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Measuring the temperature of a two-dimensional electron gas at temperatures of a few mK is a

challenging issue, which standard thermometry schemes may fail to tackle. We propose and

analyze a nongalvanic thermometer, based on a quantum point contact and quantum dot, which

delivers virtually no power to the electron system to be measured. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4729388]

The availability of high-mobility two-dimensional elec-

tron gases (2DEGs), combined with the ability to cool them

down to low temperatures, has led to the discovery of out-

standing physical phenomena, such as the quantum Hall

effect.1 Refrigeration schemes are currently under investiga-

tion to cool the 2DEG below the conventional operating tem-

perature of a dilution fridge (around 20 mK), down to 1 mK

or below.2,3 This achievement would open the way to a range

of experiments of fundamental relevance and to a number of

applications: electron interferometry,4 study of correlated

phases5 and exotic effects,6 charge pumping,7 quantum com-

puting,8,9 and so on.

Several different types of electron thermometers have

been proposed and realized.10 However, as the temperature

of electrons gets down to the mK range and below, finding a

proper way to measure it in a non-invasive way becomes a

critical issue. With the coupling between electrons and pho-

nons becoming weaker and weaker, the power load that a

micrometer-sized electron domain can sustain without over-

heating shrinks down to a few aW or less. In this regime,

detection schemes based on transport measurements, such as

the “conventional” quantum dot thermometer (QDT),

become impractical as they inject high-energy quasiparticles

which heat the system up, when not bringing it out of ther-

mal equilibrium.

In this letter, we propose nongalvanic thermometry for

2DEGs. Here, nongalvanic refers to the absence of current

transport between the measured electron system and the ther-

mometer leads. We start with a quick review of the QDT.

Then, we introduce its nongalvanic counterpart, whose build-

ing blocks are a quantum dot (QD) and a quantum point con-

tact (QPC). This device delivers virtually no power to the

electron domain to be measured. We model its operation

with standard theory and analyze its performance by choos-

ing realistic parameters. Finally, we discuss the problem of

measurement backaction.

An implementation of the QDT is shown in Fig. 1(a).

The QD, typically defined by split-gate confinement, is con-

nected by tunnel barriers to two distinct 2DEG regions, one

of which is the electron domain to be measured. At zero

bias, every time a resonant level of the dot crosses the Fermi

energy of the leads, the conductance displays a Coulomb-

blockade peak.11 If the two leads share the same tempera-

ture, the latter is simply determined from the peak linewidth,

to which it is proportional.12 On the other hand, when the

temperature of the source and drain leads are different, one

can still detect the two temperatures independently by apply-

ing a voltage bias much greater than the thermal energy of

the hotter lead, or even with a single zero-bias measurement,

provided the temperature difference is large enough.13

Based on a transport measurement, this scheme unavoid-

ably brings in dissipation. Of the total power dissipated dur-

ing the operation of the thermometer, let us estimate the

fraction _QR that goes to the domain. This is associated to the

tunneling of hot quasiparticles, contributing a heat flow
_QR ¼ CEf ðEÞ, where C is the coupling strength between the

resonant level of the dot and the domain (assumed to be

energy and temperature-independent), E is the energy of the

resonant level (with respect to the Fermi energy of the do-

main), and f is the electron distribution function in the

FIG. 1. Galvanic (a) versus nongalvanic (b) QDT. In (a), temperature is

determined by the linewidth of Coulomb-blockade peaks, obtained from a

transport measurement. In (b), from the average occupation of the dot, read

out in a nongalvanic fashion by a QPC placed nearby.a)Electronic mail: simone.gasparinetti@aalto.fi.

0003-6951/2012/100(25)/253502/4/$30.00 VC 2012 American Institute of Physics100, 253502-1

APPLIED PHYSICS LETTERS 100, 253502 (2012)

http://dx.doi.org/10.1063/1.4729388
http://dx.doi.org/10.1063/1.4729388


domain. We shall assume that a quasiequilibrium regime10

holds, so that f ðEÞ ¼ ½1þ expðE=kBTeÞ��1; Te being the

temperature of the domain.

To perform the readout, we must vary E in a range wide

enough to characterize the spread of the Fermi distribution.

For definiteness, we set this range to ½�3kBTe; 3kBTe�, so that

f takes values between 0.05 and 0.95. Averaging over such a

sweep, we obtain h _QRi � 0:55 CkBTe. Now, a lower bound

for C comes from the need for adequate signal-to-noise ratio,

the current at resonance being of the order of eC. If we set

1 pA as a minimum value, we get C > 10 MHz. On the other

hand, Coulomb-blockade thermometry requires thermal

broadening of the peak to dominate above intrinsic (Lorent-

zian) broadening. This condition, which must hold regardless

of dissipation, reads hC� kBTe; for Te¼ 10 mK, it gives

C� 200 MHz.

In the following, we will assume C ¼ 10 MHz, which

according to our estimate corresponds to
_QR=Te � 80 aW=K. This figure must be compared to the

cooling power provided by all relevant heat-relaxation chan-

nels. For definiteness, let us take as the electron domain a

portion of a GaAs/AlGaAs 2DEG of representative density

and mobility. At subkelvin temperatures, the heat flow from

electrons into phonons is given (for GaAs-based 2DEGs) by

the expression _Qe�ph ¼ RAðT5
e � T5

phÞ,
14 where Tph is the

temperature of the phonon bath, A is the area of the domain,

and R is a constant of the order of 30 fW lm�2K�5.13,15

In Figure 2, we plot the steady-state Te for 1 and

100 lm2-sized domains, versus Tph. Te is determined from a

power balance equation of the form
P

i
_Qi½Te� ¼ 0, with Qi

denoting the heat flow into the domain due to the ith
channel.

Each curve refers to a different configuration, to be dis-

cussed below. The straight line marked Te ¼ Tph is plotted

for reference, and stands for the case where no additional

heat load is put on the domain. As soon as the QDT is intro-

duced, the situation changes dramatically: Te follows Tph

only down to about 100 mK, below which a saturation

occurs. This is due to the weakening of electron-phonon

interaction, which is no longer able to carry the dissipated

heat away. Furthermore, as _Qe�ph scales with the domain

area, the smaller domain saturates at a higher Te. The inef-

fectiveness of the electron-phonon coupling at these temper-

atures has recently motivated the development of electronic

coolers.10,16 We take this possibility into account by consid-

ering the case where a quantum-dot refrigerator (QDR)17–19

is used to cool down the domain, both in the presence and in

the absence of the QDT. For simplicity, we assume that the

QDR is operated in ideal conditions, so that its cooling

power is given by the expression18 QQDR ¼ CT2
e , with

C � 0:31 pW=K
2
. Thanks to the QDR, the curves with

QDTþQDR now saturate at much lower temperatures, of

the order of 1mK or below. Notice that the saturating Te no

longer depends on the domain area; this is because at such

low temperatures, the competition is between the QDT and

the QDR, with the phonon bath playing little or no role. For

simplicity, in the discussion above, we have included no

other sources of heat besides the QDT. In reality, the elec-

tronic temperature is eventually limited by parasitic heat

sources, such as radiation from higher-temperature stages

and noise in the electrical lines. Likewise, the performance

assumed for the QDR must be taken as an idealization: a

recent experiment19 pointed out deviations from the ideal

behavior already at 110mK, possibly due to nonequilibrium

effects.

The nongalvanic device that we propose is shown in Fig.

1(b). As in the QDT discussed above, the strongly nonlinear

density of states of a QD is exploited to probe the energy dis-

tribution of the domain. All the difference lies in the way this

information is read out: instead of performing a transport mea-

surement across the dot, we measure its average occupation in

a nongalvanic fashion with the help of a QPC placed

nearby.20–22 If the gate sweep is performed adiabatically, the

heat flow into the domain is minimal, making the nongalvanic

thermometer a candidate device for temperature measure-

ments of ultracold electron domains. In the following, we will

describe its operation with a quantitative model.

Let us start from the QD. The latter is preferably oper-

ated in the “quantum” Coulomb blockade regime, meaning

that both its charging energy and orbital level spacing are

much greater than the thermal energy. As a result, electron

tunneling only takes place between the dot and a single

energy level. As for the galvanic QDT, we further require

hC� kBTe, so that we can neglect intrinsic broadening

effects. The mean occupation of the level is then given by

hndoti ¼ f ðEQD
0 � eaVGÞ ; (1)

where EQD
0 is a reference energy for the level and a the lever

arm of the gate on the dot.

Our next question is how the change in hndoti affects the

current I through the QPC, in the presence of a voltage bias

Vb. In the Landauer-Büttiker formalism,23 I ¼ 2e
h

Ð1
�1

dET ðE;EQPCÞ½f ðE� eVb; TLÞ � f ðE; TLÞ�, where TL is the

temperature of the QPC leads (in general, Te 6¼ TL) and

T ðE;EQPCÞ is the energy-dependent transmission coefficient

of the QPC. Assuming a single ballistic channel and using a

saddle potential,24 T ðE;EQPCÞ ¼ f1þ exp½�2pðE� EQPCÞ
=�hxx�g�1

, where xx is a characteristic energy of the confine-

ment and EQPC denotes the bottom of the potential for the

one-dimensional electron channel defined by the QPC. Upon

FIG. 2. Steady-state electron temperature Te versus phonon bath tempera-

ture Tph, for domains of different areas, in the presence of a QDT, a QDR, or

both. Parasitic heat loads on the system are not taken into account.
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changing Vg, the potential landscape at the QPC changes due

to the capacitive couplings QPC-QD and QPC-gate. As these

couplings are small, we regard them as perturbations and

model their effect by a shift of the potential EQPC with

respect to a reference value EQPC
0 . The latter is tuned by the

gates defining the constriction and defines the working point

of the QPC. We shall further denote by b the lever arm of

the dot on the QPC, and by c that of the gate. In general, we

expect c� b. Then we write EQPC as

EQPC ¼ b
e2hndoti

CR
� ecVG � EQPC

0 : (2)

In the limit eVb; kBTL � hxx, T is approximately constant in

the range where the electron distributions of the leads vary.

The expression for I then simplifies as I ¼ 2e2

h T ð0;EQPCÞVb :
Notice that TL no longer appears in this expression. By con-

trast, Te determines hndoti, which affects EQPC and hence T .

In Fig. 3(a), we plot I versus Vg for different values of Te.

As Vg is made more negative, I steadily decreases due to the

spurious coupling between the gate and the QPC. Yet as the

resonant level crosses the Fermi energy of the domain from

above, hndoti sharply decreases by one, leading to a step-like

increase in I. This gives rise to a sawtooth pattern at zero tem-

perature, which gets progressively smeared as Te is increased.

Besides I, a relevant quantity for thermometry is the

gate-to-QPC transconductance Gtr ¼ dI=dVg, which can be

directly measured using a lock-in amplifier. By direct calcu-

lation, we find

Gtr ¼
2e2

h
eVb

dT
dEQPC

cþ ab
e2

CR

df

dE

� �
: (3)

As a function of Vg, a series of dips appear on top of a posi-

tive baseline [see Fig. 3(b)]. The dips are proportional to the

derivative of the Fermi function, and their FWHM DVg to

the domain temperature Te. Explicitly,

Te ¼
ea

2logð3þ 2
ffiffiffi
2
p
ÞkB

DVg : (4)

The constant relating DVg to Te is a simple combination of

fundamental constants and the lever arm a, which can be

determined experimentally from a measurement of the QD

charging energy and the cross-capacitance between the gate

and the QD. This fact makes of the nongalvanic QDT a pri-

mary thermometer, i.e., a thermometer that can measure

absolute temperatures without relying on other thermometers

(e.g., for calibration).10

We conclude this discussion by giving a figure of merit

for each measurement mode. If we choose to measure I, such

a figure may well be the current gain AI ¼ dI=dTe, the ratio

being taken at the gate position Vopt
g that maximizes it. In the

inset of Fig. 3(a), AI is plotted versus Te over a broad range of

temperatures and for different QPC working points. The maxi-

mum gain is obtained by choosing EQPC
0 ¼ 0, which corre-

sponds to T ¼ 1
2
. At 100 lK, it can exceed 10 pA/mK. Since

AI scales as the inverse of Te, the lower the temperature, the

higher the gain. Yet, the sharpness of the sawtooth also

increases at lower temperature, so that the measurement

becomes more and more sensitive to the dot potential. Fluctu-

ations of Vg of the order of 1 lV, included in the model, are

responsible for the bending of the curves below 50 lK. As for

Gtr, we can proceed in the same way and define a transcon-

ductance gain AG ¼ dGtr=dTe. AG is plotted in the inset of

Fig. 3(b). Similarly to AI; AG is also maximized when

T ¼ 1
2
. At 100 lK, AG � 100 lS=mK. The dependence on Te

is the same as for AI. At very low Te; AG is eventually lim-

ited by the amplitude of the lock-in modulation applied to Vg.

So far, we have implicitly assumed that the state of the

QD is not influenced by our readout procedure; that is, we

have neglected any measurement backaction. In the follow-

ing, we shall take it into account and show that its effects are

indeed negligible in a suitable range of parameters. In doing

so, we are led to consider two different mechanisms: current

fluctuations through the QPC (that is, shot noise)25–28 and

charge fluctuations in the QPC (Refs. 29 and 30). The nature

of these two is very different. In particular, the way current

FIG. 3. (a) QPC current I versus gate voltage Vg for different values of the

domain temperature Te; a steeper sawtooth corresponds to a lower Te. Inset:

current gain AI versus Te for three different QPC working points. (b) Trans-

conductance Gtr versus VG for the same set of temperatures as in (a); a

sharper peak corresponds to a lower Te. Inset: Transconductance gain AG

versus Te [same working points as in (a)]. Parameters: TL ¼ 20 mK;
xx ¼ 1meV; EC ¼ 2K; b ¼ 0:1; a ¼ 0:01; c ¼ 0:002. In the main pan-

els, E0=xx ¼ �0:3. In the insets, the gains are evaluated at optimal Vg

points. For AI , we take into account 1 lV fluctuations of Vg. For AG, the

curves are those expected for a lock-in measurement with 1 lV signal

amplitude.

253502-3 Gasparinetti et al. Appl. Phys. Lett. 100, 253502 (2012)



fluctuations couple to the dot depends on the specific mea-

surement circuit. By contrast, the backaction due to charge

fluctuations is fundamentally unavoidable. Indeed, it is related

to the Heisenberg backaction of the detector (QPC) on the

quantum system whose state we are measuring (QD).30

We shall describe both mechanisms using the theory of

photon-assisted tunneling (PAT).31 Let SVðxÞ be the spec-

trum of voltage fluctuations on the dot; the probability of

PAT with energy E is then PðEÞ ¼ 1
h

Ð1
�1 exp JðtÞ þ i E

�h t
� �

dt,
where the phase-phase correlation function J(t) is related to

SVðxÞ by JðtÞ ¼ 2p
�hRK

Ð1
�1

SVðxÞ
x2 ðe�ixt � 1Þdx. The modified

hndoti, accounting for PAT, is given by

hndoti ¼
ð1
�1

f ðE� EQD
0 � eaVGÞPðEÞdE ; (5)

which is a convolution of the distribution function of the do-

main with the P(E) function. Even in the presence of PAT,

our previous analysis is still correct provided P(E) is cutoff

at some energy �E � kBT, for in that case, we can approxi-

mate PðEÞ � dðEÞ and recover the unperturbed result.

Let us consider current noise first. Given its spectral

density SIðxÞ, the spectrum of voltage fluctuations in the dot

is obtained by SVðxÞ ¼ jZðxÞj2SIðxÞ, where we have intro-

duced a transimpedance Z as in Ref. 32. As a first approxi-

mation, we may write ZðxÞ � Zð0Þ ¼ sRS ; where RS is the

resistance of the QPC leads and s is a lever arm describing

the asymmetric coupling between QD and QPC leads. The

behavior of P(E) at finite energies is then given by

PðEÞ ¼ 2p
RK

Z2SIðE=�hÞ
E2 , where RK ¼ h=2e2 is the resistance quan-

tum. Taking normalization into account, we find that the

energy spread of P(E) is of the order of �E ¼ Z2SI=RK .

Now, shot noise in the QPC has the spectrum25

SI ¼ ðeVb=RKÞT ð1� T Þ. If we take RS ¼ 0:1RK; s ¼ 0:1;
T ¼ 1=2 and Vb ¼ 2:5 lV (so that I ¼ 100 pA), we get
�E=kB ¼ 3 lK. As revealed by this analysis, the backaction

due to current noise can be made negligible by a combina-

tion of low-resistance leads and small Vb.

Let us now turn to charge noise. The spectrum of charge

flucutations on the dot, induced by the QPC, is given to the

first order in Vb and x by the expression SQðxÞ ¼ 2C2
lRveVb,

where Rv is the nonequilibrium charge relaxation resistance

defined in Ref. 29, and Cl the electrochemical capacitance

of the QPC “to” the dot. Charge fluctuations are related to

voltage fluctuations by the total capacitance of the dot:

SV ¼ ð1=CRÞ2SQ, so that SV ¼ 2ðCl=CRÞ2eVbRv : As for cur-

rent noise, we have PðEÞ ¼ 2p
RK

SVðE=�hÞ
E2 . The energy spread for

this PðEÞ is given by �E ¼ ðCl=CRÞ2ðRv=RKÞeVb. We esti-

mate its magnitude by taking Cl=CR ¼ 0:02; Rv

¼ 0:1RK; Vb ¼ 2:5 lV. We get �E=kB � 1 lK, implying that

we can safely neglect charge noise down to very low temper-

atures. This primarily stems from the ratio Cl=CR being very

small, as typical for split-gate-defined nanostructures. In

addition, the same prescription as for current noise must be

applied to Vb.

In conclusion, we have addressed the problem of meas-

uring the temperature of 2DEG microdomains cooled down to

the base temperature of state-of-art dilution refrigerators and

possibly below. Already at 100 mK, conventional schemes

based on transport are inadequate, due to overheating. We

have argued that nongalvanic thermometry may overcome this

limitation. Our results suggest that a nongalvanic thermometer

such as that considered may be conveniently employed at tem-

peratures ranging from tens of mK down to tens of lK.
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