n) = w0 = Gm0),ti)

or
-G(q(A0) ,n) = w0 = G(y(A0), rj).

Thus the claim is proved.
Let us calculate G(a(A), rj), G(/?(A), rj), and G(y(A), rj). It follows from (2.5)

and (2.6) that

G(x,rj)= [X\g(Z,ri)\dZ
Jo

|x4 + 4rjx3 + 6 i^r}2 + ^ - 1^ x2 j for x > 0,

- jx4 + 4rjx3 + 6 (^rj2 + ^ - 1 j x2j for x < 0

and
F(a(A), //) + A = ±a(A)3 + r]a(A)2 + - ^)a(A) + A = 0.

Hence, by (3.3),

~G(aW , >/) = a(A)4 + 4^(A)3 + 6 U + ± - l) a(A)2

= {a(A) + >/}{a(A)3 + 3rjaW2} + 3 |^2 + 2 (i - 1) } a(A)2

= 3 |^02 + 2 (i - l) J a(A)2 - 3{ti{tj2 - rj20) + A}q(A) - 3^A.



FITZHUGH NERVE SYSTEM 549

Similarly, we have

12 G(fiW , r,) = 3 j^2 + 2 - l) } P(kf - 3{^2 - n]) + A}/?(A) - 3r,kpb
and

l2G{y{X), rj) = 3 ̂ % + 2 ̂  - 1^ J y(A)2 - 3{^2 - fy) + k}y(k) - 3>/A.pb
Thus, (3.5) becomes

^ + 2 (i - l) J {a(k) + m) * V(ri2 - rj20) + A for 0 < A < A* (3.6)

and

{^ + 2Q-l)J{a(A) + y(A)}#»/(»/2-»/o2) + ̂  forO<A<A*. (3.7)
Claim 2. Conditions (3.6) and (3.7) are equivalent to

{>/02 + 2 (I - l) J {a(A) + /?(A)} > rjirj2 ~ %) + A for 0 < A < A*. (3.8)

From (3.1), (3.2), and (3.4), we have

^ + 2^-l)|{a(A) + y(A)}- |f?02 + 2^-l)}y>0

and
i(i2 - »fo) + a -» v(i2 - %) < o

as A —> 0. Therefore, (3.7) implies

t]20 + 2^ - 1^) J{a(A) + y(A)}> r](rj2 - rj20) + k for 0 < A < A*.

Since fi{k*) = y{k*),

{i/o + 2 - l) } MA*) + /?(A*)} = |^2 + 2 fi - l) J {a(A*) + y(A*)}

> v(n2 - %) + *■*■
This shows that (3.6) implies (3.8). On the other hand, it follows from (3.3) that

% + 2 (j - l) } {a(A) + P(k)} < + 2 - l) } {^(A) + y(A)}

for 0 < A < A*. Therefore, (3.8) implies (3.6) and (3.7). Thus, the claim is proved.
Now we introduce a new parameter £ instead of A. Consider the equation

F(x, rj) = F(£, rj) for t]0 - tj < £ < y. Then it is obvious that £ is a root of
this equation. Let a(g) and /?(£) be other roots (see Fig. 4). Then by (2.5), we
have

F(x, rj) - F((, tj) = + rjx2 + {rj2 - rj2Q)x - ±£3 - r/£2 - (rj2 - t/2)£

= I(x - £){*2 + (3n + Ox + (3?/2 - 3?7q + 3^ + £2)}

3<- lJx-Z){x-a(£)}{x-P(Z)},
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Fig. 4

and hence
a(0 + /*(0 = -(3»/ + fl.

Thus, we can rewrite (3.8) as

~ + 2 (I ~ 0 } + ^ ~ Vi)
for f/0 - rj < £ < y . For the sake of simplicity, we define

H{£, n) = F(Z, n) - {% + 2 (\ - i) } (3* + {) - rjin2 - n\)
1 ,.3 A . f 2 ^ 2 „ (_1

b
= ^ + ^+{^-2^-2(^-1 {-3,{,J + 2(}-l)}

viv2 - %)■
Then this inequality becomes

//(£ ,t])> 0 for rjQ - tj < £ < y. (3.9)

By the above arguments, it turns out that (2.3) is equivalent to (3.9) and so if
(3.9) is satisfied, then by Theorem B the systems (2.4) and (1.1) have no nonperiodic
solutions. In the following, we will show that (1.7) or (1.8) implies (3.9).

It is clear that //(£, rj) is monotone decreasing for -ri-^2{t]Q + (\/b - 1)} <£ <

-V+yJl {% + (1 lb - 1)} , and monotone increasing for £ < - tj -yj2{r,20 + (l/b-l)}

or £ > -r] + \J2{% + (1/^ — 1)} • By (3.2), we have
P = -(3 rj + y),
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and hence by (3.1) and (3.2),

H{y, rj) — F(y, tj) - j^ + 2^- 1^J(3r/+ y) - rj(rj2 - rj20)

= {^o + 2 (5 - l) J fi - r,(r,2 - rfy > 0. (3.10)
First estimation. Suppose that (1.7) holds. Then an easy calculation shows that

y<-tl + \j2{rj20 + (l/b- 1)}.

Therefore, since -f/-y2{?/g + (l/b - 1)} < , H(£, rj) is monotone decreasing
for t]Q - t] < £ < y, and hence by (3.10),

//(£, tj) > H(y ,ri)> 0 for rj0 - rj < £ < y.

Second estimation. Suppose that (1.8) holds, then

"'3 " 3 (s " ') 1 " {'o + G - ') } V2{lo2+ ('/»-I)}.
Therefore, we have

HH, 1) > //(-(J + v/2{(,02 + (1/4-1)}, id

= -^)-4(I-l),-i{,o2+(j-l)}\/2{^ + (l/i,-l),>0

for rj0-r]<Z<y.
Hence, in either case, (3.9) is verified. Thus the proof of Theorem 1.1 is now

complete.
Remark 3.1. By a simple argument, we can also see that if neither (1.7) nor (1.8)

is satisfied, then there exists £0 e [r]0 - t], y) such that H(£0, rj) < 0. Hence, the
2 2 2following equivalence relation holds in the case rjQ < t] < 4rj0 :

(2.3) ̂  (3.5) ̂  ((3.6) and (3.7))
(3.8) (3.9) ((1.7) or (1.8)).

Remark 3.2. If pb > 1, then by (2.5) it is easily seen that F(x, rj) is monotone
increasing for all x e R. Thus, the same argument of the case 4rj2 < tj2 shows that
(2.3) is satisfied, and so the system (1.1) has no nonconstant periodic solutions. (To
be precise, the critical point is a globally asymptotically stable solution of (1.1).)

4. Numerical examples. In this section we present the phase portraits of some
concrete systems (Figs. 5-7) to show how we should rank Theorem 1.1. The first
example does not satisfy the conditions in Theorem A, but satisfies those in Theorem
1.1.

Example 4.1. Consider the system (2.4) where the parameters satisfy

6 = P = T(i> and i = -1-
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Fig. 5

By numerical methods, we can see that all solutions circle clockwise around the origin
and tend toward it as t —> oc, and hence the system (2.4) has no periodic solutions
except for the origin (see Fig. 5).

In this example, the assumptions (1.2) and (1.3) are satisfied. However, since

2 , a 3 1 1 ,t10 = l-Pb=2>2 = T-1

and

2ti~ (I - 0 = I > 1 = *
neither (1.5) nor (1.6) is satisfied. Hence Theorem A cannot be applied to Example
4.1. On the other hand, we have

io + (l-')} =2<ts = "!{"2 + 3(s-1)}
and so (1.8) is satisfied. Thus by Theorem 1.1, the system (1.1) and its equivalent
system (2.4) have no nonconstant periodic solutions.

From the reason mentioned in Sec. 1 it seems that

ll <*12 (4-l)
is a necessary and sufficient condition for the nonexistence periodic solutions of (2.4).
But the following example shows that this conjecture is not true for j < b < 1 .

Example 4.2. Consider the system (2.4) where the parameters satisfy

9 1 9
4= 10' "=4' and 71 = "To*

Then ^ = 1 - pb - ^ = rf and so (4.1) is satisfied. On the other hand, we
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4 .22 4 -/ 1 ,\ 2 , / 1 . \ 2 /1 X2n - 4/? ^ + % + 2 ( ^ - 1 ) tj -4(^-1)^0 + 4(^-1

2,2 . 2, , „ / 1 , \ 2 . . / 1 x2

and

< n in - 4ri0) + l + 2[b~l)i + 4 (j ~ 1

81 / 81 1 9 4 A
— 100 X V 100 loj + 50 + 81

2 (\ ,\l3 „ /31 l\3 „ /5X3=2xUo + 9j >2*(j
_ 125 42849 _ 81 /23
~ 108 > 40000 ~ 100 X \20

81 (81 1V 2 f 2 ,
Too x vloo 3/ = " {" +3 HF-

Hence neither (1.7) nor (1.8) is satisfied. As shown in Fig. 6, the system (2.4) has
two periodic solutions except for the origin. (To be precise, a small unstable limit
cycle and a large stable limit cycle.)

Fig. 6

Finally, we give an example to show that Theorem 1.1 is a sufficient condition for
the nonexistence of periodic solutions of (2.4), but is not a necessary condition for
this problem.

Example 4.3. Consider the system (2.4) where the parameters satisfy

i=f, ,= •! and „ =
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Fig. 7

Then, as in Example 4.2, we can verify that neither (1.7) nor (1.8) is satisfied, and so
Theorem 1.1 cannot be applied to Example 4.3. Fig. 7 shows that the system (2.4)
has no periodic solutions except for the origin.

Although Example 4.3 suggests that a better result than Theorem 1.1 exists, it
would be difficult to achieve a satisfactory one.
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