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NONHARMONIC FOURIER SERIES AND SPECTRAL THEORY 

HAROLD E. BENZINGER 

ABSTRACT. We consider the problem of using functions gn(x):= exp(O'nx) to form 
biorthogonal expansions in the spaces LP(-'lT, 'IT), for various values of p. The work 
of Paley and Wiener and of Levinson considered conditions of the form IAn - nl .:; 
t. (p) which insure that {g,,} is part of a biorthogonal system and the resulting 
biorthogonal expansions are pointwise equiconvergent with ordinary Fourier series. 
Norm convergence is obtained for p = 2. In this paper, rather than imposing an 
explicit growth condition, we assume that {A" - n} is a multiplier sequence on 
LP(-'1T, 'IT). Conditions are given insuring that {gn} inherits both norm and point-
wise convergence properties of ordinary Fourier series. Further, An and g" are 
shown to be the eigenvalues and eigenfunctions of an unbounded operator A which 
is closely related to a differential operator, i A generates a strongly continuous group 
and _A2 generates a strongly continuous semigroup. Half-range expansions, involv-
ing cos A" x or sin An X on (0, 'IT) are also shown to arise from linear operators which 
generate semigroups. Many of these results are obtained using the functional 
calculus for well-bounded operators. 

1. Introduction. For n an integer, let {A. n } be a sequence of pairwise distinct 
complex numbers. For -'1T ~ X ~ '1T let 

(1.1) gn(x) = eiAnX , IPn(x) = einX, 
and for integrable functions f, g let 

(1.2) 1 f'IT (j,g) = 2'1T _'IT f (x)g(x)dx. 

Let 1 ~ P < 00 and p-l + q-l = 1. For fixed p, assume there exists a sequence 
{h n } in Lq (= Lq(-'1T, '1T» such that 
(1.3) (gn' hm) = 8nm · 
Then for f in LP, define the partial sum operator 

N 

(1.4) Y'N(x;f) = L (j, hn)gn(x). 

The partial sum operator for ordinary Fourier series is 
N 

(1.5) SN(X; f) = L InIPn(x), In = (j, IPJ· 
n=-N 
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246 H. E. BENZINGER 

The problem of nonharmonic Fourier series is to find conditions on {A n} so that 
for some p, the dual sequence { h n} exists in L q, and for all ! in L P, the partial sum 
operators .9"N(X; f) have the same properties as the operators SN(X; f), with respect 
to norm behavior, pointwise behavior, or both. 

In this paper we shall consider these questions, subject to the basic assumption 
that the sequence { l>n}, defined by 
(1.6) l>n = An - n, 
is a multiplier sequence on LP for some fixed but arbitrary p, 1 ,,; p < 00. This 
means that there is a bounded linear operator A: LP ~ LP such that for each! in 
LP, 

(1.7) 
Another significant property of the sequences {n} and {CPn} is that they contain 

the eigenvalues and eigenfunctions of the differential operator Ao defined by 

(1.8) Aou = -iu', (u' = du/dx), 
with domain ~(Ao) consisting of all absolutely continuous functions u such that u' 
is in LP and such that 
(1.9) 
Thus 
(1.10) 

For p = 2 the operator Ao is selfadjoint. For 1 < p < 00 the spectral theory of 
Ao is embodied in the statement that for some complex number A in the resolvent 
set of Ao, the resolvent operator R(A, Ao) is well-bounded. See [2] for the definition 
and applications to differential operators. We shall give conditions under which 
there exists a linear operator A such that 
(1.11) Agn = Angn, 
and such that the resolvent operator is well-bounded, 1 < P < 00. This is then used 
to study the properties of half-range expansions, i.e., expansions on LP(O,17) (or on 
LP(-17,O» using the sequence {COSAnX} or {sinAnx}. In particular, we show that 
the operators associated with these expansions generate strongly continuous semi-
groups. 

The study of nonharmonic Fourier series was initiated by Paley and Wiener [8] 
and by Levinson [7]. Paley and Wiener showed that for p = 2 and An real, if 
Il>nl"; 1/17 2 , then {h n } exists and for any! in L 2(-17,17), the partial sums y"(x;f) 
and Sn(x; f) have the same behavior with respect to pointwise convergence: 
(1.12) lim [Y'N(X;!) - SN(X;f)] = 0, 

N--+oo 

uniformly on each closed subinterval interior to (-17, 17). With respect to convergence 
in the norm of L 2( -17, 17), Paley and Wiener also showed that {gn} is a Riesz 
basis: there exists a bounded and invertible linear operator A on L 2 such that 

(1.13) ACPn = gn' 
and thus { gn} has the same norm convergence properties in L 2 as does { CPn }. 
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The above result on pointwise convergence was generalized by Levinson, who 
showed that if 1 < p ~ 2 and if 

(1.14) l<5n l ~ L < (p - 1)/2p, 

then {h n } exists and for any f in LP(-7T,7T) the partial sums YN(x;f) and 
SN(X; f) are uniformly equiconvergent on closed intervals interior to (-7T,7T). 
Levinson did not give any results on the norm convergence of Y N . 

The question of norm convergence was considered by Pollard in [10]. There it was 
shown that for 1 < p < 00, if r = 2 p 112 - pi and if { <5n } is in 1', with 

(1.15) 

then {gn} 1S a basis for LP and there exists a bounded invertible operator 
A: LP -+ LP such that (1.13) holds. If p = 2 then r = 00 and (1.15) becomes 

(1.16) 

This result for p = 2 had been obtained earlier by Duffin and Eachus [4]. 
All of these conditions on {<5n }, whether for pointwise convergence, norm conver-

gence, or both, impose a limitation on {<5n }: in none of these conditions is l<5n l 
allowed to be greater than i. Consider the example <5n = <5 for all n, where <5 is an 
arbitrary complex number. Then 

(1.17) 

It is a simple matter to see that even if <5 is selected so that none of the above 
conditions are satisfied, the resulting {gn} satisfies all of the conclusions of the 
above theorems, and in fact more is true: the pointwise equiconvergence theorem 
holds in the larger class L'(-7T, 7T), and {gn} is the set of eigenfunctions of an 
unbounded linear operator which generates a strongly continuous bounded group of 
transformations on LP, 1 < P < 00, and whose square generates a strongly continu-
ous semigroup. 

The conditions given by Paley and Wiener and by Pollard imply that {<5n } is a 
multiplier sequence, and the same clearly holds for the above example. Thus the 
assumption that {<5n } is a multiplier sequence contains all of the previous norm 
results, frees the theory from explicit growth conditions, and allows the association 
to each sequence {gn} of an unbounded linear operator whose spectral theory 
incorporates the norm properties of {gn}. Further, if {<5n} is a multiplier sequence 
and if {gn} is a basis for LP equivalent to { 'Pn}, then pointwise equiconvergence is 
also obtained. Levinson's results are not included in this theory. 

A survey of nonharmonic Fourier series is in [13] and other recent results on norm 
behavior can be found in [14, 15]. 

2. Norm convergence. 
2.1. DEFINITION. The sequences {gn}' {'Pn} are eqUivalent in LP if there exists a 

bounded linear operator A: LP -+ LP, with bounded inverse, such that 

(2.2) 
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248 H. E. BENZINGER 

Note that the definition applies for p = 1, where {!fin} is not a basis. The 
invertibility of A is sufficient for the existence of the dual sequence { h n} in L q: 
(2.3) 

2.4. LEMMA. If {gn} and { !fin} are equivalent, then 
(2.5) Y N = ASNA- I. 

PROOF. From (2.2) and (2.3) we have (f, hn)gn = A(A-If, !fin) !fin· 

2.6. THEOREM. If {gn} is equivalent to {!fin} in LP, 1 < P < 00, then 
lim IIYN f - flip = O. 

N --> 00 

If {gn} is equivalent to {!fin} in L I, then the arithmetic means of Y Nf converge to f in 
the norm of LI. 

PROOF. We have Y N - 1= A[SN - I]A- I and 

1 N [1 N 1 
N + 1 n~o Y N - I = A N + 1 n~o Sn - I A-I. 

Thus Y N inherits the properties of SN. 
Let X: L P -> L P be the linear operator defined by 

(2.7) (Xf)(x) = xf(x). 
Note that IIXII = 'TT. 

2.8. THEOREM. If {8n} is a multiplier sequence for some LP, 1 ~ p < 00, and if A 
is the linear operator defined by 

(2.9) 
00 (iX)k vl/k 

A = L k' ' k=O . 
then A!fin = gn. (It is not claimed that A is invertible.) 

PROOF. If there exists an operator A such that A!fin = gn' then for any trigonomet-
ric polynomial 

N 

t (x) = L i n!fin (x) 
n=-N 

we must have 
N 

(2.10) At = L ingn· 
n=-N 

Now gn(x) = !fin(x)e i8nx, so 

N 00 ( ix ) k 8:: 
At = L in!fin L k! 

n=-N k=O 

00 (.)k N 
" IX "5:!k' i.- ~ i.- Un t n!fin· 

k=O n=-N 
Since vl/kt = 'f.'!N 8::in!fin' we have 

00 (iX) k vl/k 
At = k~O k! t, and IIAtl1 ~ e"IIJtlllltll· 
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Since the trigonometric polynomials are dense in LP for 1 ~ p < 00, the extension 
to all of LP of the operator defined by (2.10) is the operator defined in (2.9). 

2.11. THEOREM. Ifforsomep, 1 ~p < 00, 
(2.12) IIJtllp < {1n 2)/w, 
then {gn} is equivalent to {IPn} in LP. 

PROOF. It suffices to show that IiA - 111 < 1. From (2.9), 

IIA - III ~ k~l IIXI111!Jtllk = e"".H11 - 1. 

Then (2.12) follows from the condition e"".H1I - 1 < 1. 
This theorem contains the theorems of Duffin and Eachus and of Pollard. Using 

the Fredholm alternative to invert operators of the form 1 - K, where K is 
compact, along with a representation of the dual sequence given by Levinson [7, 
Lemma 16.2], condition (1.15) of Pollard's theorem can be eliminated. 

2.13. THEOREM. Let 1 < p < 00, p *' 2, and let r = 2 p 112 - pI. Then {gn} and 
{ ern} are equivalent if 

(i) An *' Am forn *' m; 
(ii) { 8n } is in 1'. 

The proof follows some preliminary material. 

2.14. LEMMA. Let {un} be a sequence in a Banach space 111 and let {vn} be a 
sequence in a dual space 111* such that (un' vm) = 8nm . Let {gn} be a sequence in 111 
such that 

(1) gn = un except for n in a finite set S; 
(2) det«gn, vm))n.m in S *' O. 

Then there exists a bounded, invertible operator A: 111 -) 111 such that AUn = gn' 

PROOF. For fin 111 define an operator K by 

Kf= L (j,vJ(u n - gJ, 
nES 

and let A = 1 - K. Then K is compact and AUn = gn for all n. To show that A is 
invertible it suffices to show (by the Fredholm alternative) that Af = 0 implies 
f = O. We have Af = 0 if and only if f = Kf: 

(2.15) f = L (j, vJ( un - gn)· 
nES 

Then for m in S, 

nES 

From condition (2), (f, vn ) = 0 for all n in S, and from (2.15), f = O. 
For Levinson's representation of h n , we need the Fourier transform .% and its 

inverse .%-1 defined by 

(2.16) (.%j)( A) = joo f( x) e-i'Ax dx (j defined on (-00,00)), 
-00 
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(2.17) 

For the sequence {An}, let 

(2.18) 

Questions of convergence will be considered below. For 1 < P < 00, let p-l + q-l 
= 1, s = min(p,q), S-l + rl = 1. LP refers to the interval (-1/',1/') and LP(R) 
refers to (-00, (0). 

2.19. THEOREM (LEVINSON [7; pp. 48-58]). Let 1 < P < 00. Assume 

(2.20) l,snl ~ L < (s - l)j2s. 

Then the infinite product (2.18) converges to an entire function G(A) such that if 

(2.21) 

then 
(i) Hn is in V(R) for A restricted to R, 
(ii) (ff:"-lHn)(x) is in V(R), and its support is contained in (-1/', 1/'), 
(iii) the dual sequence {h n} is given by 

(2.22) -1/' < X < 1/', 

and 

(2.23) A E C. 

2.24. REMARKS. Levinson's theorems are stated for 1 < p ~ 2, but using the 
containment relations for LP spaces on finite intervals, the above extension of the 
range of p holds. Also, what is denoted by h n in Levinson's work is 21/'h n in our 
notation. 

2.25. LEMMA. For a finite set S of indices, let {An}, {J.tn}' n E S, be two sets of 
complex numbers such that no two numbers are the same. Then 

PROOF. Let p(A) = UmES(A - J.tm) andletPi(A) = p(A)j(A - J.t;). Then 

1 Pm(An) 
An - J.t m P{An) , 

Thus 

Now each Pm is a polynomial of degree lSI - 1, where lSI is the cardinality of S, 
and all zeros of Pm(A) are accounted for by A = J.ti' where i E S, i =1= m. Since 
An =1= J.ti' we have M =1= O. 
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PROOF OF THEOREM 2.13. There exists a finite set S of indices n such that An * n 
for n E S, ISnl ~ L < (s - 1)/2s, and 

( L ISn1' fir < (ln2)/'1T. 
n<lS 

Let Jl n = m for n E S, Jl n = An for n ~ S, and let un(x) = e iILnX • Since {Jln - m} 
satisfies Pollard's theorem (or Theorem 2.11), we see that {un} is equivalent to { <Pn}. 
Let {vn } denote the dual sequence. Since {Jl m - n} also satisfies Levinson's 
condition (2.20), we have 

(2.26) 

Since {gn} and {un} differ only for n E S, to show that {gn} and {un} are 
equivalent it suffices to show that 

det((gn, Vm)t.mEs * O. 

Using (2.26), this becomes 

Using (2.21), this becomes 

(2.27) [JJs Z,~::~ ] [det( (An - Jlmr1L.mEs] * O. 

Recall that G(A) is formed with zeros at {Jlm}, so G(An) * 0 for n E S. Since the 
set {A n} is disjoint from the set {Jl n} for n E S, the determinant in (2.27) is not 
zero. 

2.28 REMARK. The analogue of Theorem 2.13 for p = 2 is that ISnl ~ L < (ln2)/'1T 
for Inl sufficiently large, and, for the finitely many remaining An's, that they are 
pairwise distinct. 

For p * 2, Theorem 2.13 requires that Sn ~ 0 as Inl ~ 00. Using the theory of 
well-bounded operators, a general class of multipliers can be given for which 8n ~ 0 
is not necessj;lry. A special case will yield a proof of a theorem of Kadec [6]: 

THEOREM (KADEC). Let {8n} be real and assume I Sn I ~ L < ~. Then {g n} is a 
basis lor L 2 equivalent to {<Pn}. 

Some of the details of this theory are now presented. 
2.29. DEFINITION. An arc C in the complex plane is admissible if it is simple, 

nonclosed and rectifiable: 
Let S denote the length of C and let p: [0, S] ~ C denote the arc-length 

parameterization of C, with b = peS). A function I: C ~ C is said to be absolutely 
continuous on C if I Q P is absolutely continuous on [0, S], and for such functions I, 
we define 

(2.30) 1II/IIIe = I/(b)1 + f Idl/dzlldzl· e 
2.3l. DEFINITION (RINGROSE [12, p. 634]). An operator T on a Banach space is 

well-bounded on C if there exists a constant K > 0 such that if p( z) is any 
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polynomial, then 
(2.32) 

H. E. BENZINGER 

IIp(T)1I ~ Killpillc-

2.33. THEOREM [12, p. 636). If T is well-bounded on C, then for each absolutely 
continuous function f on C, there is a bounded linear operator f(T) such that the 
mapping f -> f(T) is a homomorphism of AC(C) into the algebra of bounded linear 
operators, and 
(2.34) Ilf(T)1I ~ Killflllc· 

If the underlying Banach space is reflexive, then there exists a family of projec-
tions { E (A) : A E C} a spectral family for T, which can be used to express f (T) as a 
modified Riemann-Stieltjes integral [3, Chapter 17). See also [2, Proposition 2.3), 
where we see that the constant K of (2.34) can be chosen to be sup{ II E (A) II : A E C}. 

For D. > 0, let 
(2.35) TI!. = D.T, CI!. = {D.z:z E C}, EI!.(A) = E(A/D.), A E CI!.' 

2.36. THEOREM. TI!. is a well-bounded operator on CI!. with spectral family EI!.' and for 
any function f which is absolutely continuous on CI!.' 
(2.37) Ilf(TI!.)11 ~ Killflllc;, 
where 
(2.38) K= sUp{EI!.(A):A E CI!.} = SUp{E(A):A E C}. 

For the proof of this theorem, see [1) for a general discussion of functions of 
well-bounded operators. We emphasize that the constant K for TI!. in (2.37) is 
computable from the spectral family for T. 

Multiplier transforms which are well-bounded have been studied by D. J. Ralph 
[11). 

2.39. DEFINITION. A real sequence {Sn}' -00 < n < 00, is piecewise monotone if 
{ Sn} is monotone for Inl sufficiently large. A complex sequence {Sn} lying on an 
admissible arc C is piecewise monotone if {p-l( Sn)} is piecewise monotone. 

Note that the sense of mono tonicity does not have to be the same for the two tails 
of { Sn}' 

2.40. THEOREM [11, COROLLARY 3.2.6). If { Sn} is a piecewise monotone sequence on 
an admissible arc C, then {Sn} is a multiplier sequence for LP, 1 < P < 00, and the 
associated multiplier transform vi{ is well-bounded on C. Moreover, iff is absolutely 
continuous on C, then for any g in LP 

(2.41) 

The proof of the next theorem depends upon the expression (due to Kadec [6)) of 
1 - e i8x in the orthonormal system {I, cosnx, sin(n - Dx} for n ;:;. 1: 

(2.42) 1 - e i8x = (1 - sin 'ITS ) + ~ f (-1) kS sin 'ITS coskx 
'ITS 'IT k = 1 k 2 - S 2 

. 2 ;, ( -1 ) k S cos 'ITS . ( k 1 ) + I-£... sm - - X. 
'lTk=1(k-t)2-S2 2 
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2.43. THEOREM. Let M be a well-bounded multiplier transform on some LP, 
1 < P < 00, with multiplier sequence {8n}. Then there exists Ll = Ll (vi!, p) > Osuch 
that i/ An = n + M n, then {gn} is a basis/or LP equivalent to {IPn}. 

PROOF. Let / be a trigonometric polynomial in LP: / = '£'!NinIPn- For such /, 
A/ = '£'!Ningn exists, and B = I - A is defined: 

N 

B/= LinIPn[l - e iMnx ). 
-N 

Using (2.42) with 8 = Mn and then interchanging the order of summation, we have 

N ( sin 7TLl8n ) A 

(2.44) B/ = n~N 1 - 7TMn /nIPn 

2 ~ {)k ~ Mnsin7TMn A + - £.., -1 cos kx £.., 2/nIPn 
7T k=l n=-N k 2 - {MJ 

i2 ~ { )k. ( _ 1) ~ MnCOS7TMn j,A + £.., -1 sm k 2 X £.., 2 nIPn· 
7T k=l n=-N(k-~) _{MJ2 

Define functions 

a ( 8) = 1 - Si:;8, f3 k ( 8) = : :i: ~82 ' 

Yk(8) = 8 cos 7T8 , k=1,2, .... 
(k_~)2_82 

These functions are absolutely continuous on any admissible arc, and by Theorem 
2.40, for any / in LP, 

00 00 

a{vI!t.)/= L a{Mn)inIPn, f3k{vI!t.)/= L f3k{MJinIPn' 
-00 -00 

00 

Yk{ vi! t.)/ = L Yk{ Ll8n)inIPn· 
-00 

Thus, using the density in LP of the trigonometric polynomials, we see that the 
operators A, B have continuous extensions to all of LP, and 

2 00 

B/= a{vI!t.)/+ - L (-l)kcoskxf3k{vI!t.)/ 
7T k= 1 

Let K > ° be selected as in (2.38), where E (A) is the spectral family of vI!. Using 
the triangle inequality, 
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Note that 

so that 

H. E. BENZINGER 

l,Bk( D) 1 = eJ( D/k 2 ), uniformly as 15 --+ 0, k --+ 00, 

I,BU 15)1 = eJ( D/k 2 ), also uniformly, 

II l,Bkilk = eJ(~/k2) as k --+ 00. 

Using similar estimates for a, Yk' we see that for ~ sufficiently small, IIBII < 1, and 
then A is invertible. 

If {D,,} is real, then more precision in estimating II l,Bd II, etc., can be obtained. For 
1151 ~ L ~ t we see that var,Bk = 2,Bk(L) so that 

II l,Bklll[ - L,Ll = 3,Bk (L) 

and similarly for a, Yk' Thus 

IIBfll ~ IIfll3K{1 - sin17'~L + ~ f ~Lsin17'~L + ~ f ~LCOS17'~L }. 
17'~ L 17' k ~ 1 k 2 - ( ~ L ) 2 17' k ~ 1 (k - ~) 2 - ( ~ L f 

Again using Kadec [6], we note that 

~2L 00 1 1 --1: 2 = A L - cot17'~L, 
17' 1 k2_(~L) 1..l17' 

2~L 00 1 --1: = tan17'~L, 
17' 1 (k_~)2_(~L)2 

so 

{ sin 17'~L sin 17'~L .} 
IIBfll ~ IIfll3K 1 - 17'~L + 17'~L - cos 17'~L + sm 17'~L , 

IIBII ~ 3K [1 - cos 17'~L + sin 17'~L]. 

Then for t:::.. sufficiently small, IIBII < 1. 
To say how small ~ should be, it is necessary to know K. Let H denote the 

conjugate function mapping on LP. For 1 < p < 00, let s = min(p, q). Then [9] 

(2.45) IIHilp = tan( 17'/2r). 

Using the representation of the spectral family of vH [11, Theorem 3.2.4] we have: 

2.46. LEMMA. If {D,,} is real and piecewise monotone, and if m is the number of 
intervals (of integers) on which {D,,} is monotone, then 

K ~ m[l + tan17'/2r]. 

Kadec's theorem was based on Parseval's equality. A spectral-theoretic proof can 
be given, since vH is then selfadjoint and II,Bk(vH)II = sup(l,Bk(Dn ) I), etc. 
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3. Pointwise convergence. 

3.1. THEOREM. Let p be fixed, 1 ~ P < 00. Assume {8n} is a multiplier sequence in 
LP and that {gn}' {Cf!n} are equivalent. Then for each f in LP, 

lim [Y'N(X; f) - SN(X; f)] = 0, 
N --> 00 

uniformly on each interval [-'1T + d, '1T - d], d> o. 
3.2. REMARK. Note that this theorem includes the case p = 1, even though { Cf!n}, 

{gn} are not bases in L1. Theorem 3.1 contains as a special case a result of Duffin 
and Schaeffer [5, §4] for L2. 

PROOF OF THEOREM 3.1. Since {gn}, {Cf!n} are equivalent, we have Y'N = ASNA-1. 
Using the expression (2.9) for A, we have 

Y' = ~ Xk (iAt)k S A-I 
N J.... k' N , 

k=O . 

but since.A and SN commute, 

(3.3) 

(3.4) 

and then 

~ ( k k) (iAt)k -1 
Y'Nf - SNf= /::1 X SN - SN X k! A f· 

Let D N denote the Dirichlet kernel 

( ) sin(N + ~)(x - t) D x - t = --'--...,...,..~~--:-,-

N 2sin«x - t)/2) 
For any function g in LP, 

(XkSN - SNXk)g(X) = I" DN(X - t)(x k - tk)g(t) dt, 
-'IT 

where 

x-t = sin(N + ~)(x - t) . [X k- 1 + Xk- 2t + ... +tk-1). 
2sm(x - t)/2 

Given d> 0, there exists K = K(d) > 0 such that if Ixl ~ '1T - d, then 

IDN(x - t)(x k - tk)1 ~ Kk'1Tk, Ixl ~ '1T - d, It I ~ '1T. 

Thus 
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Let e > 0 be given. Then there exists J = J( e, f) such that 

Ik~J (XkSN - SNXk) (i~)k A-1f l < ~ 

for all N, Ixl ~ 7T - d. For the finitely many remaining terms, it is easily seen that 
the Riemann-Lebesgue lemma holds uniformly in x, Ixl ~ 7T - d, so for N suffi-
ciently large, 

I :~: (XkSN - SNXk) (i~)k A-If I < ~. 

4. Eigenfunction expansions. In this section we assume {8n ) is a multiplier 
sequence for LP, for some p, 1 ~ P < 00, and that the corresponding {gn} is 
equivalent to { CPn}. Let Ao be the differential operator defined in (1.8), (1.9), and let 
A be defined by 

(4.1) 

4.2. THEOREM. A is a closed, densely defined operator on LP, 

(4.3) 

and iA is the infinitesimal generator of the uniformly bounded, strongly continuous 
group 

(4.4) t E R, 

where Uo(t) is the translation group generated by iAo. 

PROOF. This is a direct consequence of (4.1), noting that Ao and vi! commute. 
For the further study of A, let 1 < P < 00. Then 

00 

(4.5) (AI - Ar1f = L (A - Anr\f, hJgn, 
-00 

Since {(A - An)-I} is in l' for all r, 1 < r < 00, it follows that {(A - An)-I} is a 
multiplier sequence in LP for 1 < P < 00. For (AI - A)-1 to be well-bounded, it 
suffices to have {(A - AntI} piecewise monotone. If {8n } is real, this is the case if 
18n l ~ L < 1/2. 

4.6. LEMMA. Let 8n = an + if3n where 

(4.7) lanl < L < t f3n = (9(1) 
for n sufficiently large. Let A be a real number distinct from the An- Then {(An - A)-I} 
lies on an admissible arc C and is piecewise monotone. 

PROOF. If suffices to show that {Re(An - A)-I} is piecewise monotone and 
{Im( A n - A) -I} is of bounded variation, since then the arc formed by joining 
successive points (An - A)-1 with straight lines is admissible. A computation yields 

Re(A - Ar1 =!..- an - A + 'In 'In = (9(1), 
n n n 2 n3 ' 
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and then the difference of two successive ones is 

(1 ) [1 -(an - an+ 1 ) + Yn). 
n n + 1 n 

For Inl sufficiently large this is positive, since an - an+ 1 < 1. Clearly Im()..n - )..)-1 
= (9(n- 2 ), so this sequence is of bounded variation. 

4.8. THEOREM. If {Bn} satisfies (4.7), then R()", A) is well-bounded. 

PROOF. By the above lemma, {().. - )..n)-l} satisfies the conditions of [11, Corollary 
3.2.6] (see also Theorem 2.40), so R()", Ao + At) is well-bounded. Well-boundedness 
is preserved by similarity transforms. 

We have A2 = A(Ao + At)2A-1 with domain !2(A2o). 

4.9. THEOREM. If ).. does not coincide with any )..2n and if (4.7) holds, then R()", A2) 
is well-bounded on LP, 1 < P < 00. 

The proof is similar to that for A. 

4.10. COROLLARY. For 1 < p < 00, _A2 is the infinitesimal generator of a semi-
group in LP. 

PROOF. Since the admissible arc C containing {().. - )..2nt 1} enters the origin with 
bounded slope, the conditions of [2, Theorem 5.15] are satisfied. (See also [2, Lemma 
5.48].) 

5. Half-range expansions. Assuming the sequence {)..n} is odd: 

(5.1) 

we consider expansions for 0 < x < 'IT (or for -'IT < X < 0) in {cos).. nX }, n ~ 0 and 
in {sin )..nx}, n ~ 1. We give conditions assuring that these functions are eigenfunc-
tions of linear operators which generate strongly continuous semigroups in LP(O, 'IT). 

We assume throughout this section that (5.1) holds and {gn}, { CJln} are equivalent 
in some space LP. 

5.2. LEMMA. g_n(x) = gn(-x), h_n(x) = hn(-x). 

PROOF. Since {gn} is given explicitly, this is an immediate consequence of (5.1). 
For h n' let m be fixed and let w( x) = h m ( -x). Then for all n, and using the above 
property of gn' we have (gn' w - h_ m) = 0 all n, m. Since {gn} is complete we have 
w = h_ m . 

For the remainder of this section we consider cosine expansions. Thus let 

(5.3) Gn(x) = [gn(x) + g_n(x)];2, Hn(x) = [hn(x) + h_ n(x)]/2, 
cn(x) = cosnx. 

Clearly 

(5.4) 

For an even function f on [ -'IT, 'IT], let 

(5.5) F(x) = f(x), 0< x < 'IT, 
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and for two functions u, v on (0,17), let 

(5.6) 21'1f (u,v)=- u(x)v(x)dx. 
17 0 

5.7. LEMMA. Iff is an even function, then for 0 < x < 17, 

(J, ho)go = ~(F, Ho)Go, 
(5.8) (J, hJgn + (J, h_n)g_n = (F, Hn)Gn, 

(5.9) 
N 1 N 

L (J, hn)gn = "2(F, Ho)Go + L(F, Hn)Gn := YN(x; F). 
-N 1 

PROOF. Computational. 
Let 

(5.10) o < x < 17. 

5.11. THEOREM. If (5.1) holds and if {gn}, {CfJn} are equivalent in LP for some p, 
1 ~ P < 00, then for all F in LP(O, 17), 

lim [YN(x; F) - TN(X; F)] = 0, 
N-->oo 

uniformly on [0,17 - dJ for each d > o. If 1 < P < 00, then 

lim Y N (-; F) = F 
N --> 00 

in the norm of L P (0, 17 ). 

PROOF. These are direct consequences of the relations 

Y'N(X; f) = YN(x; F), SN(X; J) = TN(X; F), 

and the analogous theorems for Y'N' SN. 
If f is an even function in 9)(N), then for 0 < x < 17, 

00 

A2f=" "A?(F H)G := [2F " .I...J n , n n , 
1 

0<X<17, 

where 9)([2) consists of all F in LP(O, 17) such that the even extension to [-17,17 1 is 
in ~(A2). For ;\ =F ;\2n, and for any polynomial P, 

00 

(5.12) P(R(;\, [2))F = ~p(;\-l)(F, Ho)Go + L p((;\ - ;\2n t)(F, Hn)Gn 
1 

o < x < 17. 

5.13. THEOREM. If {(\} satisfies (4.7), along with the other assumptions of this 
section, then for 1 < p < 00, R(;\, [2) is well bounded and _[2 generates a strongly 
continuous semigroup on L P(O, 17). 

PROOF. Since for any function F and its even extension f we have 
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from (5.12) and the well-boundedness of R(X, N), 

I\P(R(X, [2))FII = 2-1/ P IIP(R(X, N))!II 
~ 2-1/ PKII iPlllll!11 = KIIIPlllliFl\, 

259 

where II iPlll is computed on the piecewise linear admissible arc contammg 
{(X - X2n )-1}. Thus R(X, [2) is well-bounded and the proof of Corollary 4.10 
applies. 
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