
Nonfunctional Requirements:
From Elicitation to Conceptual Models

Luiz Marcio Cysneiros, Member, IEEE Computer Society, and

Julio Cesar Sampaio do Prado Leite, Member, IEEE Computer Society

Abstract—Nonfunctional Requirements (NFRs) have been frequently neglected or forgotten in software design. They have been

presented as a second or even third class type of requirement, frequently hidden inside notes. We tackle this problem by treating NFRs

as first class requirements. We present a process to elicit NFRs, analyze their interdependencies, and trace them to functional

conceptual models. We focus our attention on conceptual models expressed using UML (Unified Modeling Language). Extensions to

UML are proposed to allow NFRs to be expressed. We will show how to integrate NFRs into the Class, Sequence, and Collaboration

Diagrams. We will also show how Use Cases and Scenarios can be adapted to deal with NFRs. This work was used in three case

studies and their results suggest that by using our proposal we can improve the quality of the resulting conceptual models.

Index Terms—Software design, requirements elicitation, nonfunctional requirements, goal graphs, UML conceptual models.

�

1 INTRODUCTION

SOFTWARE systems, aside from implementing all the
desired functionality, must also cope with nonfunctional

aspects such as: reliability, security, accuracy, safety,
performance, look and feel requirements, as well as
organizational, cultural, and political requirements. These
nonfunctional aspects must be treated as nonfunctional
requirements (NFRs) of the software. They should be dealt
with from the beginning and throughout the software
development process [9], [10].

Ineffectively dealing with NFRs has led to a series of
failures in software development [5], [26], including the
very well-known case of the London Ambulance System
[17], where the deactivation of the system right after its
deployment was strongly influenced by NFRs noncom-
pliance. Literature [7], [15], [11] has been pointing out
these requirements as the most expensive and difficult to
deal with.

In spite of their importance, NFRs have, surprisingly,
received little attention in the literature and are poorly
understood compared to less critical aspects of the software
development [10]. The majority of the work on NFRs uses a
product-oriented approach, which is concerned with mea-
suring how much a software system is in accordance with
the set of NFRs that it should satisfy [25], [2], [16], [31], [30].

There are, however, a few that propose to use a process-
oriented approach in order to explicitly deal with NFRs
[10], [25], [3], [41]. Most of these works propose the use of

techniques to justify design decisions on the inclusion or
exclusion of requirements that will impact the software
design.

Unlike the product-oriented approach, our approach is

concerned with making NFRs a relevant and important part

of the software development process. It is also possible to

find standards [22], [39], [33] that can offer some guidance

on eliciting NFRs. However, these standards basically give

different taxonomies for some of the NFRs. The elicitation

process per se is shallow. There is also a lack of guidance on

how one might integrate the NFRs into design.

We propose a strategy to elicit NFRs and guide the

software engineer to obtain conceptual models that will

have explicit traces to the NFRs and vice-versa.1 Our

elicitation process is based on the use of a lexicon that will

not only be used to anchor both functional and nonfunc-

tional models, but also to drive NFR elicitation. A lexicon

representing the common vocabulary used in the domain is

built. Later, NFRs are added to this lexicon. Possible

solutions for implementing these NFRs are also added to

the lexicon.

The lexicon will then drive the construction of NFRs

graphs [8] slightly extended to fit our strategy. NFR graphs

are and/or graphs that decompose nonfunctional require-

ments, from vague abstractions to more concrete descrip-

tions. Heuristics for conflict detection are then used to guide

the NFRs reasoning. Finally, the strategy provides a

systematic way of integrating the elicited NFRs into use

cases and scenarios as well as class, sequence and

collaboration diagrams. The integration process can also

be used to validate ongoing projects in such a way that,

even if one has a project where the conceptual models are

328 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

. L.M. Cysneiros is with the Department of Mathematics and Statistics,
Information Technology Program, York University, 4700 Keele St.,
M3J1P3, Toronto, Canada. E-mail: cysneiro@mathstat.yorku.ca.

. J.C.S.d.P. Leite is with the Departamento de Informática, Pontificia
Univiversidade Católica do Rio de Janeiro, R. Marques de São Vicente, 225
Rio de Janeiro, Brasil 22453-900. E-mail: julio@inf.puc-rio.br.

Manuscript received 12 Aug. 2002; revised 30 Aug. 2003; accepted 1 Mar.
2004.
Recommended for acceptance by J. Knight.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 117119.

1. Our work is based on the results of the doctoral dissertation of Dr.
Cysneiros and on our ongoing research on the aspects of nonfunctional
requirements. This journal paper builds upon, and uses the results of, other
published materials [11], [12], [14], but provides a new and integrate view of
our results.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

already designed, he can still integrate them with NFRs. In

the same way, the integration process can also be used for

enhancing legacy systems.
We carried out three case studies to test the proposed

strategy. Two of these case studies were controlled

experiments that were based on the use of the specification

for the implementation of the Light Control System for the

University of Kaiserslautern [4]. This system has to control

all the lights in a building using several sensors so the

system can detect the presence or the absence of people in a

room, as well as the amount of exterior illumination coming

through the windows. This way, the system can maintain

the illumination of a room in accordance with several

criteria defined in the system specification. The third case

study was conducted during the development of a software

system for controlling a clinical analysis laboratory. This

case study was carried out within a software house that was

developing a real system to control the whole production

process of a laboratory, ranging from drawing the blood to

delivering the patient’s report to the patient. Section 5 will

present further details.
The results of the case studies suggest that the use of the

proposed strategy can lead to a more complete conceptual

model, as well as to a faster time to market process since

NFRs related errors can be avoided. Confronting these

results with the measured overhead to apply the strategy

suggests that the proposed strategy can lead to a more

productive process.
Section 2 will present an overview of the entire strategy

to deal with NFRs, while Section 3 will tackle NFRs

elicitation. Section 4 will detail how to represent NFRs in

Use Case Diagrams and Scenario Models and how to

integrate NFRs into class, sequence, and collaboration

diagrams. Section 5 will present the results from three case

studies and Section 6 concludes the paper.

2 AN OVERVIEW OF THE STRATEGY TO DEAL

WITH NFR

We view the software development process as being

composed of two independent evolutionary perspectives.

As one perspective focuses on the functional aspects of the

software system, the other deals with nonfunctional aspects.

The rationale to have two different processes is twofold;

first, it allows the process to be used in legacy applications;

second, we are using an evolution perspective. Require-

ments changes are usually motivated by either functional or

nonfunctional aspects, so treating them separately eases the

evolution aspect. A positive side effect of using two distinct

processes is that we can analyze nonfunctional graphs to

check for design consistency among the several interde-

pendencies among NFRs. For instance, if we have security

demands, like using cryptography, it will have to be

consistent with our demands for spacing and performance.
As depicted in Fig. 1, we propose to build both the

functional and the nonfunctional perspectives anchored in

the Language Extended Lexicon (LEL) [26]. This policy

assures that a common and controlled vocabulary will be

used in both functional and nonfunctional representations.

Note that, in Fig. 1,2 LEL is a control arrow to both BUILD

FUNCTIONAL PERSPECTIVE and BUILD NONFUNCIO-

NAL PERSPECTIVE as such, traceability is enabled by

construction since both perspectives will be anchored on the

same lexicon.
From Fig. 1, we can see that there are four major

activities in our strategy. We first build the lexicon, and

then build the functional and the nonfunctional models

concurrently. We integrate the two models and attend to the

different feedbacks during the evolution of the process (see

the arrows ”new LEL symbols” and ”discrepancies”).

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 329

2. In a SADT model [36], the control arrow determines how the activity
will be performed.

Fig. 1. An overview of the strategy to deal with NFR.

The First step is to build the lexicon, which is a natural
language-oriented front-end to the strategy, and the anchor
for the vocabulary used in the software. The lexicon
representation is based on the Language Extended Lexicon
(LEL) [26]. LEL registers the vocabulary of a given Universe
of Discourse (UofD3). It is based upon the following simple
idea: understand the problem’s language without worrying
about deeply understanding the problem. As such, we
assure that the vocabulary is well anchored. LEL entries
have to be defined both in terms of their denotation as well
as the particular connotation in that given context. It is also
structured in a way that their entries are naturally linked in
a hypergraph (see Fig. 3). LEL is first produced without
focusing on nonfunctional aspects. These aspects are added
to LEL at the BUILD NONFUNCTIONAL PERSPECTIVE.
Note in Fig. 1 this activity has as input ”NFR knowledge
base” and the control/output ”LEL with NFR.”

Once having the first LEL, without the NFR related
information, we may start building the functional model
(BUILD FUNCTIONAL PERSPECTIVE). We do not detail
this process in the paper, which can be any OO modeling
formation method,4 but with the caveat explained before, all
the elements of the model must follow the same vocabulary
as used in the lexicon.

In parallel with BUILDING FUNCTIONAL PERSPEC-
TIVE, we will also BUILD NONFUNCTIONAL PERSPEC-
TIVE. In this activity, we will add the desired NFRs to the
existing or recently created LEL. For this purpose, LEL may
also express that one or more NFR is needed by an entry. It
is structured to handle dependency links between one NFR
and the entries related to it.

After including NFRs in the lexicon, which shows all the
desired NFRs and some of their operationalizations, we
represent these NFRs in a set of NFR graphs (BUILD
NONFUNCTIONAL PERSPECTIVE) using Chung’s NFR
framework5 [8], [10], [32]. The framework proposes to use
nonfunctional requirements to drive design and to support
architectural design. NFRs are viewed as goals (roots of an
and/or graph) that are decomposed into subgoals (sub-
graphs) until all the necessary actions and information are
represented at the leaf levels of the graphs. These actions
and information are called operationalizations.

The NFR framework allows a deeper level of refinement
and reasoning about NFRs. Once the graphs have been
built, we then apply a series of heuristics to find inter-
dependencies between graphs and try to solve any possible
conflicts. As such, there is a feedback from this activity to
the first activity of our SADT model (Fig. 1). However, this
framework does not detail an elicitation process or NFR
integration into design. Two of our previous works [11],
[14] reinforce the premise presented by Chung [10], that the
lack of integration of NFRs to functional requirements may
lead to incomplete conceptual models. During acceptance

or after deployment these NFRs will likely be demanded by
customers, and the lack of integration may result in projects
that will take more time to be concluded as well as in bigger
maintenance costs.

Finally, we need to integrate the functional and non-
functional perspectives. The integration process can take
place either in the early phases, integrating the NFRs into
the use case or scenario models, or later, integrating NFRs
into class, sequence and collaboration diagrams. Actually,
the best case scenario happens when the integration takes
place in both the early and late phases. Doing so, one could
not only check if NFRs are correctly represented in later
phase models, but also reevaluate these NFRs under the
viewpoint of new design decisions or requirements evolu-
tion that may have happened. Again, it is important to
stress that the integration is based on the idea that the NFR
graphs and class, sequence and collaboration diagrams will
be built using LEL symbols.6 For each class, we search all of
the NFR graphs looking for occurrences of the symbol that
is named after that class. For each match, we must see if the
operationalizations for this NFR are already implemented
in the class. If they are not, we should add the necessary
operations and/or attributes. For use cases and scenarios, a
similar approach will be used. If a class is not named after a
LEL symbol, either a synonym is missing in LEL or LEL is
incomplete and should, therefore, be updated. Once LEL is
updated, all of the steps in the nonfunctional perspective
should be carried out again, as well as a new integration
into the design models. This vocabulary scheme produces a
natural traceability that helps to navigate among models,
enhancing the ability to check possible impacts that could
arise from changes in the design. These changes may also
come from a scenario where requirements had evolved and
hence demanded new trade off analysis.

It is important to emphasize that we do not propose to
deal with NFRs elicitation within the scope of the functional
perspective. In order to attain NFRs, their goal graph
usually requires a very detailed reasoning to reach their
operationalizations (graph leafs). In general, we start from a
very abstract notion of NFR, e.g., Performance, and start
refining it into more specific ways of achieving this goal, for
example, Space Performance and Time Performance. This
process continues until we reach a level where the
appropriated action or data will be sufficient to operatio-
nalize this goal, e.g., Use Cryptography if we consider the
Space Performance.

Another reason for dealing with NFRs separately, is that
NFRs frequently present many interdependencies with
other NFRs that might require trade offs among different
possible design decisions. Take for example the Use of
Cryptography mentioned above. While it may be used to
achieve Space Performance goals, it may conflict with Time
Performance goals. Dealing with these particular aspects of
NFRs can be quite difficult and confusing using only use
cases, scenarios, or even class diagrams. Note that, in our
approach, one does not discard one solution for another.
The software engineer must evaluate the contributions of
each alternative and decide which one would be taken, but

330 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

3. “The overall context in which the software will be developed and
operated. The UofD includes all the sources of information and all the
people related to the software. It is the reality reviewed by the set of
objectives established.”

4. E.g., the RUP Process [23] (6).
5. As pointed out by one of the referees, the NFR Framework can be

understood as a five-tuple <G,L,GM,R,P>, where G is a set of rules, L is a set
of link type, GM is a set of generic methods, R is a collection of correlation
rules, and P is a labeling procedure.

6. This is the caveat mentioned above, when describing BUILD
FUNCTIONAL PERSPECTIVE.

the other alternatives will still be modeled and hence the
rationale for decisions will be kept.

3 BUILDING THE NONFUNCTIONAL PERSPECTIVE

As mentioned in Section 2, for building the nonfunctional
perspective (Fig. 2), we use an existing LEL or, in a case
where it does not yet exist, we build a new one. We must

add to the existing, or recently created LEL, the NFRs that
are desired by customers. Once we have the lexicon
showing all of the desired NFRs and some of their
operationalizations, we represent these NFRs in a set of
NFR graphs using the NFR Framework [8] extended with a
few new features. The NFR framework allows us to model
and reason about NFRs at a deeper level of refinement than
within LEL. Heuristics are then applied to search for
possible interdependencies, either positive or negative.
Possible conflicts must be negotiated with stakeholders to
reach a compromise that represents an agreement on a
possible solution that addresses all concerns.

Further details will be showed in the next sections.

3.1 Using LEL to Support NFRs Elicitation on
Earlier Phases

The decision of using LEL was threefold. First, it is a natural
language representation, and layman has no difficulty in
dealing with it, at least this is our experience with using
LEL for the last 10 years. Second, it is structured as a
hypertext graph (Fig. 3b) in which every node, the lexicon
entry, has both denotations, and connotations adding
contextual semantics to the vocabulary. It is used as an
anchor for further software representations, thus providing
a natural traceability feature among distinct models.

LEL is based on a code system composed of symbols,
where each symbol is an entry expressed in terms of notions
and behavioral responses. The notions must try to elicit the
meaning of the symbol and its fundamental relations with
other entries. The behavioral response must specify the
connotation of the symbol in the UofD, i.e., what happens
because this symbol exists. Each symbol may also be
represented by one or more aliases.

LEL construction must be oriented by the minimum
vocabulary and the circularity principles. The circularity
principle prescribes the maximization of the usage of
LEL symbols when describing LEL entries, while the
minimal vocabulary principle prescribes the minimization
of the usage of symbols exterior to LEL when describing
these symbols. Because of the circularity principle, LEL has a
hypertext form. Fig. 3a shows an example of an entry in LEL.

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 331

Fig. 3. (a) Example of a LEL entry. (b) LEL as a graph.

Fig. 2. Building the nonfunctional perspective.

The underlined words/expressions are other LEL symbols.
Fig. 3b shows the hypertext as a graph, with each node being
a lexicon entry.

Since LEL is not a function-oriented description, it has
entries that refer both to the functional and to the
nonfunctional perspectives.

Although LEL can contain nonfunctional aspects of the
domain, at least the very first version of LEL is usually
mainly composed of symbols related to functional require-
ments. This is due to the very vague nature of nonfunctional
requirements and, quality aspects, in spite of their
importance, are usually hidden in everyone’s minds.
However, it does not mean that the software engineer
cannot register information about nonfunctional require-
ments if the opportunity arises. A well-defined set of
symbols representing the vocabulary of the UofD is an
important step to be taken.

We have extended LEL to help with NFRs elicitation.
LEL is now structured to express that one or more NFR is
needed by a symbol. It is also structured to handle
dependency links between one NFR and all the notions
and behavioral responses that are necessary to consider this
NFR. This is stressed in Fig. 2 since the first step to building
the nonfunctional perspective is to enhance the existing
LEL with the customer’s NFRs. To do that, we run through
all LEL symbols using an NFRs’ knowledge base, to ask
ourselves, and the customers if any of the NFRs in this
knowledge base may be necessary to each of the LEL
symbols.

Each NFR expressed as desirable by customers is
represented as a notion for this symbol using the pattern
”Has NFR”+NFR. To each NFR expressed, we must again
refer to the knowledge base trying to find possible
refinements and operationalizations to this NFR. Operatio-
nalizations found must then be represented as notions or
behavioral responses either in this symbol, or eventually in
other symbol. In some cases, operationalizing an NFR may
call for adding features to symbols other than the one
currently being analyzed, or even to create a new symbol.
Once the operationalization is introduced, it is necessary to
introduce a traceability link in the notion or behavioral
response pointing to the NFR that originated this oper-
ationalization. The traceability link will follow the pattern:
”NocaoOrg[” + LEL symbol + ”&” + NFR + ”&” + internal
number]. The string ”NocaoOrg” is used to differentiate
this entry so one can clearly see that this notion or
behavioral response exists to operationalize a NFR present
in ”LEL symbol.” This link will help later on when
NFR graphs will be produced. It will also help the software
engineer whenever dealing with the impacts of satisficing
or not satisficing an NFR.

We have built knowledge bases on some NFRs. Up to
now we have created knowledge bases in the form of
catalogues for: Usability, Traceability, and Privacy. Those
can be reached at: http://www.math.yorku.ca/~cysneiro/
nfrs.htm. We intend to keep updating these catalogues as
well as creating new catalogues as we gain comprehensive
practical experience in other NFRs.

Both LEL representation and the extension for dealing
with NFRs are implemented in the OORNF Tool [34]. In this

tool, we find an NFR knowledge base that can, and must be
constantly updated. This knowledge base stores a variety of
NFRs, and some common ways to decompose them. The
tool brings along with the definition of these NFRs a set of
possible conflicting NFRs as well as a set of NFRs that may
be positively impacted by this NFR. The OORNF tool
supports LEL, scenarios [29], [20], and CRC cards [42]
editing. Our use of the tool here is just to help the
presentation of the steps and the products we use; it is
not meant to be the focus of the paper.

Take, for example, the case study performed within a
clinical analysis laboratory (Case Study III). For each of the
symbols represented in LEL, we asked ourselves and the
customers what possible NFRs would have to be achieved
so this symbol could be considered completely represented?
During this process, we used a knowledge base implemen-
ted as a list of NFRs in the tool. Fig. 4 (screen on the left)
shows the symbol Sample (for instance, fluids collected
from a patient placed in a recipient), its notions, and its
behavioral responses before we carried out an analysis for
any NFR(s) that could be necessary to this symbol. Fig. 4
(screen on the right side) shows the use of the knowledge
base entries. Fig. 5 shows the resultant symbol after we
came to the conclusion that traceability was essential to that
symbol. Traceability is essential because the laboratory
could not afford to lose a sample. Drawing a new sample
can be almost impossible sometimes or at least very painful.
In Fig. 5, we can see a notion ”Has NFR Traceability”
indicating the addition of the NFR Traceability. Here, the
use of the term Traceability can be understood in two
different ways. The first means that some object or action in
the real world must be traceable during a period of time.
That is the kind of traceability that we referred to above.
The second refers to the software engineering notion that
one might be able to trace elements forward and backward
throughout the several models used for developing a
software system.

Now that we understand that a Sample has to be
traceable, we must understand how this NFR might be
achieved. We can use the knowledge base or we can ask

332 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 4. Using the knowledge base to help eliciting NFR.

ourselves and the customers how we could guarantee this
traceability would work. We may also apply both ap-
proaches, which in fact has been the most effective way to
accomplish this task.

One of the responses we got from questioning about
traceability in regards to the Sample entry was: ”every time
a sample is aliquoted (expression used in this domain that
means to create an aliquot, or yet to draw from one recipient
to another), this procedure has to be recorded so one can
know which sample was originated from another sample.”
We represent this answer as an entry in the behavioral
responses (LIS keeps a record of what sample is originated
from another) of the symbol Aliquote sample (Fig. 6).

As we add a new behavioral response to the symbol
Aliquote Sample, we have to create a dependency link in
this behavioral response pointing to the NFR traceability
stated in the notions of the symbol Sample. This link is
represented using the pattern described above as: No-
caoOrg [Sample/Samples&Traceability&80871]. This pat-
tern shows that this behavioral response exists to satisfice7

the Traceability NFR present in the symbol Sample. This
pattern is used mainly by the OORNF tool to keep a
rationale for the process. It can also be used as a quick guide
to find out which NFR within a symbol has generated the
need for a particular notion or behavioral response.

The other response we got was: “one should be able to
know where a sample is now and where it has been before.”
We can see these two answers represented in Fig. 6,
respectively, as a behavioral response in the Aliquote
sample symbol (LIS keeps a record of what sample is
originated from another) and another behavioral response
in the Sample symbol itself (Employee has to scan samples
every time a sample arrives to the sector).

Reasoning about the behavioral response we placed in

the symbol Sample, we realized that this answer was not

sufficient to satisfice the traceability NFR because we were

not specifying how one could actually know where a

sample is at any needed time. Again, using a traceability

catalogue and asking ourselves how to solve this problem,

we decided that in order to know the exact position of a

sample at a time, it was necessary to scan this sample every

time it is transported from one place to another. To

represent this knowledge, we created a new symbol called

Scan Sample that can be seen in Fig. 7. Although to scan

sample may be at the end a functional requirements, it is in

fact an operationalization for the NFR Traceability. We can

also understand operationalizations as if they were, in fact,

functional requirements that have arisen from the need to

satisfice an NFR. This can explain why we frequently face

doubts about if a requirement is functional or nonfunc-

tional. The fact that an NFR when operationalized may

result in new functional requirements points to the virtual

impossibility of eliciting all the functional requirements

firsthand.
This process is repeated for all LEL symbols; thus, at the

end we have LEL expressing at least the basic necessary
NFRs, and some of their operationalizations.

As said before, LEL is not the best tool to deal with

dependencies among NFRs since they frequently involve

many conflicts among possible solutions to satisfice one or

more NFR. Thus, it is fair to say that at this point we have

one first approach to satisfice NFRs, but it is still

incomplete. It would be likely to have NFRs that we could

not find operationalizations for, as well as undetected

conflicts among these operationalizations, or among exist-

ing operationalizations. Therefore, we must perfect our

knowledge of NFR satisficing for the domain using the NFR

Framework with some slight adaptations.

3.2 Representing NFRs

3.2.1 The NFR Framework

Here, we use the same notion used by Mylopoulos [32]: that
an NFR can rarely be said to be satisfied, that is, treating
NFRs as goals we bring to bear the notion of partial
satisfaction. This notion led Hebert Simon to coin the term
”satisfice” [38]. Goal satisficing suggests that the solution
used is expected to satisfy within acceptable limits. For
instance, it expresses the idea that one can never say that a
system is 100 percent safe against malicious offenders, but
provides enough security measures to be considered secure.

As said before, the NFR Framework [32], [8], [10] views
NFRs as goals that might conflict among each other. These
goals are represented as softgoals to be satisfied. Each
softgoal will be decomposed into subgoals represented by a
graph structure inspired by the and/or trees used in
problem solving. This process continues until the require-
ments engineer considers the softgoal satisfied (operationa-
lized) [10], so these satisficing goals are understood as
operationalizations of the NFR.

In accordance with [10], for us, an NFR has a type, which
refers to a particular NFR, for example, security or
traceability. It also has a subject matter or topic, for example,
Sample as shown in the example in the previous section. We
would then represent it as Traceability [Sample].

The NFR framework was extended to represent the
operationalizations in two different ways. We called them

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 333

Fig. 5. Symbol after one NFR was picked up.

7. See Section 3.2.1.

dynamic and static operationalizations. Dynamic operatio-
nalizations are those that call for actions to be performed.
Static operationalizations usually express the need for the
use of some data in the design of the software to store
information that is necessary for satisficing the NFR. Fig. 8
shows an example of an NFR graph where we can see these
two types of operationalizations. Categorizing operationa-
lizations as Dynamic or Static will later help with the direct
mapping of these operationalizations into attributes or
operations belonging to a class.

On the top of the Fig. 8 (extracted from the Case Study I
—Light Control System), we can see the root of this graph
“Safety [Room].” This root means that room is a place that
has to be safe regarding illumination aspects, i.e., the room
has to have enough light so people do not stumble and fall.

One of the operationalizations that represent part of the
satisficing of this NFR can be seen on the left side of the
figure represented by a bold circle denoting a static
operationalization. Here, we can see the need for some
information in the system that represents the minimum
illumination in lux that can be used in a room.

On the bottom of Fig. 8, we can see dotted circles
representing dynamic operationalizations. One of them,
Safety [Room.Malfunction.User get informed], represents
the requirement that a user be informed of any malfunc-
tion that occurs in the room. The letter S that appears
inside each node represents that this subgoal is Satisficed.
The letter P is used for those ones that are Partially
satisficed or D for those ones that are Denied. A partially
satisfied goal/subgoal means that not all of the possible
alternatives to satisfice this NFR are being employed here,
possibly due to conflicts with other NFRs.

It is important to stress that the identifier that appears
close to the NFR on the root of the graph (NFR Topic)
must be a LEL symbol. In Fig. 8, we see the root node
Safety [Room]; therefore, room must be a LEL symbol. If
one cannot find the word or sentence intended to be used
as a topic for an NFR, then either one symbol represented
in LEL has an alias not yet defined or LEL is incomplete
and therefore, must be updated. If LEL is updated, all
steps performed in the nonfunctional perspective must be
revisited, e.g., look for possible NFRs for this symbol and
search for possible operationalizations.

3.2.2 Creating NFR Graphs

To build the NFR model, one must go through every LEL
symbol looking for notions that express the need for an
NFR. For each NFR found, one must create an NFR graph
where this NFR will be the root of the graph. This graph
must be further decomposed to express all the operationa-
lizations that are necessary to satisfice this NFR. This can be
accomplished either using the knowledge base on NFRs or
investigating what notions and behavioral responses were
added to LEL to satisfice NFRs. These notions and
behavioral responses will be candidates to be operationa-
lizations for this NFR. These two approaches are not
conflicting; actually, they are likely to be used together.

Since each NFR graph is derived from LEL symbols, we
can model NFRs that spread over several symbols.

334 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 6. Consequences of satisficing the NFR of the symbol sample.

Fig. 7. A symbol created to satisfice an NFR from another symbol.

Let us take for example the symbol Room belonging to

a Light Control System (Case Study I). We can see a

notion ”Has NFR Safety” representing that the system

must behave in a safe way regarding the amount of

illumination in a room. Fig. 9 shows the entry for this

symbol and illustrates how a NFR graph would be

originated from there.

After we have represented the NFR graph root, we have

to search for its operationalizations. Fig. 10a shows the

result of this search; in this case the behavioral responses

that were added to LEL to satisfice the NFR Safety[Room].

Using these behavioral responses we represent possible

operationalizations for the Safety[Room] NFR as it can be

seen in Fig. 10b. For instance, the third line ”it can not

establish less than a safe illumination” leads to the

operationalization that is the leftmost one in Fig. 11. Once

we had done that, we must now try to see what possible

subgoals, if any, would represent an intermediary step

between the graph root and its operationalizations.
We may proceed in two different ways:

1. Decomposing the root using a top-down approach.

For example, we may choose to decompose the NFR

Safety [Room] into a subgoal Safety [Room.Light

Scene] representing that for a room to be safe, we
have to assure that every possible light scene will be

safe. We may also continue to decompose it to the

point that the Current Light Scene will always be

equal to or greater than the safe illumination.
2. We can continue the evaluation using a bottom-up

approach. For example, take the operationalization

(Safety [Malfunction of OLS.All CLG set on]) that

expresses the need for having all the ceiling light

groups (CLG) to be turned on in the occurrence of a

malfunction of an outdoor light sensor (OLS), and
the operationalization (Safety [Malfunction.User Get

Informed]) that expresses the need for the user of a

room to be informed of a malfunction. We could

understand that these two operationalizations point

out to an intermediary subgoal that decomposes the

Safety [Room] NFR into a subgoal concerned with all

types of malfunction (Safety [Room. Malfunction]).

The final result should be very similar, regardless of

which method one chooses to use. Fig. 8 shows the final

version of this graph.
After we have carried out this process for each LEL

symbol, we will have a set of NFR graphs that will model

the nonfunctional perspective. As such, we can now analyze

all the graphs to check for possible conflicts and different

design solutions that might then be negotiated with the

customers.

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 335

Fig. 8. An example of an NFR graph (from [13]).

Fig. 9. Creating an NFR graph.

336 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 10. (a) Navigating an NFR to find its operationalizations. (b) A first approach to decomposing an NFR.

Fig. 11. Identifying and solving interdependencies among NFR graphs.

3.3 Identifying and Solving Conflicts

One important characteristic of NFRs is that we can often
identify interdependencies among them, either positive or
negative. In other words, an NFR may contribute positively
or negatively to another NFR satisficing.

Once we have the set of NFR graphs, we have to search
for possible interdependencies among NFRs. For example,
an NFR pointing out that the software might need a high
level of Security may have a negative impact (a negative
interdependency) on another NFR like Usability. Fre-
quently, when security is enhanced, usability aspects will
be impacted. For example, enhancing security to internet
banking might demand the user to create a secrete phrase
that will be further entered every time the bank is accessed.
While it might prevent unauthorized use of the account, it
will also strongly affect the usability of the system since
remembering and typing this phrase correctly may repre-
sent a burden to many users.

On the other hand, one might face an NFR for
Performance that calls for saving space used for storing
some information. To operationalize this NFR, one option
could be to use compressed format. This operationalization
will affect negatively another NFR that calls for a good
response time when dealing with this information. An
example of positive dependency could be the one for space
performance versus privacy because to operationalize
privacy one may choose to adopt some sort of cryptography
mechanism that may lead to a more compressed format
and, therefore, would positively contribute to the perfor-
mance NFR. Further details can be seen in [10].

We propose three heuristics to help us with finding these
interdependencies.

1. Compare all NFR graphs of the same type, searching
for possible interdependencies. For example, we
may put all the NFR graphs that have the type Safety
together to see if there is any interdependency
among them. Different customers may have differ-
ent view points regarding safety concerns. Compar-
ing them may facilitate the detection of conflicts.

2. Compare all the graphs that are classified in the
knowledge base [34] as possibly conflicting NFRs.
For example, compare graphs of Security with graphs
of Usability. Comparing Graphs that are traditionally
conflicting may disclose several conflicts.

3. Compare pair wise all the graphs that were not
compared while applying the above heuristics. Pair
wise comparison diminishes the importance of
intuition or expertise to detect conflicts since it
forces the comparisons that otherwise may be
missed.

Fig. 11 shows an example of a negative interdepen-
dence found when we were applying the third heuristic
during one of our case studies. This graph was extracted
from a software system for clinical analysis laboratory
(Case Study III).

This figure shows the pair wising of patient’s report
operational restrictions with reliability. Pair wising these
graphs allowed us to see a negative interdependence from
the subgoal that deals with the aspects of how to assure

reliability when electronically signing patient’s report, to
the operationalizations that states that, in order to satisfice
operational restrictions regarding time restrictions on
printing patient’s report, the system (LIS) should electro-
nically sign all the patient’s reports. This negative influence
happens because the Manager of the Processing area said
that in order to have reliable tests not all results can be
signed electronically. Only the reports that have all test
results within a predefined range can be electronically
signed.

It is important to clarify that the subgoals that appear in
Fig. 12a as partially satisfied (P) were considered satisfied
(S) before we carried out the comparison. Only after we
negotiated with the stakeholders to compromise with an
intermediary approach were these subgoals considered
partially satisficed. This is exactly what is represented in
Fig. 12a, i.e., the patient’s reports will be electronically
signed by the system only when all the results are within a
predefined range considered safe to this task.

Although being important, heuristic three may become
inappropriate to be used when the number of NFR graphs
is very large. Although we have not treated the scalability
problem in detail, we understand that this kind of
heuristic may need to be further studied addressing
feasibility concerns [25]. We do not have a rule-of-thumb
to this number but we have used this heuristic in a case
study where we dealt with more than seventy NFR graphs
and it was still worth using. Of course, automation will
improve the effectiveness of the strategy; however, this is
future work.

Once we have all the reasoning involved in NFRs’ trade
off done, we then have the nonfunctional perspective ready
to be integrated into the functional perspective. It is
necessary to understand where the conceptual models will
be affected by the operationalizations elicited to meet the
NFRs elicited. Furthermore, we need to reason how to
include, if they are not yet represented, these operationa-
lizations in the different conceptual models.

4 INTEGRATING NONFUNCTIONAL AND

FUNCTIONAL PERSPECTIVES

Our strategy allows the integration process to be carried out
in many different ways. The software engineer can integrate
the NFRs into the use case, scenario and class models not
necessarily in this order. The strategy also supports the
integration of NFRs into class, sequence, and collaboration
diagrams [37] being designed, or even into legacy systems.

Use cases [18], [37] and the scenario models [42] are
frequently used for driving the construction of the class,
sequence and collaboration diagrams. Therefore, if the
software engineer integrates the NFRs into the use case and
scenario models in the early stages of the software
development process, the conceptual models that will arise
later will naturally reflect the NFRs.

Doing so, the integration of the NFRs into class diagrams
will turn out to be a process that will work more as a
validation of the integration made before. Still, as diagrams
at design level capture more detailed information than
those used during earlier phases, some new designs

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 337

338 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 12. (a) A Use Case before the integration process. (b) NFR graph to be intergrated. (c) Use case reflecting NFR.

Fig. 13. The scenario integration process.

decision may happen here despite previous integration of
NFRs into use cases and scenario models. Thus, integrating
NFRs into the functional perspective during both early and
later phases can be useful for reevaluating the integration
under the viewpoint of new design decisions or require-
ments evolution.

4.1 Integrating NFRs into Use Cases

For every use case diagram in the functional perspective,
we identify if any LEL symbol appears in the name of the
diagram. We also identify if any LEL symbol appears in any
of the use cases or actors of this diagram. For each LEL
symbol we find, we will search the set of NFR graphs to
identify those where this symbol appears. We may,
eventually, find one or more NFR graphs that contain the
symbol being searched for. We take every graph where the
symbol appears and check if the use case diagram realizes
the dynamic operationalizations in the graph, i.e., if there is
any use case that does what is stated in the dynamic
operationalizations.

LEL intends to capture every meaningful term used in
the UofD. If a use case diagram does not have at least one
LEL symbol, either there are symbols in LEL that may have
aliases not yet specified or a symbol is missing. Most of all,
all the actors in a use case diagram must be LEL symbols. If
a symbol is missing, LEL must be updated and all the
processes that are carried out within the nonfunctional
perspective must take place again, e.g., search for NFRs that
may apply to this symbol, create NFR graphs.

Every use case or actor included, due to NFR satisfaction,
must be followed by an expression using the pattern:
{NFR_Type[NFR_topic]}. The use of this expression aims at
adding traceability between the functional and nonfunc-
tional perspectives.

The traceability between the functional and nonfunc-
tional perspective played a very important role during the
real life case study, most of all while reviewing the
functional perspective models. NFRs may have a very
vague nature and, in opposition to what happens in the case
of functional requirements, it is unusual to have them clear
in the software engineer’s mind. This traceability link helps
the software engineer while he is reviewing or changing the
models. It helps, not only to see that some use cases are
there to satisfy a specific need, but also to check during
model evolution if any conflict has arisen because of these
changes.

It may be necessary to specify some special conditions
together with a use case, as for example, pre and post

conditions needed to satisfice an NFR. These conditions
may be specified beside the use case name between braces,
preferably using OCL [35]. For example, in the clinical
analysis laboratory domain (Case Study III), we faced one
situation where satisficing a Security NFR applied to test
results. We had to ensure that prior to setting any results to
a patient’s record, the system would have to check if this
result is within a range considered safe, or if the employee
inputting this result is a sector manager.

Fig. 12a shows a use case diagram used in the case study
mentioned above. It portrays the diagram named ”Input
Results” before the integration process. This use case
diagram expresses the set of use cases needed to input

results to tests that were prescribed to a patient. In this
figure, the actor LIS refers to Laboratory Information
System.

According to the integration process, we identify LEL
symbols in this diagram. The symbols are tagged as
boldfaced and underlined words in the diagram. We now
have to search the set of NFR graphs for the occurrences of
any of these symbols. Fig. 12b portrays one of the NFR
graphs we found. We picked out this graph because of the
occurrence of the symbols Result, highlighted in Fig. 12a, as
well as the occurrence of the symbol Input Result, which is
the name of the diagram. Analyzing the use case diagram in
Fig. 12a, we can see that regular access validation was
already satisfied in the use case diagram, while the other
two had to be added. Fig. 12c shows the same use case
diagram after adding the necessary use cases and special
conditions to the diagram. We can see in Fig. 12c that we
included two new use cases that are used by the use case
”set result.” They were included as an ”include” link since
they will be used by many other use cases. Both use cases
came from the dynamic operationalization in the graph
portrait in Fig. 12b.

These operationalizations state the need for checking if
the result is within a range considered secure. They also
show that it is necessary to check if the employee who is
inputting the result belongs to the same sector where the
test is being processed. These two checks can be ignored if
the employee holds a position as a sector manager
(represented by ”SM”). The use case ”Set result” is the
one responsible for inputting the result to the patient’s
report; the condition mentioned above is linked to this use
case as a note. This note specifies that before inputting any
results the LIS has to check that these conditions are met.

This process has to be carried out for all the use case
diagrams that compose the software specification.

4.2 Integrating NFRs into Scenarios

We also propose to integrate the NFRs from the nonfunc-
tional perspective into scenario models. Here, we view
scenarios as an artifact for requirements elicitation that is
not necessarily linked to any use case, although the
integration process is still valid to be used when scenarios
are viewed as a refinement of a use case.

We use the scenario description proposed by Leite [28] to
illustrate the process. On more time, the integration process
will be anchored in the use of LEL symbols. Each existing
scenario will be evaluated, searching for LEL symbols being
used in the title of the scenario, in the resources description,
in the actor’s description, or in the goal description. For
each symbol found, we search the set of NFR graphs
looking for this symbol. Once we find one or more
NFR graphs where the symbol appears, we have to check
if all the operationalizations stated in each graph are
already satisfied in the scenario description. If it is not,
we have to update the scenario so that this condition holds.
There is no prescribed order on how to analyze a scenario.
This process continues until all the scenarios have been
analyzed. Fig. 13 illustrates the process. Dynamic operatio-
nalizations will probably be satisfied by one or more
episodes while static ones will be part of one or more
episodes.

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 339

As we did when dealing with use cases, the title for a
scenario has to contain at least one LEL symbol. If one can
not find a LEL symbol in the scenario title, either a synonym
is missing or LEL is incomplete and should therefore be
updated. Note that, when updating LEL, one may go over
the nonfunctional perspective again, i.e., evaluate the
symbol for possible NFRs, represent in the graphs, etc.

The same way as in use cases, the information included
in a scenario to satisfice an NFR must be followed by the
expression: Constraint: {NFR_Type[NFR_topic]}. We use
this expression in the same way we use it in the use case
diagrams. It aims at adding traceability between the
functional and nonfunctional perspectives.

This process was used in Case Study I (detailed on
Section 5), regarding a light control system, to integrate the
NFRs into the scenarios. An example is shown in Fig. 14a.

All the expressions underlined in the scenario descrip-
tion are LEL symbols. Following the process for each
symbol we found in the scenario, we searched every
NFR graph looking for the occurrence of these symbols.
Take, for instance, the symbol ”Light Scene,” Fig. 14b

portrays part of the two graphs we found. As it can be seen
there, one of the graphs illustrates that, in order to have
usability in the system, we must have a control panel that
can be used for setting a desired light scene.

To establish a light scene, the user will set how much the

light must be dimmed. This information is, by default,

passed in a percentage form. In Fig. 14b, we can see that a

graph illustrating that in order to satisfice the NFR

Safe[Illumination], we have to store not only the percentage

value that represents how much you are dimming the

lights, but also the equivalent in lux. This is done because

the system has to check whether the user is inputting a safe

value for the light scene or not. This contributes to satisfice

another graph that states that any light scene should be

greater than 14 lux. Analyzing the scenario in Fig. 14a, we

can see that this scenario is not in conformance with what is

stated in the NFR graph. Thus, we had to add two new

episodes to this scenario to satisfice the NFR. Fig. 14c shows

the scenario after the integration process. This same process

was then carried out for all the other scenarios available.

340 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 14. (a) Scenario from a light control system. (b) Part of the NFR graph containing the symbol ”light scene.” (c) The resulting scenario.

4.3 Integrating NFRs into Class Diagrams

As in the previous models, integration of the nonfunctional
perspective into the class model will be based on the use of
LEL. Here, it means that every class belonging to the class
diagram has to be named using a LEL symbol. The use of
LEL as an anchor to construct both perspectives will
facilitate their integration. It can also be used for validating
both models since, if for some reason one cannot find a
LEL symbol for naming a class, it means that either any
LEL symbol has an alias that was not yet considered, or the
symbol is missing in LEL definition and, therefore, should
be added to it. If that is the case, one may go over the
nonfunctional perspective again, i.e., evaluate the symbol
for possible NFRs, represented in the graphs, etc.

Using this anchor, the integration process is centered on
searching for a symbol that appears in both models, and
evaluating the impacts of adding the NFR’s operationaliza-
tions to the class diagram. Fig. 15 depicts the integration
method for the class diagram. We start the process by
picking out a class from the class diagram. There is no order
for choosing one class or another. We search all the
NFR graphs looking for any occurrence of this symbol.
For each graph where the name of the class we are
searching for appears, we have to identify the dynamic
and static operationalizations from this graph.

For dynamic operationalizations found, we have to check
if the operations that belong to this class already fulfill the
needs expressed in the graph’s operationalizations. On the
other hand, for static operationalizations we have to check if
the class attributes already fulfill the needs expressed in the
graph’s operationalizations. If they do not, we have to add
operations and attributes to the class. Note that, adding new
operations may sometimes call for the inclusion of new
attributes in order to implement the desired operation or
vice-versa.

Let us take for example a class named Room from a light
control system (extracted from Case Study I detailed in
Section 5). We had to search all the NFR graphs in the
nonfunctional perspective looking for the symbol Room.
One of the NFR graphs we found is shown in Fig. 8, where

we can see five operationalizations, four dynamic and one
static. The four dynamic operationalizations state that the
software must:

1. Turn all the lights on when a malfunction of the
outdoor light sensor occurs.

2. Advise the user of a malfunction of both outdoor
light sensor or motion sensor.

3. Set the room as occupied in the case of a motion
sensor malfunction.

4. Advise the facility manager (FM) of any malfunction.

We have to check if any operation in the class Room
already performs these actions. If they do not, we should
add operations to handle these actions. On the other hand,
the static operationalization states that there should be an
attribute fixing the minimum amount of light in a room as
14 lux. In this case, we have to check if there is an attribute
in the class Room to store this information.

Notice that, if the class that we are analyzing is part of a
generalization association, we have to check if any super-
class or subclass of this class does not have operations, or
attributes that satisfy the needed operationalizations.

4.3.1 Heuristics on How to Use UML Class Diagrams to

Handle NFR

To integrate NFRs into class diagrams calls for some
extensions to be made on how to use UML notation for
these diagrams. Below, we present four heuristics on how to
proceed.

1. Classes created to satisfice an NFR may have the
name of the class followed by a traceability link that
points out to the NFR whose operationalizations
demanded the class be created. This link will follow
the syntax: {NFR [LEL symbol]}. Since NFRs are
often more difficult to be on designers’ minds than
functional requirements, having this traceability link
avoids classes to be withdrawn from the class
diagram during a reviewing process, because one
could not find any reason why this class must exist.

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 341

Fig. 15. The class diagram integration process.

Fig. 16 shows an example of such a class. This

class was created when we were analyzing the class

Control Panel in the class diagram for a light control

system (Case Study II described in Section 5). We

searched the set of NFR graphs in the nonfunctional

perspective looking for the symbol Control Panel.

One of the graphs we found is showed in Fig. 17.

We can see in this figure that this graph calls for two

dynamic operationalizations: 1) Set Password and

2) Ask Password. These two operationalizations

were necessary because only the facility manager

can change some parameters of the system for

security reasons. Therefore, there has to be not only

a control panel for the facility manager, but also a

process to check the password in this control panel

to avoid unauthorized people using it.
Since we did not find in the class Control Panel

anything that would satisfice this NFR, we decided

to create a new class (FMCP-Facility Manager

Control Panel), as a subclass of the class Control

Panel.
It is important to make it clear that the creation of

a new class to satisfice an NFR will always be a

design decision. The software engineer could have

chosen, in this case, to add the same attributes and

operations present in the class shown in Fig. 16 to

another already existing class such as the Control

Panel class.
2. Adjacent to each operation that has been included to

satisfice an NFR, we add a link to the nonfunctional
perspective. As in heuristic one, this is to enforce
traceability between models, so the designer can
easily check nonfunctional aspects whenever he
changes anything in this class. The link will follow
the same pattern as in heuristic one.

Let us take for example the class Room mentioned

before. Suppose we add an operation named Advi-

seUserofMalfuntion() in order to perform one of the

operationalizations, we should then represent it as

follows: AdviseUserofMalfunction() {Safety [Room]}.
We present here a different syntax from the one

presented in [14] for NFRs traceability. We have

changed it so one can trace exactly which NFR has

originated the need for a specific operation. This

traceability was not possible in the former work

when there were more then one NFR per class. This

also holds for heuristics 3 and 4.

3. If an NFR calls for pre or post conditions to apply for
an operation, we may add these pre or postcondi-
tions to the respective operations.

This heuristic is used for dealing with operational
restrictions that some NFRs impose. These opera-
tional restrictions should be inputted as pre or
postconditions to an operation and whenever possi-
ble should be stated using OCL [35]. These pre and
postconditions can also be stated in a note linked to
the class.

4. Adjacent to each attribute that has been added to
satisfice an NFR we may use the same expression we
use in the operations to establish a link to the
nonfunctional perspective.

Fig. 18b shows an example with the results of applying

the heuristics two to four. This figure shows the class

LightGroup after the integration process during the Case

Study II, detailed in Section 5. Fig. 18a shows the class

LightGroup before we carried out the integration process.

During the integration process, we analyzed each class we

had in the class diagram. When we picked out the class

LightGroup, we searched the nonfunctional perspective

looking for any occurrences of this symbol. Fig. 18b

illustrates one of the graphs found. This graph relates to

the NFR Safety needed when lights are dimmed. One of the

nodes (subgoals) that decomposes this graph, shows that in

order to be able to criticize if the illumination is greater than

14 lux, the light group has to be able to calculate the

equivalent in lux to the percentage set to dim the lights

(originally considered). Since there were no attributes or

operations in the class doing that task, we added the

attribute LuxValue and the operation CalculateLuxValue().

Another graph found was the one regarding the NFR Safety

applied to the Control System that can be seen in Fig. 18d.

As we can see in Fig. 18c, to satisfice this NFR there has to

be an operation to dim the lights to 100 percent, to be

executed if the light group does not receive a signal from

the control system after T4 sec.
Again, there were no operations in the LightGroup class

to perform this task, thus we added the operations
ListenPulse() and DimLights100%() together with the
attribute LastPulse necessary to implement the Listen-
Pulse() operation. Notice that beside the operation Dim-
Lights100%(), we see a precondition that states that this

342 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 16. Example of a class created to satisfice an NFR.

Fig. 17. NFR graph for a light control system.

operation will be executed only if this class does not receive

the signal within T4 sec.
Another example can be seen in Figs. 19a, 19b, 19c, 20a,

and 20b. This example was drawn from the third case study

regarding a software system for a clinical analysis laboratory.
Fig. 19a shows the class Result to Inspect before the NFR’s

integration. This class represents all the results from tests

that come from one or more analyzers (special equipment

that performs several tests automatically) and are waiting to

be inspected by specialized employees. These employees

will analyze if the results are, or are not consistent with

other results and/or patient’s history.
Using the integration process, we searched every NFR

graph looking for any occurrences of this LEL symbol.

Fig. 19b shows one of the NFR graphs found. We can see in

Fig. 19b that there are some specific concerns about security

regarding the results to inspect:

1. The system must perform a regular check to see if
the employee is authorized to access the software
module that implements the input of result to
inspect.

2. The system may check if the employee is trying to
input or change results belongs to the same sector
where the test is processed.

3. The system must check if the inputted value is
within a range considered safe to be inputted by any
regular employee. Values out of this range can only
be inputted by the sector manager.

Fig. 19c shows the class after the integration process. We

can see in this figure that three new operations were added

to satisfice the required operationalizations found in the

NFR graph shown in Fig. 19b. We can also see a note with

the pre and postconditions resulting from the integration.

Note that, in this case, three existing operations were

affected by pre and post condition. We use the same pattern

for traceability to establish which NFRs these conditions

came from. We do not need to do that for the operations

that were driven by NFRs, such as CheckresultinRange,

since the operation already carries the traceability link.

However, using it or not is a choice for the software

engineer.
Let us take for example the operation SetResult(). This

operation is responsible for associating a result with a test in

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 343

Fig. 18. (a) Class LightGroup before NFR integration. (b) NFR graph for safety applied to Dimm Lights. (c) Class LightGroup after the integration

process. (d) NFR graph for safety applied to the Control System.

a definitive way. We can see in Fig. 19c that this operation
can only be executed if the result was checked to be in range
or if the employee inputting the result is a sector manager.

Continuing the process, we found another NFR graph
with the symbol Result to Inspect. This graph is portrayed
in Fig. 20a. In this graph, we can see that in order to satisfice
the NFR Reliability applied to Result to Inspect, the system
must tag results that are out of the range considered to be
normal, i.e., results that are out of the range usually
experienced by the average population. The software must
also allow the employee to tag some tests to be repeated, as
well as to provide a way to send all these tests to the
analyzer. Examining the class Result to inspect, we could see
that none of these conditions were satisfied yet and,
therefore, we added three more operations and two
attributes. Fig. 20b shows the final design of the class Result
to Inspect.

Once all the classes have been used for searching the
graphs from the nonfunctional perspective, the class
diagram will then reflect all the attributes and operations
that are necessary to implement the needs arisen from NFRs
satisficing.

It is important to note that not all LEL entries are directly
matched in the functional models. However, there are LEL
entries that will be connected to the functional model in an

indirect way, i.e., an LEL entry that is a direct match will
have behavioral responses or notions that will be consid-
ered in the integration. It occurs that in those behavioral
responses or notions we may have, by the principle of
circularity, an LEL entry that applies to the matched entity
and to others as well. For example, if we have an entry that
is a verb or a verbal phrase, this entry could be present in
more than one class of the functional model, as an
operation. Aside from that, it is very likely that this
entry/operation will be present as a use case or part of a
scenario; thus, when integrating NFRs to these models, we
would end up dealing with the NFRs needed for this entry
and later propagating them to the other models.

Another example is the case of the NFR safety. We have
seen it applied to the class Room, since it was present in the
symbol Room in our LEL, but the NFR safety could also
appear in other LEL entries, thus being spread over the
functional model.

Last, we need to integrate the NFRs into the sequence
and collaboration diagrams.

4.4 Integrating NFRs into Sequence and
Collaboration Diagrams

Integrating NFRs into the sequence and collaboration
diagrams is done by examining every class of the class

344 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 19. (a) Class result to inspect before NFR integration. (b) A first NFR graph found to be integrated. (c) class result to inspect after integrating the

first NFR graph.

diagram. For every operation included because of NFR

satisfaction, we may search the sequence and collaboration

diagrams where this class appears. For each diagram we

find, we must check if the new operations added due to

NFR satisfaction will imply any change in this sequence or

collaboration diagram.
It may be necessary to add classes, messages, or both to

the diagram. If there is any pre or postcondition attached to

an operation, we may also need to specify it attached as a

note to a message.
We must be able to represent that new messages together

with pre and post conditions in the sequence and collabora-

tion diagrams were added due to NFR satisficing. This is

done by using a note linked to the message where the

condition will apply. This note will contain the expression

that portrays the pre or postcondition. Any message

included in these diagrams due to NFR satisfaction will

have the same traceability expression we used with

attributes and operations.
Let us take for example the class Result to inspect shown

in Fig. 20b. Applying the strategy, we searched the

collaboration diagrams seeking for instances of the above

class. Fig. 21 shows the one we found.

Examining the existing diagram, and the operations

included in the class due to NFR satisficing, along with the

special conditions represented in the note, we concluded

that some changes had to be made in this diagram. Fig. 22

shows the resulting diagram. We can see in this figure that

the message tagged with the number 6 was added to

satisfice a Security NFR regarding Input Results. This was

necessary so the software could check, prior to allowing any

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 345

Fig. 20. (a) Another NFR graph. (b) Final design for the class result to inspect.

Fig. 21. Collaboration diagram where the class ResulttoInspect appears.

results to be assigned to any of the admitted tests, if the

employee inputting the result works in the same sector

where the test is performed. For the same reason, we can

see a precondition added to message 7. This precondition

establishes that before asking for any results the system has

to check if the employee belongs to the same sector where

the test is processed.
Another example that can be seen is the operation tagged

with the number 8. This operation was added to the
collaboration diagram to satisfice NFR Reliability for the
class Input Result (See Fig. 20b).

Due to space limitation, examples using sequence
diagrams and further comments about the other occur-
rences will be omitted.

5 USING THE STRATEGY

In order to gain confidence in our strategy, we performed
three case studies. All the case studies were inspired by the
project replication strategy idea as proposed by Basili [1].
Since our strategy can be seen as an addition to most of the
software development processes, we used three different
projects, each one using its own independent team for
developing a conceptual model for the software.

These conceptual models aimed to represent the clients’
requirements under the viewpoint of each one of these three
teams. On the other hand, the integration team, represented
by one of the authors, was in charge of evaluating how well
these conceptual models were expressing NFRs.

As a result of applying the process, we found several
new classes, operations, and attributes that should have
been specified in the conceptual model and were not. These
classes, operations, and attributes were understood as
errors in the conceptual models, since, if the software
system driven from these conceptual models had been
delivered to the client without these new classes, opera-
tions, and attributes, the lack of them would have been
pointed out by the client as errors in the software that
would have to be fixed.

A qualitative evaluation of the changes performed in the
software, due to NFR satisficing, would be highly sub-
jective, thus, we decided to perform a quantitative analysis
regarding how many new classes, operations, and attributes
were added to the conceptual models to satisfice NFRs. We
understand that these numbers would roughly represent
the amount of effort, time, and money that would have been
spent to change the software system to comply with these
requirements.

It can be stated that including new classes, operations,
and attributes may lead to new errors, as well as to a not so
high quality model regarding aspects as coupling and
cohesion. Although it is true, we think that, first, not all of
the changes may introduce new errors. Second, coupling
and cohesion characteristics could be easily achieved after
the introduction of the new classes, operations, and
attributes. Third, not having these new classes, operations,
and attributes would be, undoubtedly, errors in the soft-
ware system.

Case Study I was conducted using the conceptual models

created by Breitman [6] as part of her PhD thesis. It is

important to mention that Breitman has a background in

NFR [5]. She carried out a case study using the implemen-

tation of the Light Control System for the University of

Kaiserslautern. This system was first proposed in a work-

shop on Requirements Engineering at Dagstuhl in 1998 [4].

We used the system specification distributed during the

Dagstuhl Seminar, including LEL definition enclosed in the

original problem specification, to build the nonfunctional

perspective. Once we finished it, we integrated the NFRs

found in this perspective with the conceptual models that

were built by Breitman. The new classes, operations, and

attributes that have arisen from this integration were

counted as errors in the original conceptual model.
Case Study II was conducted using the conceptual

models created by a group of graduate students of PUC-Rio
during a software project course. They also used the
specification distributed during the Dagstuhl Seminar [4]
to build their conceptual models.

346 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 22. Resultant collaboration diagram.

As the source of requirements for both Case Studies I
and II was the same, in Case Study II we used the same set
of NFR graphs from the nonfunctional perspective in the
Case Study I and integrated them to the conceptual models
that were built by the students. Again, new classes,
operations, and attributes that have arisen from this
integration were counted as errors on the original con-
ceptual model.

Case Study III was conducted together with a software
house that is specialized in building software for clinical
analysis laboratories. They were responsible for developing
a new information system for a laboratory. They built a
conceptual model expressing the software requirements for
the laboratory. LEL (previously constructed by one of the
authors) was used for naming the classes used in the class
diagram.

One of the authors of this paper acted as the second team
in this case study and built the nonfunctional perspective by
making use of structured and open-ended interviews with
some of the customers and by using some available
documentation such as ISO 9000 quality manuals. Observa-
tion and Protocol analysis techniques [19] were also used,
although in a lower scale. The other team was composed of
two Senior Analysts (with an average of 10 years experi-
ence) and one Junior Analyst with three years experience.

Once the nonfunctional perspective was ready, we used
the integration process showed in Section 4 and, consistent
with the other case studies, all the new classes, operations,
and attributes that have arisen from this integration were
counted as errors in the original conceptual model.

In order to measure the overhead of using the proposed
strategy, we first measured the time spent by the software
house team (Case Study III) from the initial phases of the
software development until the conceptual models were
finished.

We recorded a total of 1,728 man hours of work. On the
other hand, we measured the time we took to build the
nonfunctional perspective and integrated it with the
conceptual models. We consumed 121 man hours to do
that. Therefore, we state that the estimated overhead was
7 percent. This number is also coherent with the overhead
found (10 percent) in previous case studies of [14]. The
difference can result from either some minor mistake in the
measurement, or improvements introduced by the new
strategy.

Take for example the numbers from Case Study III in
Table 1. We found nine new classes, where before, there
were 39 due to the use of our strategy. It is reasonable to say
that these classes would be potentially ignored when

implementing the software system and, therefore, would
represent an additional burden either during acceptance
tests or after deployment.

All three case studies presented a considerable number
of changes in the analyzed conceptual models, as seen in
Table 1.

Compiling the numbers, we can see that 46 percent of the
existing classes were somehow changed to satisfice NFRs.
We can also see that we found a number of new operations
that represented 39 percent of the existing ones.

Similar numbers could be found for attributes. We found
a number of new attributes that corresponded to 30 percent
of the existing attributes. These numbers clearly suggest
that, if the strategy had been used during the development
of the evaluated software, we could have got a more
complete software specification, and probably, fewer
demands for changes after deployment. These numbers
are consistent with the numbers we got in previous case
studies that have used a former version of the strategy [14].
During this case study, a third team was participating
without interacting with the author and, thus, paying little
attention to NFRs. This team was responsible for develop-
ing the software for the administrative/financial area of the
laboratory.

We measured the total effort spent from the require-
ments elicitation to the moment prior to software deploy-
ment for both teams. Here, we considered the author as part
of one of the teams. Therefore, all the time spent to integrate
the NFRs was counted as time spent by the team in charge
of developing the software for the processing area.

The team in charge of the software for the processing
area spent 6,912 man hours from requirements elicitation to
software deployment, in opposition to the 8,017 man hours
spent by the other team.

The first team was responsible for 52 percent of all the
coding (measured in numbers of lines of code inside the
programs) while the second team was responsible for 48
percent of all coding. Therefore, we should expect to have a
similar number of hours for both teams to deploy software.
However, we ended up having the third team spending 15
percent more time to deploy the system. We believe that,
consistent with the numbers presented in [14], the reason
for the difference of time spent by each team was due to the
effort spent on fixing problems, during the test and
acceptance phases, due to NFRs not considered before.

Unfortunately, we do not have the time that teams from
Case Studies II and I took to build the conceptual models.
We do have the time we spent to build the nonfunctional
perspective and integrate it to the conceptual models.

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 347

TABLE 1
Results from the Case Studies

Quoting Ian Alexander, in a recent participation in the
Requirements Discussion List:8 “The problem with RE
statistics is that we don’t have a scientific set of double-
blind-controlled experimental results. Running even two
identical projects under controlled conditions with just one
variable different doesn’t sound easy; running 20 would be
a nightmare.” Hence, in spite of the many variables
involved in the case studies, we understand that since all
the three models were significantly improved after we
applied our strategy, even those modeled by a participant
with an NFR background, suggests that the strategy clearly
brought benefits to the resulting conceptual models.

6 CONCLUSION

Errors due to NFRs are the most expensive and difficult to
correct [7], [15], [17], not dealing with, or improperly
dealing with them can lead to more expensive software and
a longer time-to-the market. However, most of the software
engineering methods do not deal with NFRs in an explicit
manner. A survey [20], from a small sample of organiza-
tions, of the state of the practice in terms of nonfunctional
requirements has shown that:

1. nonfunctional are often overlooked,
2. questioning users is insufficient,
3. methods do not help the elicitation of nonfunctional

requirements, and
4. there is a lack of consensus about the meaning and

utility of nonfunctional requirements.

Only recently, research results are showing ways of dealing
with NFRs [10], [14], [40] at the software definition level.

Our contribution fills this gap in software development.
We presented a strategy that tackles the problem of NFRs
elicitation and proposes a systematic process to assure that
the conceptual models will satisfice these NFRs. The
strategy is based on the use of a vocabulary anchor (LEL)
to build both functional and nonfunctional perspectives.
Using this anchor, we first showed how to elicit NFRs
building the nonfunctional perspective. We also showed
how to integrate NFRs into UML by extending some of the
UML sublanguages, and presented a systematic way to
integrate NFRs into the functional models.

Other work, like standards [22], [39], [33], offer some
guidance on eliciting NFRs. However, these standards
basically give different taxonomies for some of the NFRs.
The elicitation process per se is shallow. There is also a lack
of guidance on how one might integrate the NFRs into
design. Similar to our proposal, the Volere Requirements
Specification Template [41] brings a deeper comprehension
of NFR elicitation. It shows guidelines to elicit NFRs based
on questions to be made to each use case found. However,
relying only in use cases may facilitate for NFRs to be
missed during the elicitation process. Furthermore, decid-
ing on implementing one NFR frequently brings negative
impacts to other NFRs. For example implementing a two
steps password check can implement the NFR security but

will compromise Usability. Since Volere represents NFRs as
a statement in the use cases, it does not favor reasoning
regarding different alternatives to implement conflicting
NFRs (3).

A strong point in our process of integrating NFRs into
conceptual models is that we implemented a traceability
mechanism. This mechanism provides a way of represent-
ing in the models, which aspects are there because of an
NFR. This has shown to be quite useful during the model
reviewing process. In different situations, the reviewers
were surprised by the inclusion of elements in the
conceptual models that did not fit their perception of the
application; they only became convinced of the necessity by
following the traces to the NFR graphs and LEL. The
traceability mechanism has also proven to be very helpful
during NFRs trade offs since it was easier to check the
models to see what possible impacts would arise from
dropping one NFR or satisficing another.

This work extends previous works presenting a stronger
and more systematic elicitation process. Differently from
previous work, this work extends the lexicon to assist NFR
elicitation using a lexicon as a natural language-oriented
front-end to support the NFR elicitation process. General
heuristics for conflict detection are also introduced. The
integration process was considerably changed to cope with
problems regarding the representation of multiple NFRs for
the same class, and also to address dynamic models instead
of addressing only static models, as in the previous works.
As UML [37] has become a de facto standard for object-
oriented modeling, we have used it as the representational
schema for conceptual models.

We improved our strategy performing three case studies.
The results found in these case studies, together with
previous results [14], suggest that the use of this strategy
can lead to a final conceptual model with better quality, as
well as to a more productive software development process.
On the other hand, one of the heuristics used in conflict
detection can be very time consuming, impacting the
scalability of the approach. The lack of automation between
the lexicon use and the construction of the NFR graphs also
poses some concerns about the time spent in this task, as
well as in the accuracy of the process. Scalability is still an
open issue in our strategy. However, we can point out that,
as stated in Section 3.3, we have used the strategy in
systems where we dealt with more than 70 NFR graphs. As
it can be seen from Table 1 (Case Study III), the use of the
strategy has not impacted significantly the overall devel-
opment process and yet stimulated the discovery of several
problems in the functional models. Furthermore, applying
the strategy to Case Study III (48 classes) had not been more
challenging than when we applied it to Case Studies I and II
(around 15 classes).

Although our strategy may be used for almost any type
of NFR, we understand that its results will be more effective
when addressing NFRs that effectively demand actions to
be performed by the system, and therefore affects the
software design.

NFRs such as Maintenance and Portability are not easily
operationalized in an specific point of the artifact, but rather
will be more related on how the design is organized. Our

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

8. The RE-online mailing list aims to act as an electronic forum for
exchange of ideas among the requirements engineering researchers and
practitioners. http://www-staff.it.uts.edu.au/~didar/RE-online.html.

strategy will help to elicit such NFRs, but since they are not
operationalizable, they are not dealt with in our integration
proposal.

On the other hand, NFRs such as Safety, Traceability,
Performance, Accuracy, and others, frequently demand the
design to be carefully studied in order to satisfice these
NFRs. Hence, it will be more likely that these NFRs will be
the type of NFRs that our strategy will help the most. It is
important to remember that we do not propose to factor out
the NFR once they are integrated in the functional model.
This issue of factoring out NFRs is being treated by the
aspect literature [24]. We envision future work as dealing
with other UML artifacts and performing new case studies
in an independent manner, which is without the participa-
tion of any of us, to verify how easily this strategy can be
applied by other developers. In terms of long-range
research we hope that others, and ourselves, focus on
how to automate some of the processes we described here.
Of course, there are several challenges, but approaches that
could handle the nonfunctional requirements knowledge
base as a basis for an intelligent assistant, as well as to help
identify possible conflicts areas, certainly would contribute
to the adoption of NFR elicitation processes by software
organizations.

ACKNOWLEDGMENTS

This work was partially supported by NSERC grant and
CNPq and by FAPERJ: Cientista do Nosso Estado grants.
This work has been partially introduced in [12]. Dr. Leite
also acknowledges the support of the University of Toronto
and of CAPES since part of the final editing of the paper
was done during a sabbatical leave at University of Toronto.

REFERENCES

[1] V.R. Basili, R.W. Selby, and D.H. Hutchens, “Experimentation in
Software Engineering,” IEEE Trans. Software Eng., vol. 12, no. 7,
pp. 733-742, July 1986.

[2] B. Boehm, Characteristics of Software Quality. North Holland Press,
1978.

[3] B. Boehm and H. Hoh, “Identifying Quality-Requirement Con-
flicts,” IEEE Software, pp. 25-36, Mar. 1996.

[4] E. Börger and R. Gotzhein, “Requirements Engineering Case
Study ‘Light Control,’” http://rn.informatik.uni-kl.de/recs, 2002.

[5] K.K. Breitman, J.C.S.P. Leite, and A. Finkelstein, “The World’s
Stage: A Survey on Requirements Engineering Using a Real-Life
Case Study,” J. the Brazilian Computer Soc., vol. 6, no. 1, pp. 13-38,
July 1999.

[6] K.K. Breitman, “Evolução de Cenários,” PhD thesis, Pontificia
Univiversidade Católica do Rio de Janeiro, May 2000.

[7] F.P. Brooks Jr., “No Silver Bullet: Essences and Accidents of
Software Engineering,” Computer, no. 4, pp. 10-19, Apr. 1987.

[8] L. Chung, “Representing and Using Nonfunctional Requirements:
A Process Oriented Approach,” PhD thesis, Dept. of Computer
Science, Univ. of Toronto, June 1993, also Technical Report DKBS-
TR-91-1.

[9] L. Chung and B. Nixon, “Dealing with Nonfunctional Require-
ments: Three Experimental Studies of a Process-Oriented Ap-
proach,” Proc. 17th Int’l Conf. Software Eng., pp. 24-28, Apr. 1995.

[10] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Kluwer Academic, 2000.

[11] L.M. Cysneiros and J.C.S.P. Leite, “Integrating Non-Functional
Requirements into Data Model,” Proc. Fourth Int’l Symp. Require-
ments Eng., June 1999.

[12] L.M. Cysneiros and J.C.S.P. Leite, “Using UML to Reflect
Nonfunctional Requirements,” Proc. 11th CASCON Conf., pp. 202-
216, Nov. 2001.

[13] L.M. Cysneiros and E. Yu, “Non-Functional Requirements
Elicitation,” Perspective in Software Requirements, Kluwer Aca-
demics, 2003.

[14] L.M. Cysneiros, J.C.S.P. Leite, and J.S.M. Neto, “A Framework for
Integrating Nonfunctional Requirements into Conceptual Mod-
els,” Requirements Eng. J., vol. 6, no. 2, pp. 97-115, 2001.

[15] A. Davis, Software Requirements: Objects Functions and States.
Prentice Hall, 1993.

[16] N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, second ed. Int’l Thomson Computer Press,
1997.

[17] A. Finkelstein and J. Dowell, “A Comedy of Errors: The London
Ambulance Service Case Study,” Proc. Eighth Int’l Workshop
Software Specification and Design, pp. 2-5, 1996.

[18] M. Fowler and K. Scott, UML Distilled. Addison-Wesley, 1997.
[19] J. Goguem and C. Linde, “Techniques for Requirements Elicita-

tion,” Proc. First Int’l Symp. Requirements Eng., pp. 152-164, 1993.
[20] D.J. Grimshaw, W. Godfrey, and G.W. Draper, “Non-Functional

Requirements Analysis: Deficiencies in Structured Methods,”
Information & Software Technology, vol. 43, no. 11, pp. 629-635, 2001.

[21] G. Hadad et al., “Construcción de Escenarios a partir del Léxico
Extendido del Lenguage,” Proc. Jornadas Argentinas de Informática e
Investigacón Operativa (JAIIO’97), pp. 65-77, 1997.

[22] IEEE Recommended Practice for Software Requirements Specifi-
cation, Standard for Information Technology IEEE, 1998.

[23] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process. Addison-Wesley Longman, 1999.

[24] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” Proc.
European Conf. Object-Oriented Programming (ECOOP’97), June
1997.

[25] T.G. Kirner and A.M. Davis, “Nonfunctional Requirements of
Real-Time Systems,” Advances in Computers, vol. 42, pp. 1-38, 1996.

[26] D.R. Lindstrom, “Five Ways to Destroy a Development Project,”
IEEE Software, pp. 55-58, Sept. 1993.

[27] J.C.S.P. Leite and A.P.M. Franco, “A Strategy for Conceptual
Model Acquisition,” Proc. First IEEE Int’l Symp. Requirements Eng.,
pp. 243-246, 1993.

[28] J.C.S.P. Leite et al., “Enhancing a Requirements Baseline with
Scenarios,” Requirements Eng. J., vol. 2, no. 4, pp. 184-198, 1997.

[29] C. Leonardi et al., “Una Estrategia de Análisis Orientada a Objetos
Basada en Escenarios,” Proc. Actas II Jornadas de Ingeniaria de
Software (JIS97), Sept. 1997.

[30] Handbook of Software Reliability Engineering. M.R. Lyu, ed.,
McGraw-Hill, 1996.

[31] J. Musa, A. Lannino, and K. Okumoto, Software Reliability:
Measurement, Prediction, Application. McGraw-Hill, 1987.

[32] J. Mylopoulos, L. Chung, E. Yu, and B. Nixon, “Representing and
Using Non-Functional Requirements: A Process-Oriented Ap-
proach,” IEEE Trans. Software Eng, vol. 18, no. 6, pp. 483-497, June
1992.

[33] NASA Software Document Standard (NASA-STD-2100-91), 1991.
[34] J.S.M. Neto, “Integrando Requisitos Não Funcionais ao Modelo de

Objetos,” MSc dissertation, Pontificia Univ. Católica do Rio de
Janeiro, Mar. 2000.

[35] Rational, “Object Constraint Language Specification,” 1997,
http://www.rational.com.

[36] D. Ross, “Structures Analysis: A language for Communicating
Ideas,” IEEE Trans. Software Eng, vol. 3, no. 1, pp. 16-34, Jan. 1977.

[37] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

[38] H.A. Simon, The Sciences of the Artificial, third ed. MIT Press, 1996.
[39] US Department of Defense System Software Development, DOD

Standard 2167A, 1997.
[40] A. Van Lamsweerde, “Goal-Oriented Requirements Engineering:

A Guided Tour,” Proc. Fifth Int’l Symp. Requirements Eng., pp. 249-
262, 2001.

[41] S. Robertson and J. Robertson, Mastering the Requirements Process.
ACM Press, 1999.

[42] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-
Oriented Software. Prentice Hall, 1990.

CYSNEIROS AND LEITE: NONFUNCTIONAL REQUIREMENTS: FROM ELICITATION TO CONCEPTUAL MODELS 349

Luiz Marcio Cysneiros received the PhD
degree from the Pontificia Universidade Católica
do Rio de Janeiro, Brazil, in 2001 and has been
involved with requirements engineering since
1996. He is an assistant professor at York
University, Toronto. He has held a postdoc
position at the University of Toronto from April
2001 to July 2002, where he continued his
studies on nonfunctional requirements. He has
published papers at several requirements re-

lated conferences, including RE’99, and in the Requirements Engineer-
ing Journal. He also has been presenting tutorial on nonfunctional
requirements in many international conferences such as ICSE ’02, RE
’03, and UML ’03. He has an extensive industrial experience, mainly in a
computer manufacturer and on health care domain. He is a member of
the IEEE Computer Society.

Julio Cesar Sampaio do Prado Leite received
the PhD degree at the University of California,
Irvine, in 1998. He is an associate professor at
Pontificia Universidade Católica do Rio de
Janeiro, Brazil, and has been involved in
requirements engineering, specifically, since
his pioneer work on viewpoints. He has been
program chair and conference chair for several
conferences and has more than 90 full papers
published at conferences proceedings and 19

journal papers. He is a member of the IFIP W.G. 2.9 on software
requirements engineering, member of the IEEE committee on software
reuse, and is an associate editor for the Requirements Engineering
Journal. He is a founding member of the Brazilian Computer Society,
member of the IEEE Computer Society, and of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

