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1 Introduction

Fractional differential equations describe many phenomena in various fields of engineer-

ing and scientific disciplines such as physics, biophysics, chemistry, biology (such as blood

flow phenomena), economics, control theory, signal and image processing, aerodynamics,

viscoelasticity, electromagnetics, and so on (see [–]). For some recent developments on

the topic, see [–] and the references therein. Coupled boundary conditions appear in

the study of reaction-diffusion equations and Sturm-Liouville problems, and they have

applications in many fields of sciences and engineering such as thermal conduction and

mathematical biology (see for example [–]).

In this paper, we consider the system of nonlinear fractional differential equations

(S)

{
Dα

+u(t) + λf (t,u(t), v(t)) = , t ∈ (, ),

D
β

+v(t) +μg(t,u(t), v(t)) = , t ∈ (, ),

with the coupled integral boundary conditions

(BC)

{
u() = u′() = · · · = u(n–)() = , u() =

∫ 


v(s)dH(s),

v() = v′() = · · · = v(m–)() = , v() =
∫ 


u(s)dK(s),

where n–  < α ≤ n,m–  < β ≤ m, n,m ∈N, n,m ≥ , Dα
+, and D

β

+ denote the Riemann-

Liouville derivatives of orders α and β , respectively, and the integrals from (BC) are

Riemann-Stieltjes integrals.

We shall give sufficient conditions on λ, μ, f , and g such that (S)-(BC) has no positive

solutions. By a positive solution of problem (S)-(BC) we mean a pair of functions (u, v) ∈
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C([, ]) × C([, ]) satisfying (S) and (BC) with u(t) ≥ , v(t) ≥  for all t ∈ [, ] and

(u, v) �= (, ). The existence of positive solutions for (S)-(BC) has been studied in [] by

using the Guo-Krasnosel’skii fixed point theorem. Themultiplicity of positive solutions of

the system (S) with λ = μ = , f (t,u, v) = f̃ (t, v) and g(t,u, v) = g̃(t,u) (denoted by (S)), with

the boundary conditions (BC) was investigated in [], where the nonlinearities f and g

are nonsingular or singular functions. In [], the authors used some theorems from the

fixed point index theory and theGuo-Krasnosel’skii fixed point theorem.We alsomention

[], where we studied the existence of positive solutions for (S)-(BC) (u(t) ≥ , v(t) ≥ 

for all t ∈ [, ], and u(t) > , v(t) >  for all t ∈ (, )), where f and g are sign-changing

functions. The systems (S) and (S) with uncoupled boundary conditions

(BC)

{
u() = u′() = · · · = u(n–)() = , u() =

∫ 


u(s)dH(s),

v() = v′() = · · · = v(m–)() = , v() =
∫ 


v(s)dK(s),

were investigated in [–].

In Section , we present the necessary definitions and properties from the fractional cal-

culus theory and some auxiliary results from [], which investigates a nonlocal boundary

value problem for fractional differential equations. In Section , we prove some nonexis-

tence results for the positive solutions with respect to a cone for our problem (S)-(BC).

Finally, two examples are given to illustrate our main results.

2 Auxiliary results

We present here the definitions, some lemmas from the theory of fractional calculus, and

some auxiliary results from [] that will be used to prove our main theorems.

Definition . The (left-sided) fractional integral of order α >  of a function f : (,∞) →
R is given by

(
Iα+ f

)
(t) =



Ŵ(α)

∫ t



(t – s)α–f (s)ds, t > ,

provided the right-hand side is pointwise defined on (,∞), where Ŵ(α) is the Euler

gamma function defined by Ŵ(α) =
∫ ∞


tα–e–t dt, α > .

Definition . The Riemann-Liouville fractional derivative of order α ≥  for a function

f : (,∞)→R is given by

(
Dα

+ f
)
(t) =

(
d

dt

)n(
In–α
+ f

)
(t) =



Ŵ(n – α)

(
d

dt

)n ∫ t



f (s)

(t – s)α–n+
ds, t > ,

where n = [[α]] + , provided that the right-hand side is pointwise defined on (,∞).

The notation [[α]] stands for the largest integer not greater than α. If α = m ∈ N then

Dm
+ f (t) = f (m)(t) for t > , and if α =  then D

+ f (t) = f (t) for t > .

We consider now the fractional differential system

{
Dα

+u(t) + x(t) = , t ∈ (, ),

D
β

+v(t) + y(t) = , t ∈ (, ),
()
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with the coupled integral boundary conditions (BC), where n –  < α ≤ n, m –  < β ≤ m,

n,m ∈N, n,m ≥ , and H ,K : [, ]→R from (BC) are functions of bounded variation.

Lemma . ([]) If H ,K : [, ] → R are functions of bounded variations, � =  –

(
∫ 


τ α– dK(τ ))(

∫ 


τ β– dH(τ )) �=  and x, y ∈ C(, ) ∩ L(, ), then the solution of prob-

lem ()-(BC) is given by

{
u(t) =

∫ 


G(t, s)x(s)ds +

∫ 


G(t, s)y(s)ds, t ∈ [, ],

v(t) =
∫ 


G(t, s)y(s)ds +

∫ 


G(t, s)x(s)ds, t ∈ [, ],

()

where

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G(t, s) = g(t, s) +
tα–

�
(
∫ 


τ β– dH(τ ))(

∫ 


g(τ , s)dK(τ )),

G(t, s) =
tα–

�

∫ 


g(τ , s)dH(τ ),

G(t, s) = g(t, s) +
tβ–

�
(
∫ 


τ α– dK(τ ))(

∫ 


g(τ , s)dH(τ )),

G(t, s) =
tβ–

�

∫ 


g(τ , s)dK(τ ),

()

for all t, s ∈ [, ] and

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(t, s) =


Ŵ(α)

{
tα–( – s)α– – (t – s)α–,  ≤ s ≤ t ≤ ,

tα–( – s)α–,  ≤ t ≤ s ≤ ,

g(t, s) =


Ŵ(β)

{
tβ–( – s)β– – (t – s)β–, ≤ s ≤ t ≤ ,

tβ–( – s)β–, ≤ t ≤ s ≤ .

()

Lemma . ([]) The functions g and g given by () have the properties

(a) g, g : [, ]× [, ] →R+ are continuous functions, and g(t, s) > , g(t, s) >  for all

(t, s) ∈ (, )× (, );

(b) g(t, s)≤ g(θ(s), s), g(t, s) ≤ g(θ(s), s), for all (t, s) ∈ [, ]× [, ];

(c) for any c ∈ (, /), we have

min
t∈[c,–c]

g(t, s)≥ γg
(
θ(s), s

)
, min

t∈[c,–c]
g(t, s) ≥ γg

(
θ(s), s

)
,

for all s ∈ [, ], where γ = cα–, γ = cβ–,

θ(s) =

⎧
⎨
⎩

s

–(–s)
α–
α–

, s ∈ (, ],

α–
α–

, s = ,

if n –  < α ≤ n, n≥ , and

θ(s) =

⎧
⎨
⎩

s

–(–s)
β–
β–

, s ∈ (, ],

β–
β–

, s = ,

ifm –  < β ≤ m,m ≥ .

Lemma . ([]) If H ,K : [, ] → R are nondecreasing functions, and � > , then Gi,

i = , . . . ,  given by () are continuous functions on [, ] × [, ] and satisfy Gi(t, s) ≥ 
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for all (t, s) ∈ [, ] × [, ], i = , . . . , . Moreover, if x, y ∈ C(, ) ∩ L(, ) satisfy x(t) ≥ ,

y(t) ≥  for all t ∈ (, ), then the unique solution (u, v) of problem ()-(BC) (given by ())

satisfies u(t)≥ , v(t) ≥  for all t ∈ [, ].

Lemma . ([]) Assume that H ,K : [, ] → R are nondecreasing functions and � > .

Then the functions Gi, i = , . . . , , satisfy the inequalities

(a) G(t, s)≤ J(s), ∀(t, s) ∈ [, ]× [, ], where

J(s) = g
(
θ(s), s

)
+



�

(∫ 



τ β– dH(τ )

)(∫ 



g(τ , s)dK(τ )

)
;

(a) for every c ∈ (, /), we have

min
t∈[c,–c]

G(t, s)≥ γJ(s)≥ γG

(
t′, s

)
, ∀t′, s ∈ [, ];

(b) G(t, s)≤ J(s), ∀(t, s) ∈ [, ]× [, ], where J(s) =

�

∫ 


g(τ , s)dH(τ );

(b) for every c ∈ (, /), we have

min
t∈[c,–c]

G(t, s)≥ γJ(s)≥ γG

(
t′, s

)
, ∀t′, s ∈ [, ];

(c) G(t, s)≤ J(s), ∀(t, s) ∈ [, ]× [, ], where

J(s) = g
(
θ(s), s

)
+



�

(∫ 



τ α– dK(τ )

)(∫ 



g(τ , s)dH(τ )

)
;

(c) for every c ∈ (, /), we have

min
t∈[c,–c]

G(t, s)≥ γJ(s) ≥ γG

(
t′, s

)
, ∀t′, s ∈ [, ];

(d) G(t, s)≤ J(s), ∀(t, s) ∈ [, ]× [, ], where J(s) =

�

∫ 


g(τ , s)dK(τ );

(d) for every c ∈ (, /), we have

min
t∈[c,–c]

G(t, s)≥ γJ(s) ≥ γG

(
t′, s

)
, ∀t′, s ∈ [, ].

Lemma . ([]) Assume that H ,K : [, ] → R are nondecreasing functions, � > , c ∈
(, /), and x, y ∈ C(, ) ∩ L(, ), x(t) ≥ , y(t) ≥  for all t ∈ (, ). Then the solution

(u(t), v(t)), t ∈ [, ] of problem ()-(BC) satisfies the inequalities

min
t∈[c,–c]

u(t)≥ γ max
t′∈[,]

u
(
t′
)
, min

t∈[c,–c]
v(t)≥ γ max

t′∈[,]
v
(
t′
)
.

3 Main results

We present in this section intervals for λ and μ for which there exists no positive solution

of problem (S)-(BC).

We present the assumptions that we shall use in the sequel.

(H) H ,K : [, ] →R are nondecreasing functions and

� =  – (
∫ 


τ α– dK(τ ))(

∫ 


τ β– dH(τ )) > .
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(H) The functions f , g : [, ]× [,∞)× [,∞) → [,∞) are continuous.

For c ∈ (, /), we introduce the following extreme limits:

f s = lim sup
u+v→+

max
t∈[,]

f (t,u, v)

u + v
, gs = lim sup

u+v→+
max
t∈[,]

g(t,u, v)

u + v
,

f i = lim inf
u+v→+

min
t∈[c,–c]

f (t,u, v)

u + v
, gi = lim inf

u+v→+
min

t∈[c,–c]

g(t,u, v)

u + v
,

f s∞ = lim sup
u+v→∞

max
t∈[,]

f (t,u, v)

u + v
, gs∞ = lim sup

u+v→∞
max
t∈[,]

g(t,u, v)

u + v
,

f i∞ = lim inf
u+v→∞

min
t∈[c,–c]

f (t,u, v)

u + v
, gi∞ = lim inf

u+v→∞
min

t∈[c,–c]

g(t,u, v)

u + v
.

In the definitions of the extreme limits above, the variables u and v are nonnegative.

By using the functionsGi, i = , . . . ,  from Section  (Lemma .), our problem (S)-(BC)

can be written equivalently as the following nonlinear system of integral equations:

{
u(t) = λ

∫ 


G(t, s)f (s,u(s), v(s))ds +μ

∫ 


G(t, s)g(s,u(s), v(s))ds, t ∈ [, ],

v(t) = μ
∫ 


G(t, s)g(s,u(s), v(s))ds + λ

∫ 


G(t, s)f (s,u(s), v(s))ds, t ∈ [, ].

We consider the Banach space X = C([, ]) with supremum norm ‖ · ‖, and the Banach

space Y = X ×X with the norm ‖(u, v)‖Y = ‖u‖ + ‖v‖. We define the cone P ⊂ Y by

P =
{
(u, v) ∈ Y ;u(t) ≥ , v(t)≥ ,∀t ∈ [, ] and inf

t∈[c,–c]

(
u(t) + v(t)

)
≥ γ

∥∥(u, v)
∥∥
Y

}
,

where γ = min{γ,γ} and γ, γ are defined in Section  (Lemma .).

For λ,μ > , we introduce the operators T,T : Y → X, and T : Y → Y defined by

T(u, v)(t) = λ

∫ 



G(t, s)f
(
s,u(s), v(s)

)
ds +μ

∫ 



G(t, s)g
(
s,u(s), v(s)

)
ds,  ≤ t ≤ ,

T(u, v)(t) = μ

∫ 



G(t, s)g
(
s,u(s), v(s)

)
ds + λ

∫ 



G(t, s)f
(
s,u(s), v(s)

)
ds,  ≤ t ≤ ,

and T (u, v) = (T(u, v),T(u, v)), (u, v) ∈ Y .

Lemma . ([]) If (H) and (H) hold, and c ∈ (, /), then T : P → P is a completely

continuous operator.

The positive solutions of our problem (S)-(BC) coincide with the fixed points of the

operator T .

Theorem . Assume that (H) and (H) hold, and c ∈ (, /). If f s , f
s
∞, gs, g

s
∞ < ∞, then

there exist positive constants λ, μ such that, for every λ ∈ (,λ) and μ ∈ (,μ), the

boundary value problem (S)-(BC) has no positive solution.

Proof From the definitions of f s , f
s
∞, gs, g

s
∞, which are finite, we deduce that there exist

M,M >  such that

f (t,u, v)≤ M(u + v), g(t,u, v) ≤ M(u + v), ∀t ∈ [, ], u, v≥ .
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We define λ = min{ 
MA

, 
MD

}, μ = min{ 
MB

, 
MC

}, where A =
∫ 


J(s)ds, B =

∫ 


J(s)ds, C =

∫ 


J(s)ds, D =

∫ 


J(s)ds. We shall show that, for every λ ∈ (,λ) and

μ ∈ (,μ), problem (S)-(BC) has no positive solution.

Let λ ∈ (,λ) and μ ∈ (,μ). We suppose that (S)-(BC) has a positive solution

(u(t), v(t)), t ∈ [, ]. Then by using Lemma ., we obtain

u(t) =
(
T(u, v)

)
(t) = λ

∫ 



G(t, s)f
(
s,u(s), v(s)

)
ds +μ

∫ 



G(t, s)g
(
s,u(s), v(s)

)
ds

≤ λ

∫ 



J(s)f
(
s,u(s), v(s)

)
ds +μ

∫ 



J(s)g
(
s,u(s), v(s)

)
ds

≤ λM

∫ 



J(s)
(
u(s) + v(s)

)
ds +μM

∫ 



J(s)
(
u(s) + v(s)

)
ds

≤ λM

∫ 



J(s)
(
‖u‖ + ‖v‖

)
ds +μM

∫ 



J(s)
(
‖u‖ + ‖v‖

)
ds

= (λMA +μMB)
∥∥(u, v)

∥∥
Y
, ∀t ∈ [, ].

Therefore, we conclude

‖u‖ ≤ (λMA +μMB)
∥∥(u, v)

∥∥
Y
< (λMA +μMB)

∥∥(u, v)
∥∥
Y

≤ 



∥∥(u, v)
∥∥
Y
. ()

In a similar manner, we obtain

v(t) =
(
T(u, v)

)
(t) = μ

∫ 



G(t, s)g
(
s,u(s), v(s)

)
ds + λ

∫ 



G(t, s)f
(
s,u(s), v(s)

)
ds

≤ μ

∫ 



J(s)g
(
s,u(s), v(s)

)
ds + λ

∫ 



J(s)f
(
s,u(s), v(s)

)
ds

≤ μM

∫ 



J(s)
(
u(s) + v(s)

)
ds + λM

∫ 



J(s)
(
u(s) + v(s)

)
ds

≤ μM

∫ 



J(s)
(
‖u‖ + ‖v‖

)
ds + λM

∫ 



J(s)
(
‖u‖ + ‖v‖

)
ds

= (μMC + λMD)
∥∥(u, v)

∥∥
Y
, ∀t ∈ [, ].

Therefore, we deduce

‖v‖ ≤ (μMC + λMD)
∥∥(u, v)

∥∥
Y
< (μMC + λMD)

∥∥(u, v)
∥∥
Y

≤ 



∥∥(u, v)
∥∥
Y
. ()

Hence, by () and (), we conclude

∥∥(u, v)
∥∥
Y
= ‖u‖ + ‖v‖ < 



∥∥(u, v)
∥∥
Y
+




∥∥(u, v)
∥∥
Y
=

∥∥(u, v)
∥∥
Y
,

which is a contradiction. So the boundary value problem (S)-(BC) has no positive solu-

tion. �

Theorem . Assume that (H) and (H) hold, and c ∈ (, /). If f i, f
i
∞ >  and f (t,u, v) >

 for all t ∈ [c, –c], u≥ , v≥ , u+v > , then there exists a positive constant λ̃ such that,

for every λ > λ̃ and μ > , the boundary value problem (S)-(BC) has no positive solution.
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Proof From the assumptions of the theorem, we deduce that there existsm >  such that

f (t,u, v) ≥ m(u + v) for all t ∈ [c,  – c] and u, v ≥ . We define λ̃ = min{ 

γ γmÃ
, 

γ γmD̃
},

where Ã =
∫ –c

c
J(s)ds and D̃ =

∫ –c

c
J(s)ds. We shall show that, for every λ > λ̃ and μ > ,

problem (S)-(BC) has no positive solution.

Let λ > λ̃ and μ > . We suppose that (S)-(BC) has a positive solution (u(t), v(t)), t ∈
[, ].

If Ã≥ D̃, then λ̃ =


γ γmÃ
, and therefore, we obtain

u(c) =
(
T(u, v)

)
(c) = λ

∫ 



G(c, s)f
(
s,u(s), v(s)

)
ds +μ

∫ 



G(c, s)g
(
s,u(s), v(s)

)
ds

≥ λ

∫ 



G(c, s)f
(
s,u(s), v(s)

)
ds≥ λ

∫ –c

c

G(c, s)f
(
s,u(s), v(s)

)
ds

≥ λm

∫ –c

c

G(c, s)
(
u(s) + v(s)

)
ds ≥ λmγ

∫ –c

c

J(s)γ
(
‖u‖ + ‖v‖

)
ds

= λmγ γÃ
∥∥(u, v)

∥∥
Y
.

Then we conclude

‖u‖ ≥ u(c) ≥ λmγ γÃ
∥∥(u, v)

∥∥
Y
> λ̃mγ γÃ

∥∥(u, v)
∥∥
Y
=

∥∥(u, v)
∥∥
Y
,

and so ‖(u, v)‖Y = ‖u‖ + ‖v‖ ≥ ‖u‖ > ‖(u, v)‖Y , which is a contradiction.

If Ã < D̃, then λ̃ =


γ γmD̃
, and therefore, we deduce

v(c) =
(
T(u, v)

)
(c) = μ

∫ 



G(c, s)g
(
s,u(s), v(s)

)
ds + λ

∫ 



G(c, s)f
(
s,u(s), v(s)

)
ds

≥ λ

∫ 



G(c, s)f
(
s,u(s), v(s)

)
ds≥ λ

∫ –c

c

G(c, s)f
(
s,u(s), v(s)

)
ds

≥ λm

∫ –c

c

G(c, s)
(
u(s) + v(s)

)
ds≥ λmγ

∫ –c

c

J(s)γ
(
‖u‖ + ‖v‖

)
ds

= λmγ γD̃
∥∥(u, v)

∥∥
Y
.

Then we conclude

‖v‖ ≥ v(c)≥ λmγ γD̃
∥∥(u, v)

∥∥
Y
> λ̃mγ γD̃

∥∥(u, v)
∥∥
Y
=

∥∥(u, v)
∥∥
Y
,

and so ‖(u, v)‖Y = ‖u‖ + ‖v‖ ≥ ‖v‖ > ‖(u, v)‖Y , which is a contradiction.

Therefore, the boundary value problem (S)-(BC) has no positive solution. �

Theorem. Assume that (H) and (H) hold, and c ∈ (, /). If gi, g
i
∞ >  and g(t,u, v) >

 for all t ∈ [c, –c], u≥ , v ≥ , u+v > , then there exists a positive constant μ̃ such that,

for every μ > μ̃ and λ > , the boundary value problem (S)-(BC) has no positive solution.

Proof From the assumptions of the theorem, we deduce that there existsm >  such that

g(t,u, v) ≥ m(u + v) for all t ∈ [c,  – c] and u, v ≥ . We define μ̃ = min{ 
γ γmB̃

, 
γ γmC̃

},
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where B̃ =
∫ –c

c
J(s)ds and C̃ =

∫ –c

c
J(s)ds. We shall show that, for every μ > μ̃ and λ > ,

problem (S)-(BC) has no positive solution.

Let μ > μ̃ and λ > . We suppose that (S)-(BC) has a positive solution (u(t), v(t)), t ∈
[, ].

If B̃ ≥ C̃, then μ̃ =


γ γmB̃
, and therefore we obtain

u(c) =
(
T(u, v)

)
(c) = λ

∫ 



G(c, s)f
(
s,u(s), v(s)

)
ds +μ

∫ 



G(c, s)g
(
s,u(s), v(s)

)
ds

≥ μ

∫ 



G(c, s)g
(
s,u(s), v(s)

)
ds≥ μ

∫ –c

c

G(c, s)g
(
s,u(s), v(s)

)
ds

≥ μm

∫ –c

c

G(c, s)
(
u(s) + v(s)

)
ds≥ μmγ

∫ –c

c

J(s)γ
(
‖u‖ + ‖v‖

)
ds

= μmγ γB̃
∥∥(u, v)

∥∥
Y
.

Then we conclude

‖u‖ ≥ u(c) ≥ μmγ γB̃
∥∥(u, v)

∥∥
Y
> μ̃mγ γB̃

∥∥(u, v)
∥∥
Y
=

∥∥(u, v)
∥∥
Y
,

and so ‖(u, v)‖Y = ‖u‖ + ‖v‖ ≥ ‖u‖ > ‖(u, v)‖Y , which is a contradiction.

If B̃ < C̃, then μ̃ =


γ γmC̃
, and therefore, we deduce

v(c) =
(
T(u, v)

)
(c) = μ

∫ 



G(c, s)g
(
s,u(s), v(s)

)
ds + λ

∫ 



G(c, s)f
(
s,u(s), v(s)

)
ds

≥ μ

∫ 



G(c, s)g
(
s,u(s), v(s)

)
ds≥ μ

∫ –c

c

G(c, s)g
(
s,u(s), v(s)

)
ds

≥ μm

∫ –c

c

G(c, s)
(
u(s) + v(s)

)
ds≥ μmγ

∫ –c

c

J(s)γ
(
‖u‖ + ‖v‖

)
ds

= μmγ γC̃
∥∥(u, v)

∥∥
Y
.

Then we conclude

‖v‖ ≥ v(c)≥ μmγ γC̃
∥∥(u, v)

∥∥
Y
> μ̃mγ γC̃

∥∥(u, v)
∥∥
Y
=

∥∥(u, v)
∥∥
Y
,

and so ‖(u, v)‖Y = ‖u‖ + ‖v‖ ≥ ‖v‖ > ‖(u, v)‖Y , which is a contradiction.

Therefore, the boundary value problem (S)-(BC) has no positive solution. �

Theorem . Assume that (H) and (H) hold, and c ∈ (, /). If f i, f
i
∞, gi, g

i
∞ > , and

f (t,u, v) > , g(t,u, v) >  for all t ∈ [c,  – c], u≥ , v ≥ , u+ v > , then there exist positive

constants λ̂ and μ̂ such that, for every λ > λ̂ and μ > μ̂, the boundary value problem

(S)-(BC) has no positive solution.

Proof From the assumptions of the theorem, we deduce that there exist m,m >  such

that f (t,u, v)≥ m(u + v), g(t,u, v) ≥ m(u + v), for all t ∈ [c,  – c] and u, v ≥ .

We define λ̂ =


γ γmÃ
and μ̂ =


γ γmC̃

, where Ã =
∫ –c

c
J(s)ds and C̃ =

∫ –c

c
J(s)ds.

Then, for every λ > λ̂ and μ > μ̂, problem (S)-(BC) has no positive solution. Indeed, let
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λ > λ̂ and μ > μ̂. We suppose that (S)-(BC) has a positive solution (u(t), v(t)), t ∈ [, ].

In a similar manner to that used in the proofs of Theorems . and ., we obtain

‖u‖ ≥ u(c) ≥ λmγ γÃ
∥∥(u, v)

∥∥
Y
, ‖v‖ ≥ v(c)≥ μmγ γC̃

∥∥(u, v)
∥∥
Y
,

and so

∥∥(u, v)
∥∥
Y
= ‖u‖ + ‖v‖ ≥ λmγ γÃ

∥∥(u, v)
∥∥
Y
+μmγ γC̃

∥∥(u, v)
∥∥
Y

> λ̂mγ γÃ
∥∥(u, v)

∥∥
Y
+ μ̂mγ γC̃

∥∥(u, v)
∥∥
Y

=




∥∥(u, v)
∥∥
Y
+




∥∥(u, v)
∥∥
Y
=

∥∥(u, v)
∥∥
Y
,

which is a contradiction. Therefore, the boundary value problem (S)-(BC) has no positive

solution.

We can also define λ̂′
 = 

γ γmD̃
and μ̂′

 = 
γ γmB̃

, where B̃ =
∫ –c

c
J(s)ds and D̃ =

∫ –c

c
J(s)ds. Then, for every λ > λ̂′

 and μ > μ̂′
, problem (S)-(BC) has no positive solution.

Indeed, let λ > λ̂′
 and μ > μ̂′

. We suppose that (S)-(BC) has a positive solution (u(t), v(t)),

t ∈ [, ]. In a similar manner to that used in the proofs of Theorems . and ., we obtain

‖v‖ ≥ v(c)≥ λmγ γD̃
∥∥(u, v)

∥∥
Y
, ‖u‖ ≥ u(c) ≥ μmγ γB̃

∥∥(u, v)
∥∥
Y
,

and so

∥∥(u, v)
∥∥
Y
= ‖u‖ + ‖v‖ ≥ μmγ γB̃

∥∥(u, v)
∥∥
Y
+ λmγ γD̃

∥∥(u, v)
∥∥
Y

> μ̂′
mγ γB̃

∥∥(u, v)
∥∥
Y
+ λ̂′

mγ γD̃
∥∥(u, v)

∥∥
Y

=




∥∥(u, v)
∥∥
Y
+




∥∥(u, v)
∥∥
Y
=

∥∥(u, v)
∥∥
Y
,

which is a contradiction. Therefore, the boundary value problem (S)-(BC) has no positive

solution. �

Remark . Under the assumptions of Theorem ., we have the following observations.

(a) In the case Ã≥ D̃ and B̃≤ C̃, Theorem . gives some supplementary information

for the domain of λ and μ for which there is no positive solution of (S)-(BC), in

comparison to Theorems . and ., because λ̂ =
λ̃

and μ̂ =

μ̃

.

(b) In the case Ã≤ D̃ and B̃≥ C̃, Theorem . gives some supplementary information

for the domain of λ and μ for which there is no positive solution of (S)-(BC), in

comparison to Theorems . and ., because λ̂′
 =

λ̃

and μ̂′

 =
μ̃

.

4 Examples

Let α = / (n = ), β = / (m = ), H(t) = t,

K(t) =

⎧
⎪⎨
⎪⎩

, t ∈ [, /),

, t ∈ [/, /),

/, t ∈ [/, ],

for all t ∈ [, ]. Then
∫ 


v(s)dH(s) = 

∫ 


sv(s)ds and

∫ 


u(s)dK(s) = u( 


) + 


u( 


).
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We consider the system of fractional differential equations

(S)

{
D/

+ u(t) + λf (t,u(t), v(t)) = , t ∈ (, ),

D/
+ v(t) +μg(t,u(t), v(t)) = , t ∈ (, ),

with the boundary conditions

(BC)

{
u() = u′() = , u() = 

∫ 


sv(s)ds,

v() = v′() = , v() = u( 

) + 


u( 


).

Then we deduce � ≈ . > , θ(s) =


–s+s–s
, θ(s) =


–s+s

for all s ∈ [, ]

(see also []). For the functions Ji, i = , . . . , , we obtain

J(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩


Ŵ(/)

{ s(–s)/

(–s+s–s)/
+ 

 √�
[( – s)/ – ( – s)/

+ ( – s)/ – ( – s)/]},  ≤ s < /,


Ŵ(/)
{ s(–s)/

(–s+s–s)/
+ 

 √�
[( – s)/ + ( – s)/

– ( – s)/]}, /≤ s < /,


Ŵ(/)
{ s(–s)/

(–s+s–s)/
+ 

 √�
[( – s)/ + ( – s)/]}, /≤ s ≤ ,

J(s) =



√

π�

{



( – s)/ –




( – s)/ –




s( – s)/

}
, s ∈ [, ],

J(s) =



√

π

{
s( – s)/

( – s + s)/
+
( + 

√
)

 
√
�

[



( – s)/ –




( – s)/ –




s( – s)/

]}
,

s ∈ [, ],

J(s) =

⎧
⎪⎪⎨
⎪⎪⎩



 √�Ŵ(/)
[( – s)/ – ( – s)/ + ( – s)/ – ( – s)/],  ≤ s < /,



 √�Ŵ(/)
[( – s)/ + ( – s)/ – ( – s)/], / ≤ s < /,



 √�Ŵ(/)
[( – s)/ + ( – s)/], /≤ s ≤ .

For c = /, we deduce γ = –/ ≈ ., γ =


, γ = γ. After some compu-

tations, we conclude A =
∫ 


J(s)ds ≈ ., Ã =

∫ /

/
J(s)ds ≈ ., B =∫ 


J(s)ds ≈ ., B̃ =

∫ /

/
J(s)ds ≈ ., C =

∫ 


J(s)ds ≈ .,

C̃ =
∫ /

/
J(s)ds ≈ ., D =

∫ 


J(s)ds ≈ ., D̃ =

∫ /

/
J(s)ds ≈

..

Example  We consider the functions

f (t,u, v) =

√
t[p(u + v) + ](u + v)(q + sin v)

u + v + 
,

g(t,u, v) =

√
 – t[p(u + v) + ](u + v)(q + cosu)

u + v + 
,

for t ∈ [, ], u, v ≥ , where p,p >  and q,q > .

We obtain f s = q, g
s
 = q + , f s∞ = p(q + ), gs∞ = p(q + ), and then we can apply

Theorem .. So we conclude that there exist λ,μ >  such that, for every λ ∈ (,λ)

and μ ∈ (,μ), the boundary value problem (S)-(BC) has no positive solution. By The-

orem ., the positive constants λ and μ are given by λ = min{ 
MA

, 
MD

} = 
MA

and
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μ = min{ 
MB

, 
MC

} = 
MC

. For example, if p = , p = , q = , q = , then we

obtainM = ,,M = ,, λ ≈ . · –, and μ ≈ . · –.
Because f i = 

√
q and f i∞ = 

√
p(q – ), we can apply Theorem .. Then there

exists λ̃ >  such that, for every λ > λ̃ and μ > , problem (S)-(BC) has no posi-

tive solution. From the proof of Theorem ., the positive constant λ̃ is given by λ̃ =

min{ 
γ γmÃ

, 
γ γmD̃

}. For example, if p =  and q = , then we deduce m =

√
 and

λ̃ ≈ ..

Because gi = 

(q + ) and gi∞ = 


p(q – ), we can also apply Theorem .. Then

there exists μ̃ >  such that, for every μ > μ̃ and λ > , problem (S)-(BC) has no

positive solution. From the proof of Theorem ., the positive constant μ̃ is given by

μ̃ = min{ 
γ γmB̃

, 
γ γmC̃

}. For example, if p =  and q = , then we obtain m =  and

μ̃ ≈ ..

Example  We consider the functions

f (t,u, v) = pt
ã
(
u + v

)
, g(t,u, v) = p( – t)b̃

(
eu+v – 

)
, t ∈ [, ], u, v ≥ ,

where ã, b̃,p,p > .

Because gi = –b̃p and gi∞ = ∞, we can apply Theorem .. Then there exists μ̃ such

that, for everyμ > μ̃ and λ > , problem (S)-(BC) has no positive solution. For example,

if p = b̃ = , then we deducem =


and μ̃ ≈ ,..

5 Conclusions

In this paper, we give sufficient conditions on λ, μ, f , and g such that the system of non-

linear Riemann-Liouville fractional differential equations (S) with the coupled integral

boundary conditions (BC) has no positive solutions. Some examples which illustrate the

obtained results are also presented.
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